DTC based on Fuzzy Logic Control of a Double Star Synchronous Machine Drive

D. Boudana1, L. Nezli1, A. Tlemçani1, M.O. Mahmoudi1 and M. Djemaï2*

1 Process Control Laboratory; Electrical Engineering Department, Ecole Nationale Polytechnique 10, avenue Hassen Badi, BP. 182, El-Harraech, Algiers Algeria.
2 LAMIH, UMR CNRS 8530, Université de Valenciennes et du Hainaut-Cambrésis, Le Mont Houy, 59313 Valenciennes Cedex 9, France.

Received: March 7, 2007; Revised: July 4, 2008

Abstract: The paper discusses a direct torque control (DTC) strategy based on a fuzzy logic for double star synchronous machine (DSSM). The DSSM is built with two symmetrical 3-phase armature winding systems, electrically shifted by 30°. A suitable transformation matrix is used to develop a simple dynamic model in view of control. The analysis of the torque in the stator flux linkage reference frame shows that the concept of DTC can be applied in DSSM. A set of voltage vectors corresponding to the switching mode are chosen to offer a maximum voltage and keep the harmonics at a minimum. Further, a switching table specific for DSSM is proposed. Simulations results are given to show the effectiveness and the robustness of our approach.

Keywords: Double star synchronous machine (DSSM); direct torque control (DTC); fuzzy control; robustness; resistance stator estimator.

Mathematics Subject Classification (2000): 34C60, 93D09, 93C42.

1 Introduction

AC machines with variable speed drives are widely employed in high power applications. In addition to the multilevel inverter fed electric machine drive systems ([4, 5]), one approach in achieving high power with rating limited power electronic devices is the multiphase inverter system. In a multiphase inverter fed machine, the windings of more than three phases are connected in the same stator of the machine, consequently the current per phase in machine is reduced [7, 19].

* Corresponding author: mohamed.djemai@ensea.fr

© 2008 InforMath Publishing Group/1562-8353 (print)/1813-7385 (online)/www.e-ndst.kiev.ua 269