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1 Introduction

Recently, the behavior of dynamical systems has been widely investigated [1, 2, 3, 4].
Cohen–Grossberg neural networks, which were first proposed by Cohen and Grossberg
in [5] are typical dynamical systems and have received increasing interesting due to their
promising potential applications in many fields such as optimization, associative memory,
pattern recognition, signal and image processing. The stability of Cohen–Grossberg
neural network with or without delays has been widely studied by many researchers
[6, 7, 8, 9]. Moreover, many sufficient conditions on the stability of equilibrium point for
Cohen–Grossberg neural networks with constant coefficients have been available [10, 11,
12].
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As is well known, the investigation on the neural dynamical systems not only involves
a discussion of stability, but also involves many other dynamical behavior such as periodic
oscillatory behavior, almost periodic oscillatory properties, chaos and so on. There exist
some results on the existence of periodic solutions of Cohen–Grossberg neural networks
with variable coefficients [13, 14, 15, 16]. In practice, almost periodic oscillatory is more
accordant. Some authors have researched almost periodic solutions for neural networks,
and obtained several interesting results [17, 18, 19, 20]. However, To the best of our
knowledge, few authors discuss almost periodic solutions for Cohen–Grossberg neural
networks with variable coefficients [21].

In this paper, our objective is to study further Cohen–Grossberg neural networks with
variable delays. By applying Banach fixed point theory, differential inequality techniques,
we get some sufficient conditions ensuring the existence and exponential stability of
almost periodic solutions for Cohen–Grossberg neural networks with variable delays.
These conditions obtained are easy to check and in practice. Moreover, in this paper,
the assumptions of boundedness, monotonicity, and differentiability for the activation
functions are not available.

The rest of the paper is organized as follows. In Section 2, some notations, defini-
tions and model description are given. The existence and uniqueness of almost periodic
solutions is established in Section 3. In Section 4, we derive some sufficient conditions
on exponential stability of almost periodic solutions. Finally, an example is given to
demonstrate the validity of our results in Section 5.

2 Model Description and Preliminaries

Consider the Cohen–Grossberg neural networks with variable delays as follows:

ẋi(t) = −ai(xi(t))

[

bi(xi(t))−

n
∑

j=1

cij(t)fj(xj(t))−

n
∑

j=1

dij(t)fj(xj(t−τj(t)))+Ii(t)

]

, (1)

where t ≥ 0, i = 1, 2, . . . , n; n is the number of neurons, xi(t) is the state of neuron i

at the time t; ai(xi(t)) and bi(xi(t)) represent an amplification function and an appro-
priately behaved function at the time t, respectively; fj(xj) is the activation function of
the j-th unit; cij(t) and dij(t) denote the neural connection at the time t; Ii(t) is the
external inputs at the time t, τj(t) > 0 is transmission delay.

The initial conditions of system (1) are of the form xi(t) = ϕi(t), t ∈ [−τ, 0], τ =
max1≤i≤n τj(t), ϕi ∈ C (C , C[[−τ, 0], Rn]), and ϕi is assumed to be bounded and
continuous on [−τ, 0].

Definition 2.1 [22, 23] Let x(t) : R → Rn be continuous in t. x(t) is said to be
almost periodic on R if, for any ε > 0, it is possible to find a real number l = l(ε) > 0
such that, for any interval with length l(ε), there is a number δ = δ(ε) in this interval
such that |x(t + δ) − x(t)| < δl, for any t ∈ R.

Throughout this paper, we assume that cij(t), dij(t), Ii(t), ϕi(t) are continuous almost
periodic functions. For an arbitrary continuous function f(t) : R → R, we define

f = sup
t∈R

|f(t)|, f = inf
t∈R

|f(t)|.

We list some assumptions which will be used in this paper as follows:
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(H1) ai(t) is continuous and 0 < ai ≤ ai(t) ≤ ai for all t ∈ R, i = 1, 2, . . . , n.

(H2) There are positive constants ki such that ḃi(·) ≥ ki, ḃi(·) denotes the derivative of
bi(·), and bi(0) = 0, i = 1, 2, . . . , n.

(H3) There are constants αj > 0 such that |fj(x)− fj(y)| ≤ αj |x− y| for any x, y ∈ R,
and fj(0) = 0, j = 1, . . . , n.

Definition 2.2 The almost periodic solutions x∗(t) of system (1) is said to be global
exponentially stable, if there exist constants ε > 0 and M ≥ 1 such that

|xi(t) − x∗| ≤ M‖ϕ − ϕ∗‖e−εt, t > 0, i = 1, 2, . . . , n,

where ϕ∗ is the initial value of x∗, ‖ϕ − ϕ∗‖ = sup
−∞≤s≤0

max
1≤i≤n

|ϕi(s) − ϕ∗
i (s)|.

Definition 2.3 [21] Let y ∈ Rn and P (t, y) be a n × n continuous matrix defined
on R × Rn. For any continuous function v(t) : R → Rn, the following system

ẏ(t) = P (t, v(t))y(t)

is said to be an exponential dichotomy on R if there exist constants k, l > 0, projection
S and the fundamental matrix Yv(t) satisfying

‖Yv(t)SY −1
v (s)‖ ≤ ke−l(t−s) for t ≥ s,

‖Yv(t)(I − S)Y −1
v (s)‖ ≤ ke−l(t−s) for t ≤ s.

Lemma 2.1 [21] If the linear system ẏ(t) = P (t, v(t))y(t) has an exponential di-
chotomy, then almost periodic system

ẏ(t) = P (t, v(t))y(t) + g(t, v(t))

has a unique almost periodic solution y(t) which can be expressed as follows:

y(t) =

∫ t

−∞

Yv(t)SY −1
v (s)g(s, v(s)) ds −

∫ ∞

t

Yv(t)(I − S)Y −1
v (s)g(s, v(s)) ds.

Lemma 2.2 [22, 23] Assume that ei(t) is an almost periodic function and

lim
T→+∞

1

T

∫ t+T

t

ei(s) ds > 0, i = 1, 2, . . . , n.

Then the linear system ẏ(t) = e(t)y(t) admits an exponential dichotomy, where e(t) =
diag{ei(t)}.

Definition 2.4 [24, 25] A real n×n matrix W = (wij)n×n is said to be an M -matrix
if wij ≤ 0, i, j = 1, 2, . . . , n, i 6= j, and W−1 ≥ 0, where W−1 denotes the inverse of W .

Lemma 2.3 [24, 25] Let W = (wij)n×n with wij ≤ 0, i, j = 1, 2, . . . , n, i 6= j.
Then the following statements are equivalent:

(1) W is an M -matrix;
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(2) there exists a vector η = (η1, η2, . . . , ηn) > (0, 0, . . . , 0) such that ηW > 0;

(3) there exists a vector ξ = (ξ1, ξ2, . . . , ξn)T > (0, 0, . . . , 0)T such that Wξ > 0.

Lemma 2.4 [24, 25] Let A ≥ 0 be an n×n matrix and ρ(A) < 1, the (En−A)−1 ≥ 0,
where ρ(A) denotes the spectral radius of A.

From (H1), the antiderivative of 1
ai(xi)

exists. We choose an antiderivative gi(xi) of
1

ai(xi)
that satisfies gi(0) = 0. Obviously, ġi(xi) = 1

ai(xi)
. By ai(xi) > 0, we obtain

that gi(xi) is increasing with respect to xi, and the inverse function g−1
i (xi) of gi(xi) is

existential, continuous, and differentiable. So, ġi
−1(xi) = ai(xi), where ġi

−1(xi) is the
derivative of g−1

i (xi) with respect to xi, and composition function bi(g
−1
i (z)) is differen-

tiable. Denote ui(t) = gi(xi(t)). It is easy to see that u̇i(t) = ġi(xi)ẋi(t) = ẋi(t)
ai(xi)(t)

and

xi(t) = g−1
i (ui). Substituting these equalities into system (1) gives that

u̇i(t) = −bi(g
−1
i (ui(t))) +

n
∑

j=1

cij(t)fj(g
−1
j (uj(t)))

+

n
∑

j=1

dij(t)fj(g
−1
j (uj(t − τj(t)))) − Ii(t), t ≥ 0

ui(t) = gi(ϕi(t)) , φi(t), −τ ≤ t ≤ 0.

(2)

Considering bi(g
−1
i (ui(t))) = ḃi(g

−1
i (ui(t)))|z=εi

· ui(t), system (2) can be written as
the following system:

u̇i(t) = −ei(ui(t))ui(t) +

n
∑

j=1

cij(t)fj(g
−1
j (uj(t)))

+
n
∑

j=1

dij(t)fj(g
−1
j (uj(t − τj(t)))) − Ii(t), t ≥ 0,

ui(t) = φi(t), −τ ≤ t ≤ 0,

(3)

where ei(ui)(t) , ḃi(g
−1
i (ui(t)))|z=εi

, ḃi(g
−1
i (ui(t)))|z=εi

denotes the derivative of
bi(g

−1
i (z)) at point z = εi, z ∈ R, εi is between 0 and ui(t).

Let ei(ui)(t) be an almost periodic function, the system (1) has a unique almost
periodic solution which is globally exponentially stable if and only if system (3) has a
unique almost periodic solution which is globally exponentially stable.

It is easy to see that |g−1
i (u)− g−1

i (v)| = |ġ−1
i (µ)(u − v)| = |ai(µ)||u− v| ≤ ai|u− v|,

where µ is between u and v.

For convenience, we introduce some notations. We will use x = (x1, x2, . . . , xn)T ∈ Rn

to denote a column vector, in which the symbol (T) denotes the transpose of a vector.
For matrix A = (aij)n×n, AT denotes the transpose of A, and En denotes the identity
matrix of size n. A matrix or vector A ≥ 0 means that all entries of A are greater than or
equal to zero. A > 0 can be defined similarly. For matrices or vectors A and B, A ≥ B

(rep. A > B) means that A − B ≥ 0 (rep. A − B > 0).
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3 Existence and Uniqueness of Almost Periodic Solutions

In this section, we shall discuss the existence and uniqueness of the almost periodic
solution of system (3).

Theorem 3.1 Suppose that (H1)–(H3) are satisfied, and ρ(A−1(C + D)) < 1, where
C = (cijαjaj)n×n, D = (dijαjaj)n×n, A = diag(k1a1, k2a2, . . . , knan). Then, there
exists exactly one almost periodic solution of system (3).

Proof Set the vector û(t) = (û1(t), û2(t), . . . , ûn(t))T, for ∀x ∈ Rn, we define
the norm: ‖û(t)‖ = max1≤i≤n |ûi(t)|. Let Λ = {û(t) = col{ûi(t) | û(t) : R → Rn, is
continuous almost periodic function}. For any û ∈ Λ, we define its induced model as
follows:

‖û‖ = sup
t∈R

‖û(t)‖ = sup
t∈R

max
1≤i≤n

|ûi(t)|.

Obviously, (Λ, ‖ · ‖) is a Banach space. For any {ûi(t)} ∈ Λ, consider the following
system:

u̇i(t) = −ei(ûi(t))ui(t) +

n
∑

j=1

cij(t)fj(g
−1
j (ûj(t)))

+

n
∑

j=1

dij(t)fj(g
−1
j (ûj(t − τj(t)))) − Ii(t),

(4)

where i = 1, 2, . . . , n. From H(1) and H(2), we get ei(ui(t)) ≥ kiai > 0 and

lim
T→+∞

1

T

∫ t+T

t

ei(ui(s)) ds ≥ lim
T→+∞

kiai > 0.

Similar to the analysis of [21], we know that following system:

U̇(t) = Q(û(t))U(t)

has an exponential dichotomy on R, where

Q(û)(t)) = diag(e1(û1(t)), e2(û2(t)), . . . , en(ûn(t))).

Thus by Lemma 2.1 and Lemma 2.2, system (4) has a unique almost periodic solution
uû(t) which can be expressed as follows:

uû(t) = col

{∫ t

−∞

e−
∫

t

s
ei(û(σ))dσ

[ n
∑

j=1

cij(s)fj(g
−1
j (ûj(s)))

+

n
∑

j=1

dij(s)fj

(

g−1
j (ûj(s − τij(s)))

)

− Ii(s)

]

ds

}

.

(5)

Now define a mapping T : Λ → Λ by setting

Tx̂(t) = xx̂(t), ∀ x̂ ∈ Λ.

Next, we prove that T is a contraction mapping. For any ∀ x̂, x∗ ∈ Λ, from (H3) we have

|T (û(t)) − T (u∗(t))|
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=

(

∣

∣

∣

∣

∫ t

−∞

e−
∫

t

s
e1(û(σ))dσ

[ n
∑

j=1

c1j(s)
(

fj(g
−1
j (ûj(s))) − fj(g

−1
j (u∗

j (s)))
)

+

n
∑

j=1

d1j(s)
(

fj(g
−1
j (ûj(s − τ1j(s)))) − fj(g

−1
j (u∗

j (s − τ1j(s))))
)

]

ds

∣

∣

∣

∣

, . . . ,

∣

∣

∣

∣

∫ t

−∞

e−
∫

t

s
en(û(σ))dσ

[ n
∑

j=1

cnj(s)
(

fj(g
−1
j (ûj(s)) − fjg

−1
j (u∗

j (s))))
)

+

n
∑

j=1

dnj(s)
(

fj(g
−1
j (ûj(s − τnj(s)))) − fj(g

−1
j (u∗

j (s − τnj(s))))
)

]

ds

∣

∣

∣

∣

)T

≤

(

∫ t

−∞

e−k1a
1
(t−s)

[ n
∑

j=1

c1jα1a1|ûj(s) − u∗
j (s)| (6)

+

n
∑

j=1

d1jα1a1|ûj(s − τ1j(s)) − x∗
j (s − τ1j(s))|

]

ds, . . . ,

∫ t

−∞

e−knan(t−s)

[ n
∑

j=1

cnjαnan|ûj(s) − u∗
j (s)|

+

n
∑

j=1

dnjαnan|ûj(s − τnj(s)) − u∗
j (s − τnj(s))|

]

ds

)T

≤

(

n
∑

j=1

(k1a1)
−1(c1j + d1j)α1a1 sup

t∈R

|ûj(t) − u∗
j (t)|, . . . ,

n
∑

j=1

(knan)−1(cnj + dnj)αnan sup
t∈R

|ûj(t) − u∗
j (t)|

)T

,

which implies that

(

sup
t∈R

|(T (û(t)) − T (u∗(t)))1|, . . . , sup
t∈R

|(T (û(t)) − T (u∗(t)))n|
)T

≤

( n
∑

j=1

(k1a1)
−1(c1j + d1j)α1a1 sup

t∈R

|ûj(t) − u∗
j (t)|, . . . ,

n
∑

j=1

(knan)−1(cnj + dnj)αnan sup
t∈R

|ûj(t) − u∗
j(t)|

)T

(7)

≤ F

(

sup
t∈R

|û1(t) − u∗
1(t)|, . . . , sup

t∈R

|ûn(t) − u∗
n(t)|

)T

where F = A−1(C + D). Let m be a positive integer. Then, from (7), we get

(

sup
t∈R

|(T m(û(t)) − T m(u∗(t)))1|, . . . , sup
t∈R

|(T m(û(t)) − T m(u∗(t)))n|
)T

=
(

sup
t∈R

|(T (T m−1(û(t)) − T m(u∗(t))))1|, . . . , sup
t∈R

|(T (T m−1(û(t)) − T m(u∗(t))))n|
)T
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≤ F
(

sup
t∈R

|(T m−1(û(t)) − T m−1(u∗(t)))1|, . . . , sup
t∈R

|(T m−1(û(t)) − T m−1(u∗(t)))n|
)T

≤ Fm
(

sup
t∈R

|(T (û(t)) − T (u∗(t)))1|, . . . , sup
t∈R

|(T (û(t)) − T (u∗(t)))n|
)T

≤ Fm
(

sup
t∈R

|û1(t) − u∗
1(t)|, . . . , sup

t∈R

|ûn(t) − u∗
n(t)|

)T

. (8)

Since ρ(F ) < 1, we obtain limn→+∞ Fm = 0, which implies that there exists a
positive integer N and a positive integer β < 1 such that

FN = (A−1(C + D))N = (hij)n×n, and
n
∑

j=1

hij ≤ β, i = 1, 2, . . . , n. (9)

In view of (8) and (9), we have

|(T N(û(t)) − T N(u∗(t)))i| ≤ sup
t∈R

|(T N (û(t)) − T N(u∗(t)))i|

≤
n
∑

j=1

hij sup
t∈R

|ûj(t) − u∗
j(t)|

≤
(

sup
t∈R

max
1≤i≤n

|ûj(t) − u∗
j (t)|

)

n
∑

j=1

hij ≤ β‖û(t) − u∗(t)‖,

for all t ∈ R, i = 1, 2, . . . , n. It follows that

‖T N(û(t)) − T N(u∗(t))‖ = sup
t∈R

max
1≤i≤n

|(T N (û(t)) − T N(u∗(t)))i| ≤ β‖û(t) − u∗(t)‖.

This implies that the mapping T N : Λ → Λ is a contraction mapping.
By Banach fixed point theorem, there exists a unique fixed point u∗ ∈ Λ∗ such that

Tu∗ = u∗. From (4) and (5), we know that u∗ satisfies system (3), therefore, it is the
unique almost periodic solution of system (3). We complete the proof. 2

4 Exponential Stability of Almost Periodic Solutions

In this section, we shall discuss the global exponential stability of the almost periodic
solution of system (3).

Theorem 4.1 Suppose that (H1)–(H3) are satisfied, and the condition in Theorem
3.1 holds, then there exists exactly one almost periodic solution of system (3) which is
exponentially stable, i.e. all other solutions of system (3) converge to this almost periodic
solution exponentially.

Proof By Theorem 3.1, we have known that system (3) has a unique almost periodic
solution, then we shall prove the exponential stability of almost periodic solution.

Let u(t) = (u1(t), u2(t), . . . , un(t))T be an arbitrary solution and u∗(t) =
(u∗

1(t), u
∗
2(t), . . . , u

∗
n(t))T be an almost periodic solution of system (3) with initial val-

ues φ(t) = (φ1(t), φ2(t), . . . , φn(t))T and φ∗(t) = (φ∗
1(t), φ

∗
2(t), . . . , φ

∗
n(t))T, respectively.

Set
yi(t) = ui(t) − (u∗

i (t), Fj(yj(t)) = fj(yj(t) + (u∗
j (t)) − fj(u

∗
j (t)),
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where i, j = 1, 2, . . . , n. It is easy to see that system (3) can be reduced to the following
system:

ẏi(t) = −ei(ui(t))yi(t) +

n
∑

j=1

cij(t)Fj(yj(t)) +

n
∑

j=1

dij(t)Fj(yj(t − τij(t))). (10)

Since ρ(F ) = ρ(A−1(C +D)) < 1, it follows from Lemma 2.4 that En−A−1(C+D) is an
M -matrix. In view of Lemma 2.3, there exists a constant vector ξ = (ξ1, ξ2, . . . , ξn)T >

(0, 0, . . . , 0)T such that

(En − A−1(C + D))ξ > (0, 0, . . . , 0)T.

That is,

−kiaiξi +

n
∑

j=1

ξj(cij + dij)αiai < 0, i = 1, 2, . . . , n.

Therefore, we can choose a constant d > 1 such that

ξ = dξ > sup
τ≤t≤0

|yi(t)|, i = 1, 2, . . . , n,

and

−kiaiξi +

n
∑

j=1

ξj(cij + dij)αiai =

[

− kiaiξi +

n
∑

j=1

ξj(cij + dij)αiai

]

d < 0,

where i = 1, 2, . . . , n. Set

Mi(ε) = εξi − kiaiξi +

n
∑

j=1

ξj(cij + dije
ετ )αiai, i = 1, 2, . . . , n.

Clearly, Mi(ε), i = 1, 2, . . . , n, are continuous functions on [0, ω0]. Since

Mi(0) = −kiaiξi +

n
∑

j=1

ξj(cij + dij)αiai < 0, i = 1, 2, . . . , n,

we can choose a positive constant ω ∈ [0, ω0] such that

Mi(ω) = (ω − kiai)ξi +

n
∑

j=1

ξj(cij + dije
ωτ )αiai < 0, i = 1, 2, . . . , n. (11)

We consider the Lyapunov functional

Vi(t) = |yi(t)|e
ωt, i = 1, 2, . . . , n. (12)

Obviously, for any yi(t) 6= 0, Vi(t) > 0. Calculating the upper right derivative of Vi(t)
along the solution y(t) = (y1(t), y2(t), . . . , yn(t))T of system (10) with the initial value
φ = φ − φ∗, we have

D+(Vi(t)) ≤ −kiai|yi(t)|e
ωt +

n
∑

j=1

cij |yi(t)|e
ωt +

n
∑

j=1

dij |yi(t − τij(t))|e
ωt + ω|yi(t)|e

ωt

=

[

(ω − kiai)|yi(t)| +

n
∑

j=1

cij |yi(t)|αiai +

n
∑

j=1

dij |yi(t − τij(t))|αiai

]

eωt

(13)
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where i = 1, 2, . . . , n. We claim that

Vi(t) = |yi(t)|e
ωt < ξi, for all t > 0, i = 1, 2, . . . , n. (14)

Contrarily, there must exist i ∈ {i = 1, 2, . . . , n} and ti > 0 such that

Vi(ti) = ξi and Vj(t) < ξj , ∀ t ∈ (−∞, ti), j = 1, 2, . . . , n, (15)

which implies that

Vi(ti) − ξi = 0 and Vj(t) − ξj < 0, ∀ t ∈ (−∞, ti), j = 1, 2, . . . , n. (16)

Together with (13) and (16), we obtain

0 ≤ D+(Vi(ti) − ξi) = D+Vi(ti)

≤

[

(ω − kiai)|yi(t)| +

n
∑

j=1

cij |yi(t)|αiai +

n
∑

j=1

dij |yi(t − τij(t))|αiai

]

eωt

= (ω − kiai)ξi + αiai

( n
∑

j=1

cij |yi(ti)|e
ωti +

n
∑

j=1

dij |yi(ti − τij(ti))|e
ω(ti−τij(ti))eωτij(ti)

)

≤ (ω − kiai)ξi +

n
∑

j=1

ξj(cij + dije
ωτ )αiai.

(17)
Thus

0 ≤ (ω − kiai)ξi +

n
∑

j=1

ξj(cij + dije
ωτ )αiai

which contradicts (11). Hence, (14) holds. It follows that

|yi(t)| < max
1≤i≤n

{ξi}e
−ωt. (18)

Letting ‖φ‖ = ‖φ−φ∗‖ > 0, it follows from (18) that we can choose a constant M > 1
such that

|xi(t) − x∗
i (t)| = |yi(t)| ≤ max

1≤i≤n
{ξi}e

−ωt ≤ M‖φ − φ∗‖e−ωt, (19)

where i = 1, 2, . . . , n, t > 0. Thus, the almost periodic solution of system (3) is globally
exponentially stable.

We complete the proof. 2

Corollary 4.1 Suppose that (H1)–(H3) are satisfied, and En − A−1(C + D) is an
M -matrix, then there exists exactly an almost periodic solution of system (3) which is
exponentially stable, i.e. all other solutions of system (3) converge to this almost periodic
solution exponentially.

Proof Notice that En −A−1(C + D) is an M -matrix, it follows that there exists a
vector η = (η1, η2, . . . , ηn)T > (0, 0, . . . , 0)T such that

(En − A−1(C + D))η > (0, 0, . . . , 0)T.
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That is,

−kiaiη +
n
∑

j=1

(cij + dij)αiaiη < 0, i = 1, 2, . . . , n.

Therefore, Corollary 4.1 follows immediately from Theorem 4.1. 2

Remark 4.1 In Theorem 4.1 and Corollary 4.1, we do not need the assumptions
on boundedness, monotonicity, and differentiability for the activation functions. Clearly,
the proposed results are different from those in [5, 6, 14] and the references cited therein.
Therefore, our results are new and they complement previously known results.

5 An Example

In this section, we give an example to illustrate that our results are feasible.

Example 5.1 Consider the following system with continuously distributed delays:

ẋi(t) = −ai(xi(t))

[

bi(xi(t)) −

2
∑

j=1

cij(t)fj(xj(t)) −

2
∑

j=1

dij(t)fj(xj(t − τj(t))) + Ii(t)

]

,

(20)
where i = 1, 2. Let fj(x) = 1

2 (|x + 1| − |x − 1|), we have αj = 1 (j = 1, 2).
Taking

(a1(x1(t)), a2(x2(t)))
T =

(

2 −
1

10π
arctanx1(t), 2 +

1

10π
arctanx2(t)

)T

,

(b1(x1(t)), b2(x2(t)))
T = (x1, x2)

T, I1(t) =
9

5
sin t, I2(t) =

9

5
cos t,

thus we obtain a1 = a2 = 1, a1 = a2 = 3, b1 = b2 = b1 = b2 = 1, I1 = I1 = 9
5 ,

k1 = k2 = 1. Let

(

c11(t) c12(t)
c21(t) c22(t)

)

=







1

13
sin t

1

13
sin 2t

1

13
sin 3t

1

13
sin 4t






,

(

d11(t) d12(t)
d21(t) d22(t)

)

=







1

13
cos t

1

13
cos 2t

1

13
cos 3t

1

13
cos 4t






.

Noting that c11 = c12 = c21 = c22 = d11 = d12 = d21 = d22 =
1

13
, we get

A−1(C + D) =







6

13

6

13
6

13

6

13






.

So, we have

ρ(A−1(C + D)) =
12

13
< 1.

Thus, it follows from Theorem 3.1 and Theorem 4.1 that system (20) has exactly a unique
almost periodic solution, which is globally exponentially stable.
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Remark 5.1 System (20) is a simple form of Cohen-Grossberg neural networks with
variable delays. In this system, La

1 = La
2 = 1

30 , Lab
1 = Lab

2 = 1. If we apply Corollary
4.1 in [15, 16], and choose η = (η1, η2) = (1, 1), we obtain δ = 26

5 , ρ(K) = 1800
1781 > 1,

this doesn’t satisfy the conditions in Corollary 4.1 in [15, 16]. So, the results in [15, 16]
cannot be applicable to this system. This implies that our results are essentially new.

Remark 5.2 Since f1(x) = f2(x) = 1
2 (|x + 1| − |x − 1|), we can easily verify that

the assumptions of boundedness, monotonicity, and differentiability for the activation
functions are not available. So, the proposed results in [5, 6, 14] and the references cited
therein can not be applicable to system (20).

6 Conclusion

In this paper, the existence and exponential stability of almost periodic solutions for
Cohen-Grossberg neural networks with variable delays are considered. Some new suf-
ficient conditions are obtained by applying Banach fixed point theory and differential
inequality techniques. Some previous results are improved and extended.
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