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1 Introduction

In this paper we are concerned with the following perturbed wave equation in R
n,

{

∂2w
∂t2 (x, t) − ∆w(x, t) = f(x, t) +

∫ t

0 k(t − s)∆w(x, s) ds, (x, t) ∈ R
n × (0, T ],

w(x, 0) = f1(x), ∂w
∂t (x, 0) = f2(x), x ∈ R

n,
(1)

where ∆ denotes the n-dimensional Laplacian, the unknown real valued function w is to
be defined on R

n × [0, T ], 0 < T < ∞, k is a real valued function defined on [0, T ], the
real valued function f is defined on R

n × [0, T ], the real valued functions fi are defined
on R

n, i = 1, 2.
The problem (1) with k ≡ 0 has been extensively treated by many authors, see, for

instance, Yosida [21, 22] and Pazy [18]. Our aim is to reformulate (1) as a first order

∗ Corresponding author: dhiren@iitk.ac.in

c© 2008 InforMath Publishing Group/1562-8353 (print)/1813-7385 (online)/www.e-ndst.kiev.ua 317



318 D. BAHUGUNA, J. DABAS AND R.K. SHUKLA

evolution integro-differential equation in a suitable product Hilbert space and apply the
theory of semigroups together with the method of time discretization in time to establish
the existence and uniqueness of solutions.

One may formulate (1) as a second order evolution equation in a Hilbert space.
Goldstein [13] has used semigroup of bounded linear operators to second order evolution
equations. But we use the ideas of Pazy [18] to put (1) in a product Hilbert space taken
as a Cartesian product of two Hilbert spaces. It turns out that the operator associated
with the differentiation is an infinitesimal generator of a group of contractions in the
chosen product Hilbert space. We incorporate the properties of such operators with the
method of lines to establish the existence of a strong solution.

As a model for the foregoing equation we consider equations of the form:

ut(x, t) = (k(x)ux(x, t))x +

∫ t

0

G(t, s)(σ(ux(x, s)))xds + h(x, t). (2)

Such equations have physical application; for example, they arise in problems concerned
with heat flow in materials with memory. Linear versions of equation (2) are treated
in [16] and [17]; the nonlinear versions are treated in [15] and similar equations are also
treated in [14]. If we replace ut(x, t) by utt(x, t) we obtain an equation arising in the
theory of viscoelasticity [8]. Our results for the evolution integro-differential equation
may also be applied to the heat conduction problem for a material with memory (cf. Liu
and Ezzinbi [12]),

ut(x, t) = uxx(x, t) +

∫ t

0

k(t − s)uxx(x, s) ds + f(x, t), t > 0, x ∈ (a, b), (3)

u(x, 0) = u0(x). (4)

The above problem can be teated as a particular case of our study even in the case
when (a, b) = R. whereas in [12] it is a bounded interval only. In [7] the authors study
the following functional integro-differential equation in the product Hilbert space H :=
H1

0 (0, 1) × L2(0, 1),

{

du
dt − Au =

∫ t

0 k(t, s)Au(s)ds + F (t, ut),
u0 = φ,

(5)

where A : D(A) ⊂ H → H is shown to be the infinitesimal generator of a contraction
semigroup in H and the nonlinear function F : [0, T ] × C0 → H. Here the space Ct :=
C([−T, t];H), t ∈ [0, T ], is the Banach space of all continuous functions from [−T, t] into
H endowed with the supremum norm. By the application of the method of lines the
existence and uniqueness of a strong solution is proved.

Our aim is to apply Rothe’s method to establish the existence and uniqueness of a
strong solution which in turn will guarantee the well-posedness of (1). The method of
lines is a powerful tool for proving the existence and uniqueness of solutions to evolution
equations. This method is oriented towards the numerical approximations. For instance,
we refer to Rektorys [19] for a rich illustration of the method applied to various interesting
physical problems. For the application of the method of lines to nonlinear differential
and Volterra integro-differential equations (VIDEs) in which bounded, though nonlinear,
operators appear inside the integrals, see Kacur [9, 10], Rektorys [19], Bahuguna and
Raghavendra [4]. Recently, Bahuguna and Dabas [6] have considered a nonlocal problem
arising in the population dynamics using Rothe’s Method. In the present study we extend
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the application of the method of lines to a class of nonlinear VIDEs in which differential
operators occur inside the integrals and hence are unbounded. Motivation for considering
such problems arises from the theory of wave propagation under the influence of damping,
see Bahuguna [2], and Bahuguna and Shukla [3] and references cited therein.

2 Preliminaries

Here we briefly describe the spaces required in subsequent analysis. For details we refer
to Pazy [18]. Let Ω ⊂ R

n be a domain with sufficiently smooth boundary ∂Ω and Ω be
the closure of Ω in R

n. Let m ∈ N∪{0} and let Cm(Ω) (Cm(Ω)) be the set of all m-times
continuously differentiable real valued functions on Ω (Ω). Let Cm

0 (Ω) be the subset of
all functions in Cm(Ω) having compact support in Ω. For 1 ≤ p < ∞, we define a norm
in Cm(Ω) by

‖u‖p
m,p =

∫

Ω

∑

|α|≤m

|Dαu(x)|p dx, u ∈ Cm(Ω),

where α = (α1, α2, . . . , αn), αi ∈ N ∪ {0}, i = 1, 2, . . . , n, is a multi-index with |α| =
∑n

i=1 αi and Dα is the partial differential operator

Dα =
∂|α|

∂xα1

1 ∂xα2

2 · · ·xαn
n

.

Let Cm,p(Ω) be the subset of all u ∈ Cm(Ω) such that ‖u‖m,p < ∞. For p = 2 we also
define the inner product

(u, v)m =

∫

Ω

∑

|α|≤m

(Dαu)(Dαv) dx.

The Banach spaces Wm,p(Ω) and Wm,p
0 (Ω) are defined as the completion of Cm,p(Ω) and

Cm,p
0 (Ω) with respect to the norm ‖.‖m,p, respectively. For p = 2, we denote the Hilbert

spaces Wm,2(Ω) and Wm,2
0 (Ω) as Hm(Ω) and Hm

0 (Ω), respectively. For Ω = R
n, we write

Hm = Hm(Rn). If given function w defined on R
n × [0, T ] into R such that for each

t ∈ [0, T ], w(., t) ∈ H0, then we may identify w from [0, T ] into H0 by w(t)(x) = w(x, t),
x ∈ R

n. In addition, if ∂w
∂t (., t) ∈ H0 for each t ∈ [0, T ] then dw

dt is also defined as a
function from [0, T ] into H0. We now consider the product Hilbert space H = H1 × H0

which is the completion of C∞
0 (Rn) × C∞

0 (Rn) with respect to the norm

|‖u‖|2 = |‖(u1, u2)‖|
2 =

(
∫

Rn

(|u1(x)|2 + |∇u1(x)|2 + |u2(x)|2) dx

)

,

(u1, u2) ∈ C∞
0 (Rn) × C∞

0 (Rn). (6)

The Hilbert space Hm may also be characterized as the space of all functions f ∈
such that the Fourier transform f̂ has the property that (1 + |ξ|2)k/2f̂(ξ) is in H0 as a
function of ξ ∈ R

n.
In order to write (1) as an evolution equation in H we take u = (u1, u2) where u1 = w

and u2 = ∂w
∂t . We define the operator A : D(A) ⊂ H → H as D(A) = H2 × H1 with

Au = A(u1, u2) = (u2, ∆u1) − 2(u1, u2).
Thus, the problem (1) is equivalently represented by the following evolution equation

in H as

du(t)

dt
= Au(t) + F (t, u(t)) +

∫ t

0

k(t − s)Bu(s) ds, t ∈ (0, T ], u(0) = u0, (7)
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where D(B) = H2 ×H0 with Bu = B[u1, u2] = [0, ∆u1] for u ∈ D(B) and u0 = (f1, f2),
under the assumption that (f1, f2) ∈ H1 × H0 and F : [0, T ] × H → H given by
F (t, u) = [0, 2u + f(t)], f : [0, T ] → H0, f(t)(x) = f(x, t).

3 Existence and Uniqueness of Solutions

In this section we continue to use the notations and notions introduced in the earlier
sections and consider the well-posedness of (7).

We observe some of the properties of the operators A and B and assume Lipschitz
continuity of the kernel k.

(P1) The operator A : D(A) ⊂ H → H is the infinitesimal generator of a C0 of group
T (t) in H . (Cf. Pazy [18] Theorem 7.4.5, pp. 222–223.)

(P2) D(A) ⊂ D(B) and Bu = Au + Pu where P : H1 × H1 → H is a bounded
linear operator given by Pu = P [u1, u2] = [−u2, 0] + 2[u1, u2] with |‖Bu‖| ≤
C(|‖Au‖| + |‖u‖|) for u ∈ D(A) and |‖Pu‖| ≤ C|‖u‖| for u ∈ D(P ).

(P3) The function F : [0, T ]× H → H satisfies

|‖F (t, u) − F (s, v)‖| ≤ LF [|t − s| + |‖u − v‖|],

for t, s ∈ [0, T ] and u, v ∈ H . The function k : [0, T ] → R is Lipschiz continuous
with k(0) = 0.

By C0,1([0, T ]; H) we denote the Banach space of all Lipschitz continuous functions
from [0, T ] into H endowed with the norm

‖u‖C0,1 = max
0≤t≤T

|‖u(t)‖| + sup

{

|‖u(t) − u(s)‖|

|t − s|
: t, s ∈ [0, T ], t 6= s

}

.

We have the following main result.

Theorem 3.1 If (P1), (P2) and (P3) are satisfied then for each (f1, f2) ∈ H2 ×
H1, there exists a u ∈ C0,1([0, T ]; H) with u(0) = u0 satisfying (7) a.e. on [0, T ].
Furthermore, if k ∈ C1[0, T ], then the solution u is unique.

4 Basic Lemmas

We shall prove Theorem 3.1 with the help of several lemmas. We devide the interval
[0, T ] into subintervals [tlj−1, t

l
j ], tlj = j.h, h = T/l, j = 0, 1, 2, . . . , l. We set ul

0 = u0 for

all l ∈ N. For j = 1, 2, . . . , l, we define by ul
j the unique solutions of each of the equations

u − ul
j−1

h
− Au = F l

j + h

j−1
∑

i=0

kl
ji Bul

i, (8)

where

F l
j = F (tlj , u

l
j−1), (9)

kl
ji = k(tlj − tli). (10)

The existence of unique ul
j satisfying (8) is ensured by Corollary 7.4.4 in Pazy [18]

which is stated here as follows.
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Lemma 4.1 Let A0 : (D(A0) ⊂ H → H with D(A0) = D(A) and A0[u1, u2] =
[u2, ∆u1] Then for any v ∈ H, and 0 < |λ| < 1/2, the equation

u − λA0u = v

has a unique solution u ∈ D(A0) satisfying the estimate

|‖u‖| ≤ (1 − 2|λ|)−1|‖v‖|.

Furthermore A0 is the infinitesimal generator of a group {S(t) : t ∈ R} of bounded
linear operators in H with

‖S(t)‖B(H) ≤ e2|t|,

where B(H) denotes the Banach space of bounded linear operators in H with the norm
‖.‖B(H).

Remark 4.1 From Lemma 4.1 it follows that A is the infinitesimal generator of
the contraction group {T (t) : t ∈ R} of bounded linear operators in H where T (t) =
e−2|t|S(t). Therefore by Lumer-Phillips Theorem (cf. Pazy [18]) that A is m-dissipative,
i.e.,

(Au, u) ≤ 0, u ∈ D(A)

and R(I − λA) = H for all λ > 0.

In order to ensure unique solution ul
j ∈ D(A) of (8) with the help of Lemma 4.1 we

rewrite it as

u − hAu = ul
j−1 + hF l

j + h2

j−1
∑

i=0

kl
jiBul

i.

Now, the existence of a unique ul
j satisfying (8) follows from the m-dissipativity of A.

Now, we show that δul
j = (ul

j − ul
j−1)/h lie in a ball of fixed radius independent of

the discretization parameters j, h and l. For convenience, we shall denote by C a generic
constant, i.e., KC, eKC , etc., will be replaced by C where K is a positive constant
independent of j, h and l.

We shall use later the following lemma due to Sloan and Thomee [20].

Lemma 4.2 Let {wl} be a sequence of nonnegative real numbers satisfying

wl ≤ αl +
l−1
∑

i=0

βiwi, l > 0,

where {αl} is a nondecreasing sequence of nonnegative real numbers and βl ≥ 0. Then

wl ≤ αl exp{

l−1
∑

i=0

βi}, l > 0.

Furthermore, we also require the following lemma for later use.
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Lemma 4.3 Let C > 0, h > 0 and let {αj}
l
j=1 be a sequence of nonnegative real

numbers satisfying

αj ≤ (1 + Ch)αj−1 + Ch2

j−1
∑

i=1

αi + Ch, 2 ≤ j ≤ l. (11)

Then

αj ≤ (1 + Ch)j [α1 + jCh2

j−1
∑

i=1

αi + jCh], 2 ≤ j ≤ l.

Proof From (11)

αj−1 ≤ (1 + Ch)αj−2 + Ch2

j−2
∑

p=1

αp + Ch

≤ (1 + Ch)αj−2 + Ch2

j−1
∑

p=1

αp + Ch. (12)

Putting in (11)

αj ≤ (1 + Ch)2αj−2 + Ch2[1 + (1 + Ch)]

j−1
∑

p=1

αp + Ch[1 + (1 + Ch)]. (13)

By repeating the above process we get

αj ≤ (1 + Ch)(j−1)α1 + Ch2[1 + (1 + Ch) + · · · + (1 + Ch)(j−1)]

j−1
∑

p=1

αp

+Ch[1 + (1 + Ch) + · · · + (1 + Ch)(j−1)]

≤ (1 + Ch)j [α1 + jCh2

j−1
∑

p=1

αp + jCh]. (14)

This completes the proof of the lemma. 2

Lemma 4.4 There exists a constant C independent of j, h and l such that

|‖δul
j‖| ≤ C.

Proof From (8) for j = 1 we get

δul
1 − hAδul

1 = Au0 + F l
1 + hkl

10Bu0.

Lemma 4.1 implies that

|‖δul
1‖| ≤ |‖Au0 + F l

1 + hkl
10Bu0‖| ≤ C.

Hence |‖Aul
1‖| ≤ C. Let 2 ≤ j ≤ l. Subtracting (8) for j − 1 from (8) for j, we get

δul
j − hAδul

j = δul
j−1 + F l

j − F l
j−1 + hkl

jj−1Bul
j−1 +

j−2
∑

i=0

[kl
ji − kl

j−1i]Bul
i.
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Applying Lemma 4.1 again, we get

|‖δul
j‖| ≤ |‖δul

j−1‖| + |‖F l
j − F l

j−1‖| + h|kl
j(j−1)||‖Bul

j−1‖|

+h

j−2
∑

i=0

|kl
ji − kl

(j−1)i||‖Bul
i‖|

≤ (1 + Ch)|‖δul
j−1‖| + Ch2

j−2
∑

i=0

|‖δul
i‖| + Ch2

j−1
∑

i=0

|‖Aul
i‖| + Ch

≤ (1 + Ch) max
1≤p≤j−1

|‖δul
p‖| + Ch2

j−1
∑

i=0

|‖Aul
i‖| + Ch (15)

From (8), for 2 ≤ i ≤ j, we have

|‖Aul
i‖| ≤ |‖δul

i‖| + |‖F l
i ‖| + Ch

i−1
∑

p=1

|‖Bul
p‖|

≤ C(1 + max
1≤p≤i

|‖δul
p‖|) + Ch + Ch

i−1
∑

p=1

|‖Aul
p‖|. (16)

Applying Lemma 4.2 in (16), we get

|‖Aul
i‖| ≤ CeCT (1 + max1≤p≤i |‖δu

l
p‖|). (17)

Using (17) in (15), we have

max
1≤p≤j

|‖δul
p‖| ≤ (1 + Ch) max

1≤p≤j−1
|‖δul

p‖|

+Ch2

j−1
∑

p=1

max
1≤p≤i

|‖δul
p‖| + Ch. (18)

To use Lemma 4.3 in (18), we take αj = max1≤p≤j |‖δu
l
p‖| and the fact that (1+Ch)j ≤

eCT , 2 ≤ j ≤ l and α1 ≤ C to get the estimate

max
1≤p≤j

|‖δul
p‖| ≤ C + Ch

j−1
∑

p=1

max
1≤p≤j−1

|‖δul
p‖|. (19)

Again we apply Lemma 4.2 to get the required estimate. This completes the proof of the
lemma. 2

Now, using the discrete points ul
j , we introduce the following sequences of functions

defined from [0, T ] into H .

Definition 4.1 We define the Rothe sequence {U l} ⊂ C([0, T ]; H) given by

U l(t) = ul
j−1 + (t − tlj−1)δu

l
j , t ∈ [tlj−1, t

l
j], j = 1, 2, . . . , l.

Definition 4.2 We define the sequence {X l} of step function from [0, T ] into H given
by

X l(0) = ul
0, X l(t) = ul

j−1, t ∈ (tlj−1, t
l
j ], j = 1, 2, . . . , n, l.
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Remark 4.2 Each of the functions {U l} is Lipschitz continuous with uniform Lips-
chitz constant, i.e.,

|‖U l(t) − U l(s)‖| ≤ C|t − s|, t, s ∈ [0, T ].

Furthermore,

|‖U l(t) − X l(t)‖| ≤
C

l
.

From (8), for t ∈ (0, T ], we may write

d−

dt
U l(t) − AX l(t) = f l(t) +

∫ t

0

K l(s)ds (20)

where f l(t) = F (tlj , X
l(t)) for t ∈ [tlj−1, t

l
j ] and

K l(0) = 0, K l(t) = h

j−1
∑

i=0

kl
jiBul

i, t ∈ (tlj−1, t
l
j ]. (21)

In the next lemma we prove the local uniform convergence of the Rothe sequence.

Lemma 4.5 There exist a subsequence {U lk} of {U l} and a function u : [0, T ] →
D(A) such that U lk → u in C([0, T ]; H), and AU lk(t) ⇀ Au(t) uniformly in H as k → ∞
where ⇀ denotes the weak convergence in H. Furthermore, Au(t) is weakly continuous
on [0, T ].

Proof Since {U l(t)} and {AX l(t)} are uniformly bounded in the Hilbert space H ,
there exist weakly convergent subsequences {U lk(t)} and {AX lk(t)} (we take the same in-
dices without loss of generality otherwise we first take the subsequence {U lk(t)} of {U l(t)}
and then take the subsequence {U lkl (t)} and {AX lkl (t)} of {U lk(t)} and {AX lk(t)}, re-
spectively). Thus, there exist functions u, w : [0, T ] → H such that U lk(t) ⇀ u(t) and
AX lk(t) ⇀ w(t) as k → ∞. Also, we have X lk(t) ⇀ u(t) as k → ∞. Let χQ be the
characteristic function of a set Q ⊂ R

n and let Br = {x ∈ R
n : |x| < r}, r > 0, be the

open ball in R
n of radius r centered at the origin.

Let

X l
r(t) = (χBr

X l
1(t), χBr

X l
2(t)), l = 1, 2, . . . ,

ur(t) = (χBr
u1(t), χBr

u2(t)),

wr(t) = (χBr
w1(t), χBr

w2(t)).

Clearly, {X lk
r (t)} and {AX lk

r (t)} are uniformly bounded and X lk
r (t) ⇀ ur(t) and

AX lk
r (t) ⇀ wr(t) as k → ∞. Since χBr

X lk
1 (t) ∈ H2(Br+ǫ) ∩ H1

0 (Br+ǫ), by the equiv-
alence of the norms ‖u‖H2(Br+ǫ)∩H1

0
(Br+ǫ) and ‖∆u‖L2(Br+ǫ) in H2(Br+ǫ) ∩ H1

0 (Br+ǫ)
(cf. inequality (6.3.9) on page 214 in Atkinson and Han [1]), it follows that
(∂xi

χBr
X l

1(t), χBr
X l

2(t)) ∈ D1(Rn) × D1(Rn), for i = 1, 2, . . . , n, where ∂xi
is the dis-

tributional partial derivative with respect to the variable xi and D1(Rn) is the space
introduced by Lieb and Loss [11] in the sense that a function f ∈ D1(Rn) if it is in
L1

loc(R
n), its distributional derivative ∂xi

f is in L2(Rn), for i = 1, 2, . . . , n, and f van-
ishes at infinity. Hence we may apply Theorem 8.6 of Lieb and Loss [11] to conclude that
X lk

r (t) → ur(t) as k → ∞ and hence U lk
r (t) → ur(t) as k → ∞ in H .
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Now, For ǫ > 0, there exist rǫ > 0 such that

|‖U lk(t) − u(t)‖|2 < |‖U lk
r (t) − ur(t)‖|

2 +
ǫ

2
.

Now we choose k0 sufficiently large such that

|‖U lk
r (t) − ur(t)‖|| <

ǫ

2
, k ≥ k0.

Hence

|‖U lk(t) − ur(t)‖| < ǫ, k ≥ k0.

Thus U lk(t) → u(t) as k → ∞ in H . Since U lk is Lipschitz continuous with uniform
Lipschitz constant, it follows that {U lk} is equi-continuous in C([0, T ]; H) and {U lk(t)}
is relatively compact in H . Hence by Asoli-Arzela theorem, U lk → u as k → ∞ in
C([0, T ]; H). From the properties of the operator A we have u(t) ∈ D(A) and Au(t) =
w(t). To show the weak continuity of Au(t) in t, let {tk} ⊂ [0, T ] such that tk → t as k →
∞, t ∈ [0, T ]. Then u(tk) → u(t) and since |‖Au(tk)‖| ≤ C, there exists a subsequence
{Au(tkp

)} ⊂ {Au(tk)} such that Au(tkp
) ⇀ z(t) as p → ∞. Since u(tkp

) → u(t) and
Au(tkp

) ⇀ z(t) as p → ∞, it follows as above that u(t) ∈ D(A) and Au(t) = z(t). Hence
Au(t) is weakly continuous. This completes the proof of the lemma. 2

Remark 4.3 Since Bx = Ax+Px for x ∈ D(A) and P : H1×H0 → H is a bounded
linear operator, Bu(t) is weakly continuous on [0, T ].

Lemma 4.6 Au(t) and Bu(t) are Bochner integrable on [0, T ].

For the proof of this lemma we refer to Bahuguna and Raghavendra [4]

Lemma 4.7 Let {K l(t)} be the sequence of functions defined by (21) and

K(φ)(t) =

∫ t

0

k(t − s)φ(s)ds,

where φ : [0, T ] → H is Bochner integrable. We have

K lk(t) ⇀ K(Bu)(t),

uniformly on [0, T ] as k → ∞.

Proof We first show that K lk(t)−K(X lk)(t) → 0 uniformly on [0, T ] as p → ∞.
For t ∈ (tlkj−1, t

lk
j ], we have

K lk(t) − K(X lk)(t) = h

j−1
∑

i=0

klk
jiBulk

i −

∫ t

0

k(t − s)BX lk(s) ds

=

j−2
∑

i=0

∫ t
lk
i+1

t
lk
i

[klk
ji − k(t − s) ds]Bulk

i+1

−[

∫ t

t
lk
j−1

k(t − s) ds]Bulk
j .
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Since |‖Bulk
j ‖| ≤ C, we have

|‖K lk(t) − K(X lk)(t)‖| ≤ C

j−2
∑

i=0

∫ t
lk
i+1

t
lk
i

|klk
ji − k(t − s)|ds

≤ C

∫ t

t
lk
j−1

|k(t − s)|ds → 0, as k → ∞.

Now we show that K(X lk)(t) ⇀
∫ t

0
k(t−s)Bu(s) ds uniformly as k → ∞. For any v ∈ H ,

We note that (Bu(t), v) is continuous hence we may write

(
∫ t

0

k(t − s)Bu(s) ds, v

)

=

∫ t

0

k(t − s)(Bu(s), v) ds.

Now, for any v ∈ H ,

(K(X lk)(t), v) =

(
∫ t

0

k(t − s)BX lk(s)ds, v

)

=

j−2
∑

i=0

∫ t
lk
i+1

t
lk
i

k(t − s)(BX lk(s), v)ds

∫ t

t
lk
j−1

k(t − s)(BX lk(s), v)ds →

∫ t

0

k(t − s)(Bu(s), v) ds,

as k → ∞. This completes the proof of the lemma. 2

5 Proof of Theorem 3.1

In this section we prove Theorem 3.1 with the help of lemmas of the previous section.

Proof Let v ∈ H be any element. For t ∈ (0, T ], we have

(U lk(t), v) − (Au(t), v) = (u0, v) +

∫ t

0

(K lk(s) + f lk(s), v) ds.

Passing to the limit as p → ∞ using bounded convergence theorem and Lemmas 4.5 and
4.7, we have

(u(t), v) − (Au(t), v) = (u0, v) +

∫ t

0

(K(u)(s) + F (s, u(s)), v) ds.

Using the continuity of the integrands on the right hand side, we have (u(t), v) is con-
tinuously differentiable and

d

dt
(u(t), v) − (Au(t), v) = (F (t, u(t)) +

∫ t

0

(k(t − s)Bu(s) ds, v). (22)

Since u(t) is differentiable a.e. on [0, T ], we may take d
dt inside the inner product for a.e.

t ∈ [0, T ], hence

du(t)

dt
− Au(t) = F (t, u(t)) +

∫ t

0

k(t − s)Bu(s) ds, a.e. t ∈ [0, T ], u(0) = u0. (23)
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Now we prove the uniqueness under the assumption that k ∈ C1[0, T ]. Let u1 and u2 be
two solutions of (7) and let u = u1 − u2. Then

u(t) =

∫ t

0

T (t − s)[F (s, u1(s)) − F (s, u2(s))

+

∫ s

0

k(s − τ)Au(τ) dτ ] ds

=

∫ t

0

T (t − s)[F (s, u1(s)) − F (s, u2(s))]ds

+

∫ t

0

(
∫ s

0

k(s − τ)T (t − s)Au(τ)) dτ

)

ds

=

∫ t

0

T (t − s)[F (s, u1(s)) − F (s, u2(s))]ds

+

∫ t

0

(
∫ t

τ

k(s − τ)T (t − s)Au(τ)) ds

)

dτ

=

∫ t

0

T (t − s)[F (s, u1(s)) − F (s, u2(s))]ds

+

∫ t

0

(
∫ t−τ

0

k(t − η − τ)T (η)Au(τ)) dη

)

dτ. (24)

Since u(τ) ∈ D(A) for τ ∈ [0, T ], we have T (η)Au(τ) = ∂
∂η (T (η)u(τ)) (cf. Theorem 1.2.4

in Pazy). Thus, we have

u(t) =

∫ t

0

T (t − s)[F (s, u1(s)) − F (s, u2(s))]ds

+

∫ t

0

(
∫ t−τ

0

k(t − η − τ)
∂

∂η
(T (η)u(τ)) dη

)

dτ

=

∫ t

0

T (t − s)[F (s, u1(s)) − F (s, u2(s))]ds

+k(0)

∫ t

0

T (t − τ)u(τ)dτ −

∫ t

0

k(t − τ)u(τ)dτ

+

∫ t

0

(
∫ t−τ

0

k′(t − η − τ)T (η)u(τ)dη

)

dτ. (25)

Now taking the norm and using the fact that ‖T (t)‖ ≤ 1, we have

max
0≤r≤t

|‖u(r)‖| ≤ C

∫ t

0

max
0≤r≤s

|‖u(r)‖| ds.

Gronwall’s inequality implies that u(t) ≡ 0. This completes the proof of the theorem. 2
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