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Approximate Constraint-Following

of Mechanical Systems under Uncertainty
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Abstract: We consider a mechanical system, which is required to obey a set of
constraints. The system may contain uncertainty, which is possibly fast time-
varying. We propose a robust control scheme that is motivated by the Nature’s
strategy. The control also takes into account the uncertainty for guaranteeing
approximate constraint following.
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1 Introduction

For a mechanical system to be confined to a set of constraints, constraint forces are
needed. Out of many possible forms for such forces, in Lagrangean mechanics, it is
postulated that the constraint forces should be governed by the Lagrange’s form of
d’Alembert’s principle. In a sense this is what Joseph-Louis Lagrange asserted the Nature
would do ([1]).

In the past, the majority of the efforts in constrained mechanical systems can be
divided into two categories: the passive constraint problem and the servo constraint
problem. In the passive constraint problem, the main focus is to investigate what the
Nature will do in order to assure that the constraints are (strictly) obeyed. These include,
for example, the Maggi equation [2,3], the Boltzmann and Hamel equation [3, 4], the Gibbs
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and Appell equation [4–6], and the Udwadia and Kalaba equation [7]. A more complete
list can be found in [1].

In the servo constraint problem, on the other hand, the main focus is to find what
the engineer should do, so that the constraints are followed. A survey on the use of
geometric and algebraic approaches can be found in [8–12]. Most of the emphasis is on
precise model-based control design. Prominent contributions which deal with uncertainty
can be found in, e.g., [13–16] and their bibliographies.

In these two categories, the main differences are twofold. First, the Nature (i.e., the
environment or the structure) is assumed to possess all information, be it the system or
the surrounding. Therefore there is no uncertainty. The engineer, however, is always
limited to a rather confined domain of knowledge. As a result, uncertainty tends to be
inevitable in many applications.

Second, the Nature is only contended with a strict performance. That is, the con-
straints are to be precisely followed. The engineer, taking a more pragmatic viewpoint,
can be settled with approximate constraint following.

This paper falls into the second category. The features of the current approach are
fourfold. First, no state transformation is needed. One can choose any coordinate system
to represent the system and design the control. Second, the uncertainty considered can
be (possibly fast) time-varying. Third, no Lagrange multiplier is needed for control for-
mulation; hence no force feedback. Fourth, no initial condition restrictions are imposed.
The starting configuration of the mechanical system can be far away from the desired
constraint.

2 Mechanical System Subject to Constraints

Consider the following mechanical system:

M(q(t), σ(t), t)q̈(t) + C(q(t), q̇(t), σ(t), t)q̇(t) + g(q(t), σ(t), t) = τ(t). (2.1)

Here t ∈ R is the independent variable, q ∈ Rn is the coordinate, q̇ ∈ Rn is the velocity,
q̈ ∈ Rn is the acceleration, σ ∈ Σ ⊂ Rp is the uncertain parameter, and τ ∈ Rn is
the control input. Furthermore, M(q, σ, t) is the inertia matrix, C(q, q̇, σ, t)q̇ is the
Coriolis/centrifugal force, and g(q, σ(t), t) is the gravitational force. The matrices/vector
M(q, σ, t), C(q, q̇, σ, t), and g(q, σ, t) are of appropriate dimensions. We assume that the
functions M(·), C(·), and g(·) are continuous (this can be generalized to be Lebesgue
measurable in t). In addition, the bounding set Σ is prescribed and compact.

Remark 2.1 The coordinate q can be selected based on the specifics of the problem
and does not need to be the generalized coordinate [17].

The following constraints are proposed:

n
∑

i=1

Ali(q, t)q̇i = cl(q, t), l = 1, . . . , m, (2.2)

where q̇i is the i-th component of q̇, Ali(·) and cl(·) are both C1, m ≤ n. They are the
first order form of the constraints. The constraints may not be integrable; and may be
nonholonomic in general. The constraints can be put in matrix form

A(q, t)q̇ = c(q, t), (2.3)
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where A = [Ali]m×n, c = [c1, c2, . . . , cm]T.
We now convert the first order form into second order form. Differentiating the

constraint equations (2.2) with respect to t yields

n
∑

i=1

(

d

dt
Ali(q, t)

)

q̇i +

n
∑

i=1

Ali(q, t)q̈i =
d

dt
cl(q, t), (2.4)

where

d

dt
Ali(q, t) =

n
∑

k=1

∂Ali(q, t)

∂qk
q̇k +

∂Ali(q, t)

∂t
,

d

dt
cl(q, t) =

n
∑

k=1

∂cl(q, t)

∂qk
q̇k +

∂cl(q, t)

∂t
.

Equation (2.4), the second order form of the constraints can be rewritten as

n
∑

i=1

Ali(q, t)q̈i = −
n

∑

i=1

(

d

dt
Ali(q, t)

)

q̇i +
d

dt
cl(q, t) = bl(q, q̇, t), l = 1, . . . , m, (2.5)

or in matrix form

A(q, t)q̈ = b(q, q̇, t), (2.6)

where b = [b1, b2, . . . , bm]T.

Remark 2.2 For a given configuration, the possible velocity q̇ is governed by (2.3)
while the possible acceleration q̈ is governed by (2.6) ([17]). Advantages of considering
second order constraints are discussed in, e.g., [18,19].

Remark 2.3 The constraint (2.6) is in fact a very general form. It includes typical
constraints as illustrated in, e.g., [1,17]. It also includes a number of standard control
objectives such as stability, trajectory tracking, and optimality. All one needs is to
prescribe a desirable system dynamics and then convert it to the second order form.

Remark 2.4 Besides the “practical” constraint a dynamic system needs to meet,
which are thoroughly discussed in, e.g., [1], there is also the “numerical” constraint. By
this, we mean that it is possible that a system, under a prescribed constraint, while
in numerical simulations, tends to have a numerical drift of constraints and integrals.
Therefore it is desirable to impose an additional “numerical” constraint on the system
to make sure there is no numerical drift. The standard technique such as in [20] can be
applied. The “numerical” constraint can be combined with the “practical” constraint to
form (2.6).

3 The Passive Constraint Problem

There are two categories of problems associated with constraints. In the passive con-
straint problem, the environment (or the structure) is to supply the constraint force in
order for the system to comply with the constraint. In the active (or servo) constraint
problem, the control input supplies the required force. We discuss the first in this section.
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The virtual displacement [17] δq is such that A(q, t)δq = 0. Let Qc ∈ Rn denote the
constraint force. The Lagrange’s form of d’Alembert’s principle, which in turn prescribes
the constraint to be ideal, is such that the first order constraint virtual work vanishes:

δ′W (c) = QcTδq = 0, (3.1)

where δ′W (c) is the (first order) constraint virtual work.

Assumption 1 For each (q, t) ∈ Rn × R, σ ∈ Σ, M(q, σ, t) > 0.

Remark 3.1 The assumption on the positive definiteness of the inertia matrix will
be vital in later development. In the past, it was often believed that this was always true,
and therefore a fact rather than an assumption. However, there are counter examples,
as listed in [21], when q is not selected to be the generalized coordinate (as the current
case).

Definition 3.1 For given A and b, the constraint (2.6) is called consistent if there
exists at least one solution q̈.

Assumption 2 The constraint (2.6) is consistent.

Theorem 3.1 ([7, p. 233]) Consider the system (2.1) and the constraint (2.6). Sub-
ject to Assumptions 3.1 and 3.2, the constraint force

Qc =M1/2(q, σ, t)(A(q, t)M−1/2(q, σ, t))+

× [b(q, q̇, t) + A(q, t)M−1(q, σ, t)(C(q, q̇, σ, t)q̇ + g(q, σ, t))].
(3.2)

obeys the Lagrange’s form of d’Alembert’s principle (3.1) and renders the system to meet
the constraint. Here “+” stands for the Moore-Penrose generalized inverse ([22, p. 337]).

Sketch of Proof: By the choice of (3.2), it can be shown that, with τ = Qc in (2.1),

Aq̈ − b = A[M−1(−Cq̇ − g) + M−1Qc] − b = 0. (3.3)

Furthermore, we have Qc ∈ R(AT) (note that δq ∈ N (A) and R(AT) ⊥ N (A)). 2

Remark 3.2 The Lagrange’s form of d’Alembert’s principle renders the constraint
force (3.2) to be the one with minimum norm, out of all possible alternative forces which
can also meet (2.6) [7].

Remark 3.3 Theorem 1 suggests the strategy the Nature will undertake to meet the
constraint. The constraint force is model-based. That is, it is based on the exact model
information. Based on the theorem, one could apply the control input τ = Qc to drive
the system to meet (2.6), if the uncertainty was known. A more realistic consideration
that the uncertainty is unknown is investigated in the next section.
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4 Robust Servo Control Design

We now take the uncertainty into account while designing the control τ . Decompose the
M , C, and g as follows:

M(q, σ, t) = M̄(q, t) + ∆M(q, σ, t),

C(q, q̇, σ, t) = C̄(q, q̇, t) + ∆C(q, q̇, σ, t),

g(q, σ, t) = ḡ(q, t) + ∆g(q, σ, t).

(4.1)

Here M̄ , C̄, and ḡ denote the “nominal” portions with M̄ > 0 (this is always feasible since
it is the designer’s discretion), while ∆M , ∆C and ∆g are the uncertain portions. The
functions M̄(·), ∆M(·), C̄(·), ∆C(·), ḡ(·), and ∆g(·) are all continuous. Let D(q, t) :=
M̄−1(q, t), ∆D(q, σ, t) := M−1(q, σ, t) − M̄−1(q, t), E(q, σ, t) := M̄(q, t)M−1(q, σ, t) − I
(hence ∆D(q, σ, t) = D(q, t)E(q, σ, t)).

Assumption 3 For each (q, t) ∈ Rn × R, A(q, t) is of full rank.

Assumption 4 There exists ρ̂E(·): Rn × R → (−1,∞) such that for all (q, t) ∈
Rn × R,

1

2
min
σ∈Σ

λm

(

E(q, σ, t) + ET(q, σ, t)
)

≥ ρ̂E(q, t). (4.2)

Remark 4.1 Suppose there is no uncertainty in M : M̄ = M , then E = 0 and hence
one can choose ρ̂E = 0 to meet the assumption. By continuity, there is a (unidirectional)
threshold for the allowable uncertainty in E. We note that a standard assumption in
this area (see, e.g., [23]) that maxσ∈Σ ‖E(q, σ, t)‖ < 1 for all (q, t) ∈ Rn × R is more
restrictive than the current setting.

Assumption 5 For given P ∈ Rn×n, P > 0, let

Ψ(q, t) := PA(q, t)D(q, t)D(q, t)AT(q, t)P.

There exists a scalar constant λ > 0 such that

inf
(q,t)∈Rn×R

λm (Ψ(q, t)) ≥ λ. (4.3)

Remark 4.2 Under Assumptions 3.1, 3.2, and 4.1, the matrix Ψ(q, t) is always pos-
itive definite. Thus all this assumption adds is that λm(Ψ) is positively bounded from
below.

Remark 4.3 Let β(q, q̇, t) := A(q, t)q̇ − c(q, t). We consider the approximate con-
straint following problem. That is, it is possible that β 6= 0 (hence Aq̈ 6= b). This may be
due to modelling uncertainty (and hence (3.2) can not be implemented by the designer;
while it can be by the Nature). In addition, the system may not start with the constraint
manifold in the beginning (i.e., β 6= 0 as t = t0).

Consider the following control design:

τ(t) = p1(q(t), q̇(t), t) + p̂2(q(t), q̇(t), t) + p̂3(q(t), q̇(t), t), (4.4)
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with

p̂2(q, q̇, t) = −κM̄−1(q, t)AT(q, t)P (A(q, t)q̇ − c(q, t)), (5)

p̂3(q, q̇, t) = −γ̂(q, q̇, t)µ̂(q, q̇, t)ρ̂(q, q̇, t), (6)

where ǫ, κ ∈ R, ǫ, κ > 0,

γ̂(q, q̇, t) =











(1 + ρ̂(q, t))−1

‖µ̂(q, q̇, t)‖
, if ‖µ̂(q, q̇, t)‖ > ǫ,

(1 + ρ̂(q, t))−1

ǫ
, if ‖µ̂(q, q̇, t)‖ ≤ ǫ,

(7)

µ̂(q, q̇, t) := M̄−1(q, t)AT(q, t)P (A(q, t)q̇ − c(q, t))ρ̂(q, q̇, t). (8)

The function ρ̂(·) : Rn ×Rn×R → R+ is chosen such that for all (q, q̇, t) ∈ Rn ×Rn×R,

ρ̂(q, q̇, t) ≥ max
σ∈Σ

‖PA(q, t)∆D(q, σ, t)(−C(q, q̇, t)q̇ − g(q, t) + p1(q, q̇, t) + p̂2(q, q̇, t))

− PA(q, t)D(q, t)(∆C(q, q̇, σ, t)q̇ + ∆g(q, σ, t))‖.
(4.9)

Theorem 4.1 Subject to Assumptions 3.1, 3.2, and 4.1-4.3, consider the system
(2.1). The control (4.4) renders β uniformly bounded (that is, for any r > 0, there
is a d(r) < ∞ such that if ‖β(q(t0), q̇(t0), t0)‖ ≤ r, then ‖β(q(t), q̇(t), t)‖ ≤ d(r) for
all t ≥ t0) and uniformly ultimately bounded (that is, for any r > 0 and d > 0 with
‖β(q(t0), q̇(t0), t0)‖ ≤ r, ‖β(q(t), q̇(t), t)‖ ≤ d̄ for any d̄ > d and all t ≥ t0 + T (d̄, r),
where T (d̄, r) < ∞). Furthermore, d̄ → 0 as ǫ → 0.

Proof Let V (β) = βTPβ. For any given σ(·), the derivative of V along a trajectory
is evaluated as (for simplicity, arguments of functions are sometimes omitted when no
confusions are likely to arise):

V̇ = 2βTP (Aq̈ − b) = 2βTP
{

A
[

M−1(−Cq̇ − g) + M−1(p1 + p̂2 + p̂3)
]

− b
}

. (4.10)

After decomposing M−1, C, and g, we have

A[M−1( − Cq̇ − g) + M−1(p1 + p̂2 + p̂3)] − b

= A[(D + ∆D)(−C̄q̇ − ḡ − ∆Cq̇ − ∆g) + (D + ∆D)(p1 + p̂2 + p̂3)] − b

= A[D(−C̄q̇ − ḡ + p1 + p̂2) + D(−∆Cq̇ − ∆g) + ∆D(−Cq̇ − g + p1 + p̂2)

+ (D + ∆D)p̂3] − b.

First, we recall that
A[D(−C̄q̇ − ḡ) + Dp1] − b = 0. (4.11)

Next, by (4.9),

βTPA[D( − ∆Cq̇ − ∆g) + ∆D(−Cq̇ − g + p1 + p̂2)]

≤ 2‖β‖‖PA[D(−∆Cq̇ − ∆g) + ∆D(−Cq̇ − g + p1 + p̂2)]‖ ≤ 2‖β‖ρ̂.
(4.12)

Based on (4.5),

2βTPADp̂2 = 2βTPAD(−κM̄−1ATP (Aq̇ − c)) = −2κηTη = −2κ‖η‖2, (4.13)
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where η = M̄−1ATPβ. By ∆D = DE, (4.6), and recalling that M̄−1 = D,

2βTPA(D + ∆D)p̂3 = 2βTPA(D + DE)(−γ̂µ̂ρ̂)

= 2(DATPβρ̂)T(I + E)(−γ̂µ̂) = 2µ̂T(I + E)(−γ̂µ̂)

= −2γ̂µ̂Tµ̂ − 2γ̂µ̂TEµ̂ ≤ −2γ̂‖µ̂‖2 − γ̂λm(E + ET)‖µ̂‖2

≤ −2γ̂(1 + ρ̂E)‖µ̂‖2.

(4.14)

As ‖µ̂‖ > ǫ, by (4.7),

−2γ̂(1 + ρ̂E)‖µ̂‖2 = −2
(1 + ρ̂E)−1

‖µ̂‖
(1 + ρ̂E)‖µ̂‖2 = −2‖µ̂‖. (4.15)

As ‖µ̂‖ ≤ ǫ, then by (4.7),

−2γ̂(1 + ρ̂E)‖µ̂‖2 = −2
(1 + ρ̂E)−1

ǫ
(1 + ρ̂E)‖µ̂‖2 = −2

‖µ̂‖2

ǫ
. (4.16)

With (4.11)–(4.15), we have for ‖µ̂‖ > ǫ,

V̇ ≤ −2κ‖η‖2 − 2‖µ̂‖ + 2‖β‖ρ̂ = −2κ‖η‖2 − 2‖µ̂‖ + 2‖µ̂‖ = −2κ‖η‖2.

As ‖µ̂‖ ≤ ǫ,

V̇ ≤ −2κ‖η‖2 − 2
‖µ̂‖2

ǫ
+ 2‖µ̂‖ ≤ −2κ‖η‖2 +

ǫ

2
.

Finally we conclude that

V̇ ≤ −2κ‖η‖2 +
ǫ

2
.

By Rayleigh’s principle ([21]) and Assumption 4.3,

‖η‖2 = ηTη = βTPADDATPβ ≥ λm(PADDATP )‖β‖2 ≥ λ‖β‖2.

Therefore,

V̇ ≤ −2κλ‖β‖2 +
ǫ

2
.

Upon invoking arguments as in [23], we conclude uniform boundedness with

d(r) =























√

λM (P )

λm(P )
R, if r ≤ R,

√

λM (P )

λm(P )
r, if r > R,

R =

√

ǫ

4κλ
.

Uniform ultimate boundedness also follows with

d =

√

λM (P )

λm(P )
R,

T (d̄, r) =



















0, if r ≤ d̄

√

λm(P )

λM (P )
,

λM (P )r2 − (λ2
m(P )/λM (P ))d̄2

2κλd̄2(λm(P )/λM (P )) − (ǫ/2)
, otherwise.

(4.17)
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Based on (4.17), the size of the uniform ultimate boundedness region d̄ → 0 as ǫ → 0.
2

Remark 4.4 With the uncertainty in presence and no restrictions on the initial
condition, it is only reasonable to expect approximate constraint following, which is
shown in the ultimate boundedness of β. In the special case when there is no uncertainty,
i.e., ∆D ≡ 0, ∆C ≡ 0, and ∆g ≡ 0, one may choose ρ = 0 and hence p̂3 = 0. This means
τ = p1 + p̂2 and V̇ ≤ −2κλ‖β‖2. One therefore expects β → 0 as t → ∞. If, in addition,
we choose p̂2 = 0, then V̇ = 0. This means if β = 0 initially (i.e., the constraint is met
initially), then β = 0 for all t ≥ t0. This special case falls into Theorem 3.1, the perfect
constraint following case.

5 Conclusions

We consider a mechanical system subject to a class of (possibly nonholonomic) con-
straints. The system contains uncertainty. The control design objective is to render
the system to follow the constraint sufficiently close, even in the presence of uncertainty.
Two robust control designs are proposed. They are motivated by a previous design which
is based on the Lagrange’s form of D’Alembert’s principle; hence the Nature’s action.
The controls assure the uniform boundedness and uniform ultimate boundedness of the
tracking error (denoted by β).
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