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Abstract: In this paper we shall study the approximations of solutions to a
class of second order history-valued delay differential equations in a separa-
ble Hilbert space. Using a pair of associated nonlinear integral equations and
projection operators we consider a pair of approximate nonlinear integral equa-
tions. We first show the existence and uniqueness of solutions to this pair of
approximate integral equations and then establish the convergence of the se-
quences of the approximate solutions to the solution and the pair of associated
integral equations, respectively. Also, we consider the Faedo–Galerkin appro-
ximations of the solution and prove some convergence results. Finally, we give
an example.
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1 Introduction

We consider the following second order history-valued abstract delay differential equation
in a separable Hilbert space (H, ‖ · ‖, 〈·, ·〉):

u′′(t) +Av(t) = f(t, u(t), v(t), u(t− τ), v(t− τ)), t ∈ (0, T ],

u(t) = h(t), v(t) = g(t), t ∈ [−τ, 0],
(1)
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where A is a closed linear operator defined on a dense subset of H and v(t) = u′(t)
for all t ∈ [−τ, T ]. We assume that −A is the infinitesimal generator of an analytic
semigroup {e−tA : t ≥ 0} in H and the nonlinear map f is defined from [0, T ]×H4 into
H satisfying certain conditions to be specified later.

Regarding the earlier works on existence, uniqueness, regularity and stability of var-
ious types of solutions to evolutions equations, delay differential equations and neutral
functional differential equations under different conditions, we refer to Bahuguna and
Muslim [1, 2, 3], Bahuguna et al [4], Wei et al [5], Balachandran and Chandrasekaran [6],
Lin and Liu [7], Alaoui [8], Adimy [9], Hernandez and Henriquez [10, 11], Blasio and
Sinestrari [12], Jeong [13], Rhandi [14] and the references cited in these papers.

The related results for the approximation of solutions to the first order evolution equa-
tions with and without delay can be found in Bahuguna and Muslim [1, 2], Henriquez [15]
and Muslim [16].

Initial studies concerning existence, uniqueness and finite-time blow-up of solutions
for the following equation

u′(t) +Au(t) = g(u(t)), t ≥ 0,

u(0) = φ,

have been considered by Segal [17], Murakami [18] and Heinz and Von Wahl [19]. Bazley
[20, 21] has considered the following semilinear wave equation

u′′(t) +Au(t) = g(u(t)), t ≥ 0,

u(0) = φ, u′(0) = ψ,
(2)

and has established the uniform convergence of approximations of solutions to (2) using
the results of Heinz and von Wahl [19]. Goethel [22] has proved the convergence of
approximations of solutions to (2) but assumed g to be defined on the whole of H . Based
on the ideas of Bazley [20, 21], Miletta [23] has proved the existence and convergence of
approximate solutions to (2).

The authors Bahuguna and Muslim [2] have considered the following first order re-
tarded integro-differential equation

u′(t) +Au(t) = Bu(t) + Cu(t− τ) +

∫ 0

−τ

a(θ)Lu(t+ θ) dθ, 0 < t ≤ T <∞, τ > 0,

u(t) = h(t), t ∈ [−τ, 0]
(3)

in a separable Hilbert space and studied the approximation of solution of the above
problem under the conditions when −A is the infinitesimal generator of an analytic
semigroup, B, C and L are nonlinear continuous operators suitably defined on H .

In [23], Miletta has established the convergence of Faedo-Galerkin approximation of
the solution to

u′(t) +Au(t) = M(u(t)), u(0) = φ,

in a separable Hilbert space where A satisfies the same condition as in this paper and M
is a nonlinear map defined on D(Aα), for some α, 0 < α < 1, which satisfies a Lipschitz
condition in a ball in D(Aα).

Despite the widespread use of the Faedo-Galerkin method (in many applications it is
referred to as the method of harmonic balance), the convergence behaviour in many cases
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is not known. Bazely [20, 21] has proved the uniform convergence of the approximation
solution of the nonlinear wave equation

u′′(t) +Au(t) +M(u(t)) = 0, u(0) = φ, u′(0) = ψ,

on any closed subinterval [0, T ] of the existence of the solution.

2 Preliminaries

We note that if −A is the infinitesimal generator of an analytic semigroup then for c > 0
large enough, −(A+ cI) is invertible and generates a bounded analytic semigroup. This
allows us to reduce the general case in which −A is the infinitesimal generator of an
analytic semigroup to the case in which the semigroup is bounded and the generator is
invertible. Hence without loss of generality we suppose that

‖e−tA‖ ≤M for t ≥ 0

and
0 ∈ ρ(−A),

where ρ(−A) is the resolvent set of −A. It follows that for 0 ≤ α ≤ 1, Aα can be defined
as a closed linear invertible operator with domain D(Aα) being dense in X .

In view of the facts mentioned above we have the following Lemma for an analytic
semigroup {e−tA, t ≥ 0} (cf. Pazy [24], pp. 195–196).

Lemma 2.1 Suppose that −A is the infinitesimal generator of an analytic semigroup
{e−tA, t ≥ 0} with ‖e−tA‖ ≤M, for t ≥ 0 and 0 ∈ ρ(−A). Then we have the following

(i) D(Aα) for 0 ≤ α ≤ 1 is a Banach space endowed with the norm ‖ · ‖α,

(ii) For 0 < β ≤ α, the embedding Hα →֒ Hβ is continuous,

(iii) Aα commutes with e−tA and there exists a constant Cα > 0 depending on α such
that

‖Aαe−tA‖ ≤ Cαt
−α, t > 0,

(iv) There exists a constant C such that

‖A−α‖ ≤ C, for 0 ≤ α ≤ 1.

We assume that the linear operator A satisfies the following assumption.

(H1) A is a closed, positive definite, self-adjoint linear operator from the domain
D(A) ⊂ H of A into H such that D(A) is dense in H , A has the pure point spectrum

0 < λ0 ≤ λ1 ≤ λ2 ≤ λ2 . . .

and a corresponding complete orthonormal system of eigenfunctions {φi}, i.e.,

Aφi = λiφi and 〈φi, φj〉 = δij ,

where δij = 1 if i = j and zero otherwise.
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If (H1) is satisfied then −A generates an analytic semigroup {e−tA : t ≥ 0} in H .
Further assume that the maps h, g and f satisfy the following hypotheses.

(H2) The maps h, g ∈ C1
0 are locally Hölder continuous on [−τ, 0].

We define the two new functions h̃ and g̃ given by

h̃(t) =

{

h(t), t ∈ [−τ, 0],

h(0), t ∈ [0, T ]
(4)

and

g̃(t) =

{

g(t), t ∈ [−τ, 0],

g(0), t ∈ [0, T ].
(5)

(H3) The nonlinear map f is defined from [0, T ]×D(A)×D(Aα)×D(A)×D(Aα)
into H and there exists a nondecreasing function Lf from [0,∞) into [0,∞) depending
on some r1 > 0 such that

‖f(t, u1,v1, w1, z1) − f(s, u2, v2, w2, z2)‖

≤ Lf (r1){|t− s|θ + ‖u1 − u2‖1 + ‖v1 − v2‖α + ‖w1 − w2‖1 + ‖z1 − z2‖α},

for all t, s ∈ [0, T ], θ ∈ (0, 1], and (u1, v1), (u2, v2), (w1, z1),(w2, z2) ∈ Br1
(D(A) ×

D(Aα), (h̃(t), g̃(t))) where Br1
(D(A)×D(Aα), (h̃(t), g̃(t))) = {(x1, y1) ∈ D(A)×D(Aα) :

‖x1 − h̃(t)‖1 + ‖y1 − g̃(t)‖α ≤ r1}.

3 Approximate Integral Equations

The existence of solutions to equation (1) is closely associated with the following pair of
integral equations

u(t) =



















h(t), t ∈ [−τ, 0],

h(0) − (e−tA − I)A−1g(0) −
t
∫

0

(e−(t−s)A − I)A−1f(s, u(s), v(s), u(s− τ), v(s − τ)) ds, t ∈ [0, T ],

(6)

v(t) =



















g(t), t ∈ [−τ, 0],

e−tAg(0) +
t
∫

0

e−(t−s)Af(s, u(s), v(s), u(s− τ), v(s− τ)) ds, t ∈ [0, T ].

(7)

By a solution (u, v) to equations (6)–(7) on [−τ, T ], we mean a pair of functions (u, v) ∈
C1

T × Cα
T for some 0 < α < 1 satisfying (6)–(7), where C1

T × Cα
T is the Banach space

C([−τ, T ], D(A) ×D(Aα)) of all continuous functions from [−τ, T ] into D(A) ×D(Aα)
endowed with the norm

‖(u, v)‖CT,1×CT,α
= ‖u‖T,1 + ‖v‖T,α,

where

‖u‖T,1 = sup
−τ≤t≤T

‖Au(t)‖ = sup
−τ≤t≤T

‖u(t)‖1
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and

‖v‖T,α = sup
−τ≤t≤T

‖Aαv(t)‖ = sup
−τ≤t≤T

‖v(t)‖α.

Let 0 < T0 <∞ be an arbitrary fixed real number and

L(R) = (1 +R)2FR(T0), (8)

where

FR(T0) = 2Lf(R)[T θ
0 +R+ ‖h̃‖T,1 + ‖g̃‖T,α] + ‖fn(0, 0, 0, 0, 0)‖. (9)

Let 0 < T ≤ T0 be such that

sup
0≤t≤T

{

‖(e−tA − I)g(0)‖ + ‖(e−tA − I)Aαg(0)‖
}

<
R

3

and

T < min

{

T0,
R

3

[

(M + 1)L(R)
]−1

,

[

R

3
(1 − α)[L(R)Cα]−1

]
1

1−α
}

.

Let Hn denote the finite dimensional subspace of H spanned by {φ0, φ1, . . . , φn} and
for each n = 0, 1, 2, . . . , Pn : H → Hn be the corresponding projection operators.
For each n we define fn : [0, T0] × D(A) × D(Aα) × D(A) × D(Aα) → H such that
fn(t, u, v, w, z) = f(t, Pnu, Pnv, Pnw,Pnz), where (u, v), (w, z) ∈ D(A) ×D(Aα) and
t ∈ [0, T0].

Let WR = BR(C1
T × Cα

T , (h̃, g̃)), where

BR(C1
T × Cα

T , (h̃, g̃)) = {(y1, y2) ∈ C1
T × Cα

T : ‖y1 − h̃‖T,1 + ‖y2 − g̃‖T,α ≤ R}.

Define a map Sn on WR such that Sn(u, v) = (û, v̂) with

û(t) =











h(t), t ∈ [−τ, 0],

h(0) − (e−tA − I)A−1g(0) −
∫ t

0 (e−(t−s)A − I)A−1fn(s, u(s), v(s), u(s− τ), v(s − τ))ds, t ∈ [0, T ],

(10)

v̂(t) =

{

g(t), t ∈ [−τ, 0],

e−tAg(0) +
∫ t

0 e
−(t−s)Afn(s, u(s), v(s), u(s− τ), v(s − τ))ds, t ∈ [0, T ].

(11)

Theorem 3.1 If all the assumptions (H1)–(H3) are satisfied then there exists a
unique (un, vn) ∈WR such that Sn(un, vn) = (un, vn) for each n = 0, 1, 2, . . . .

Proof We claim that Sn : WR → WR. For this we need to show that the map
t 7→ (Sn(u, v))(t) is continuous from [−τ, T ] into D(A) × D(Aα) with respect to the
norm ‖ · ‖1 + ‖ · ‖α. For t ∈ [−τ, 0] we have

‖û(t2) − û(t1)‖1 + ‖v̂(t2) − v̂(t1)‖α = ‖h(t2) − h(t1)‖1 + ‖g(t2) − g(t1)‖α. (12)
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For t1, t2 ∈ (0, T ] with t1 < t2, we have

[û(t2) − û(t1)] + [v̂(t2) − v̂(t1)] = [(e−t2A − e−t1A)(−A)−1g(0)] + [(e−t2A − e−t1A)g(0)]

+

∫ t2

t1

[e−(t2−s)A − I](−A)−1f(s, Pnu(s), Pnv(s), Pnu(s− τ), Pnv(s− τ))ds

+

∫ t1

0

[

e−(t2−s)A − e−(t1−s)A
]

× (−A)−1f(s, Pnu(s), Pnv(s), Pnu(s− τ), Pnv(s− τ))ds

+

∫ t2

t1

e−(t2−s)Af(s, Pnu(s), Pnv(s), Pnu(s− τ), Pnv(s− τ))ds

+

∫ t1

0

[(e−(t2−s)A − e−(t1−s)A)]f(s, Pnu(s), Pnv(s), Pnu(s− τ), Pnv(s− τ))ds.

Hence from the above equation we get

‖û(t2) − û(t1)‖1 + ‖v̂(t2) − v̂(t1)‖α ≤ ‖(e−t2A − e−t1A)g(0)‖ + ‖(e−t2A − e−t1A)g(0)‖α

+

∫ t2

t1

‖e−(t2−s)A − I‖‖f(s, Pnu(s), Pnv(s), Pnu(s− τ), Pnv(s− τ))‖ds

+

∫ t1

0

‖e−(t2−s)A − e−(t1−s)A‖‖f(s, Pnu(s), Pnv(s), Pnu(s− τ), Pnv(s− τ))‖ds

+

∫ t2

t1

‖Aαe−(t2−s)A‖ ‖f(s, Pnu(s), Pnv(s), Pnu(s− τ), Pnv(s− τ))‖ds

+

∫ t1

0

‖Aα(e−(t2−s)A − e−(t1−s)A)‖

× ‖f(s, Pnu(s), Pnv(s), Pnu(s− τ), Pnv(s− τ))‖ds.

We calculate the above inequality as follows
∫ t2

t1

‖e−(t2−s)A − I‖‖f(s, Pnu(s),Pnv(s), Pnu(s− τ), Pnv(s− τ))‖ds

≤ (M + 1)L(R)(t2 − t1)

(13)

and
∫ t2

t1

‖e−(t2−s)AAα‖ ‖f(s, Pnu(s), Pnv(s), Pnu(s− τ), Pnv(s− τ))‖ds

≤ L(R)Cα

∫ t2

t1

(t2 − s)−αds = L(R)Cα
(t2 − t1)

1−α

1 − α
.

(14)

Part (d) of Theorem 2.6.13 in Pazy [24] implies that for 0 < ϑ ≤ 1 and x ∈ D(Aϑ), we
have

‖(e−tA − I)x‖ ≤ C′
ϑt

ϑ‖x‖ϑ. (15)

If 0 < ϑ < 1 and 0 < α + ϑ < 1, then Aαy ∈ D(Aϑ) for any y ∈ D(Aα+ϑ).
Therefore, for t ∈ [0, T ] and s ∈ (0, T ], we have

‖(e−tA − I)Aαe−sAx‖ ≤ C′
ϑt

ϑ‖Aαe−sAx‖ϑ = C′
ϑt

ϑ‖Aα+ϑe−sAx‖

≤ C′
ϑCα+ϑt

ϑs−(α+ϑ)‖x‖.
(16)
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Hence from (16) we get

‖(e−(t2−s)A − e−(t1−s)A)Aα‖ = ‖(e−(t2−t1)A − I)Aαe−(t1−s)A‖

≤ C′
ϑCα+ϑ(t2 − t1)

ϑ(t1 − s)−(α+ϑ).

Hence
∫ t1

0

‖(e−(t2−s)A − e−(t1−s)A)Aα‖ ‖f(s, Pnu(s), Pnv(s), Pnu(s− τ), Pnv(s− τ))‖ds

≤ C′
ϑCα+ϑL(R)(t2 − t1)

ϑ

∫ t1

0

(t1 − s)−(α+ϑ)ds

≤ C′
ϑCα+ϑL(R)

T
1−(α+ϑ)
0

1 − (α+ ϑ)
(t2 − t1)

ϑ.

(17)
Also, from (16), we have

‖(e−tA − I)e−sAx‖ ≤ C′
ϑt

ϑ‖e−sAx‖ϑ = C′
ϑt

ϑ‖Aϑe−sAx‖

≤ C′
ϑCϑt

ϑs−ϑ‖x‖.

Therefore

‖e−(t2−s)A − e−(t1−s)A‖ = ‖(e−(t2−t1)A − I)e−(t1−s)A‖

≤ C′
ϑCϑ(t2 − t1)

ϑ(t1 − s)−ϑ.

Hence
∫ t1

0

‖e−(t2−s)A − e−(t1−s)‖‖f(s, Pnu(s), Pnv(s), Pnu(s− τ), Pnv(s− τ))‖ds

≤ C′
ϑCϑL(R)(t2 − t1)

ϑ

∫ t1

0

(t1 − s)−ϑds

≤ C′
ϑCϑL(R)

T 1−ϑ
0

1 − ϑ
(t2 − t1)

ϑ.

(18)

From inequalities (13), (14), (17) and (18), it follows that Sn(u, v)(t) is continuous
from [−τ, T ] into D(A) ×D(Aα) with respect to the norm ‖ · ‖1 + ‖ · ‖α. Next we want
to show that Sn(u, v) ∈WR i.e., (û, v̂) ∈WR. Now if t ∈ [−τ, 0] then we have

‖û(t) − h̃(t)‖1 + ‖v̂(t) − g̃(t)‖α = 0.

Now, if t ∈ (0, T ], then we have

‖û(t) − h̃(t)‖1 + ‖v̂(t) − g̃(t)‖α ≤ ‖(e−tA − I)g(0)‖ + ‖(e−tA − I)Aαg(0)‖

+

∫ t

0

‖e−(t−s)A − I‖‖f(s, Pnu(s), Pnv(s), Pnu(s− τ), Pnv(s− τ))‖ds

+

∫ t

0

‖e−(t−s)AAα‖‖f(s, Pnu(s), Pnv(s), Pnu(s− τ), Pnv(s− τ))‖ds

≤
R

3
+ (M + 1)L(R))(T0)T + CαL(R)(T0)

∫ t

0

(t− s)−αds

≤
R

3
+ (M + 1)L(R)T + CαL(R)

T 1−α

1 − α
≤ R.
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Taking the supremum over [−τ, T ], we get

‖û− h̃‖T,1 + ‖v̂ − x̃1‖T,α ≤ R,

which implies that Sn(u, v) ∈ WR. Hence, Sn maps WR into WR. Now to complete the
proof of this theorem it only remains to show that Sn is a strict contraction mapping
on WR.

If t ∈ [−τ, 0], and (u1, v1), (u2, v2) ∈ WR, then we have

‖û1(t) − û2(t)‖1 + ‖v̂1(t) − v̂2(t)‖α

≤

∫ t

0

‖e−(t−s)A − I‖ ‖f(s, Pnu1(s), P
nv1(s), P

nu1(s− τ), Pnv1(s− τ))

− f(s, Pnu2(s), P
nv2(s), P

nu2(s− τ), Pnv2(s− τ))‖ds

+

∫ t

0

‖e−(t−s)AAα‖ ‖f(s, Pnu1(s), P
nv1(s), P

nu1(s− τ), Pnv1(s− τ))

− f(s, Pnu2(s), P
nv2(s), P

nu2(s− τ), Pnv2(s− τ))‖ds.

From assumption (H3), we get

‖f(t, Pnu1(t), P
nv1(t), P

nu1(t− τ), Pnv1(t− τ))

− f(t, Pnu2(t), P
nv2(t), P

nu2(t− τ), Pnv2(t− τ))‖

≤ FR(T0)[‖u1(s) − u2(s)‖1 + ‖v1(s) − v2(s)‖α

+ ‖u1(s− τ) − u2(s− τ)‖1 + ‖v1(s− τ) − v2(s− τ)‖α]

≤
2RFR(T0)

R
(‖u1 − u2‖T,1 + ‖v1 − v2‖T,α)).

Therefore

‖f(t, Pnu1(t), P
nv1(t), P

nu1(t− τ), Pnv1(t− τ))

− f(t, Pnu2(t), P
nv2(t), P

nu2(t− τ), Pnv2(t− τ))‖

≤ 2FR(T0)(‖u1 − u2‖T,1 + ‖v1 − v2‖T,α)

≤
L(R)

R
(‖u1 − u2‖T,1 + ‖v1 − v2‖T,α).

Hence

‖û1(t) − û2(t)‖1 + ‖v̂1(t) − v̂2(t)‖α

≤ [(M + 1)2FR(T0)T + 2CαFR(T0)]

∫ t

0

(t− s)−αds (‖u1 − u2‖T,1 + ‖v1 − v2‖Tα)

≤
1

R

[

(M + 1)L(R)T + CαL(R)
T 1−α

1 − α

]

(‖u1 − u2‖T,1 + ‖v1 − v2‖T,α)

≤
2

3
(‖u1 − u2‖T,1 + ‖v1 − v2‖T,α).

Taking the supremum over [−τ, T ], we get

‖û1 − û2‖T,1 + ‖v̂1 − v̂2‖T,α ≤
2

3
(‖u1 − u2‖T,1 + ‖v1 − v2‖T,α).
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Thus Sn is a strict contraction mapping on WR. Hence, there exists a unique pair
(un, vn) ∈WR such that

un(t) =











h(t), t ∈ [−τ, 0],

h(0) − (e−tA − I)A−1g(0) −
∫ t

0 (e−(t−s)A − I)A−1fn(s, un(s), vn(s), un(s− τ), vn(s− τ))ds, t ∈ [0, T ],

(19)
and

vn(t) =

{

g(t), t ∈ [−τ, 0],

e−tAg(0) +
∫ t

0
e−(t−s)Afn(s, un(s), vn(s), un(s− τ), vn(s− τ))ds, t ∈ [0, T ].

(20)
The equations (19)–(20) are known as a pair of approximate solutions related to the
given problem (1). 2

Corollary 3.1 Let all the assumptions (H1)–(H3) hold. If (h(t), g(t)) ∈ D(A) ×
D(A) for all t ∈ [−τ, 0] then (un(t), vn(t)) ∈ D(A) ×D(Aϑ) for all t ∈ [−τ, T ], where
0 ≤ ϑ < 1.

Proof From Theorem 3.1, we have the existence of a unique pair (un, vn) ∈ BR(C1
T ×

Cα
T , (h̃, g̃)) satisfying (19)–(20). By Theorem (1.2.4) in Pazy [24], we have for x ∈ H ,

∫ t

0 e
−tAxds ∈ D(A) and if x ∈ D(A) then e−tAx ∈ D(A). Thus the result follows from

these facts and the fact that D(A) ⊆ D(Aϑ) for 0 ≤ ϑ ≤ 1. 2

Corollary 3.2 If all the conditions (H1)–(H3) hold then for g(0) ∈ D(A) there
exists a constant V0 independent of n such that

‖vn(t)‖ϑ ≤ V0, where 0 ≤ ϑ < 1, −τ ≤ t ≤ T.

Proof If t ∈ [−τ, 0], then from equation (20), we get the following

‖vn(t)‖ϑ ≤ ‖Aϑg(0)‖.

If t ∈ (0, T ], then we have

‖vn(t)‖ϑ ≤ ‖e−tAAϑg(0)‖

+

∫ t

o

‖e−(t−s)AAϑ‖‖f(s, Pnu(s), Pnv(s), Pnu(s− τ), Pnv(s− τ))‖ds

≤M‖g(0)‖ϑ + CϑL(R)
T 1−ϑ

1 − ϑ
≤ V ′

0 .

This completes the proof of the Corollary. 2

Corollary 3.3 If all the conditions (H1)–(H3) are hold then for h(0) ∈ D(A) there
exist a constant V1 independent of n such that

‖un(t)‖1 ≤ V1, for all − τ ≤ t ≤ T.

Proof If t ∈ [−τ, 0], then from equation (19) ‖vn(t)‖1 ≤ ‖Ag(0)‖.
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If t ∈ (0, T ], then we have

‖un(t)‖1 ≤ ‖h(0)‖1 + ‖(e−tA − I)g(0)‖

+

∫ t

o

‖(e−(t−s)A − I)‖‖f(s, Pnu(s), Pnv(s), Pnu(s− τ), Pnv(s− τ))‖ ds

≤ ‖h(0)‖1 + (M + 1)‖g(0)‖+ (M + 1)L(R)T ≤ V ′
1 .

This completes the proof of the Theorem. 2

4 Convergence of Approximate Solutions

In this section we will establish the convergence of the solution (un, vn) ∈ C1
T × Cα

T of
approximate integral equations to a unique solution (u, v) of equation (1).

For proving the convergence, we need the following stronger assumption on the non-
linear map f than (H3).

(H3′) The nonlinear map f is defined from [0, T ]×D(A)×D(Aα)×D(A)×D(Aα)
into D(Aβ) for 0 < α < β < 1 and there exists a nondecreasing function L̃f from [0,∞)
into [0,∞) depending on some r1 > 0 such that

‖f(t, u1, v1, w1, z1) − f(s, u2, v2, w2, z2)‖β

≤ L̃f (r1){|t− s|θ + ‖u1 − u2‖1 + ‖v1 − v2‖α + ‖u1 − u2‖1 + ‖v1 − v2‖α}

for all t, s ∈ [0, T ], θ ∈ (0, 1] and (u1, v1), (u2, v2), (w1, z1), (w2, z2) ∈ Br1
(D(A) ×

D(Aα), (h̃(t), g̃(t))), where Br1
(D(A)×D(Aα), (h̃(t), g̃(t))) = {(x1, y1) ∈ D(A)×D(Aα) :

‖x1 − h̃(t)‖1 + ‖y1 − g̃(t)‖α ≤ r1}.

We can easily observe that the conditions (H3′) is stronger than (H3) because the
same condition is satisfied in D(Aβ) rather than in H . Now, we are in a position to state
a theorem.

Theorem 4.1 Let (H1), (H2) and (H3′) be satisfied and (h(0), g(0)) ∈ D(A)×D(A).
Then,

lim
m→∞

sup
{n≥m, −τ≤t≤T}

{‖un − um‖T,1 + ‖vn − vm‖T,α} = 0,

where un and vn are given by (19) and (20) respectively.

Proof For n ≥ m, we have

‖fn(t, un(t), vn(t), un(t− τ), vn(t− τ)) − fm(t, um(t), vm(t), um(t− τ), vm(t− τ))‖

≤ ‖fn(t, un(t), vn(t), un(t− τ), vn(t− τ)) − fn(t, um(t), vm(t), um(t− τ), vm(t− τ))‖

+ ‖fn(t, um(t), vm(t), um(t− τ), vm(t− τ)) − fm(t, um(t), vm(t), um(t− τ), vm(t− τ))‖

≤ Lf (R)[‖Pnun(t) − Pnum(t)‖1 + ‖Pnvn(t) − Pnvm(t)‖α

+ ‖Pnun(t− τ) − Pnum(t− τ)‖1 + ‖Pnvn(t− τ) − Pnvm(t− τ)‖α

+ ‖(Pn − Pm)um(t)‖1 + ‖(Pn − Pm)vm(t)‖α

+ ‖(Pn − Pm)um(t− τ)‖1 + ‖(Pn − Pm)vm(t− τ)‖α].
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Also, we can see that

‖(Pn − Pm)vm(t)‖α = ‖Aα(Pn − Pm)vm(t)‖ = ‖Aα−ϑ(Pn − Pm)Aϑvm(t)‖

≤
1

λϑ−α
m

‖(Pn − Pm)Aϑvm(t)‖ ≤
‖Aϑvm(t)‖

λϑ−α
m

and

‖(Pn − Pm)vm(t− τ)‖α = ‖Aα(Pn − Pm)vm(t− τ)‖ = ‖Aα−ϑ(Pn − Pm)Aϑvm(t− τ)‖

≤
1

λϑ−α
m

‖(Pn − Pm)Aϑvm(t− τ)‖ ≤
‖Aϑvm(t− τ)‖

λϑ−α
m

.

For convenience, we denote

ξm,n(t) = ‖un(t) − um(t)‖1 + ‖vn(t) − vm(t)‖α

and

ξm,n(t− τ) = ‖un(t− τ) − um(t− τ)‖1 + ‖vn(t− τ) − vm(t− τ)‖α.

Thus, we have

‖fn(t, un(t), vn(t), un(t− τ)), vn(t− τ)) − fm(t, um(t), vm(t), um(t− τ), vm(t− τ))‖

≤ Lf (R)[ξm,n(t) + ξm,n(t− τ) + ‖(Pn − Pm)um(t)‖1

+
‖vm(t)‖ϑ

λϑ−α
m

+ ‖(Pn − Pm)um(t− τ)‖1 +
‖vm(t− τ)‖ϑ

λϑ−α
m

]

≤ 2Lf(R)

[

{‖un − um‖t,1 + ‖vn − vm‖t,α} + ‖(Pn − Pm)um‖t,1 +
‖vm‖t,ϑ

λϑ−α
m

]

.

(21)
Now, from the pair of integral equations (19)–(20), for any 0 < t′0 < t < T0, we have

‖un(t) − um(t)‖1 + ‖vn(t) − vm(t)‖α

≤

{
∫ t′

0

0

‖e−(t′
0
−s)A − I‖ +

∫ t

t′
0

‖e−(t−s)A − I‖

}

×
[

‖fn(s, un(s), vn(s), un(s− τ), vn(s− τ))

− fm(s, um(s), vm(s), um(s− τ), vm(s− τ))‖
]

ds

+

{
∫ t′

0

0

‖e−(t′
0
−s)AAα‖ +

∫ t

t′
0

‖e−(t−s)AAα‖

}

×
[

‖fn(s, un(s), vn(s), un(s− τ), vn(s− τ))

− fm(s, um(s), vm(s), um(s− τ), vm(s− τ))‖
]

ds.

(22)
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By using the estimate of the inequality (21) in the inequality (22), we get

‖un(t) − um(t)‖1 + ‖vn(t) − vm(t)‖α

≤ A1t
′
0 + L(R)

∫ t

t′
0

(

(M + 1) +
Cα

(t− s)α

)

ds

(

‖(Pn − Pm)um‖T,1 +
V0

λϑ−α
m

)

+ L(R)

∫ t

t′
0

(

(M + 1) +
Cα

(t− s)α

)

{‖un − um‖s,1 + ‖vn − vm‖s,α}ds

≤ A1t
′
0 + C(R, T )Bmn +N1

∫ t

t′
0

1

(t− s)α
{‖un − um‖s,1 + ‖vn − vm‖s,α}ds,

(23)
where

Bmn = B1
mn + B2

mn, B1
mn = ‖(Pn − Pm)um‖T,1, B2

mn =
V0

λϑ−α
m

,

C(R, T ) = L(R)

(

(M + 1)T +
CαT

1−α

1 − α

)

,

N1 = L(R)(Tα + 1)max{(M + 1), Cα}

and

A1 = {(M + 1) + Cα(t0 − t′0)
−α}2Lf(R)

[

{‖un − um‖t′
0
,1 + ‖vn − vm‖t′

0
,α}

+ ‖(Pn − Pm)um‖t′
0
,1 +

V0

λϑ−α
m

]

t′0.

(24)

Now we replace t by t+ θ in the inequality (23), where θ ∈ [t′0 − t, 0], we get

‖un(t+ θ) − um(t+ θ)‖1 + ‖vn(t+ θ) − vm(t+ θ)‖α ≤ A1t
′
0 + C(R, T )Bmn

+N1

∫ t+θ

t′
0

(t+ θ − s)−α{‖un − um‖s,1 + ‖vn − vm‖s,α} ds.
(25)

We put s− θ = γ in inequality (25) and get

‖un(t+ θ) − um(t+ θ)‖1 + ‖vn(t+ θ) − vm(t+ θ)‖α

≤ A1t
′
0 + C(R, T )Bmn +N1

∫ t

t′
0
−θ

(t− γ)−α{‖un − um‖γ,1 + ‖vn − vm‖γ,α}dγ

≤ A1t
′
0 + C(R, T )Bmn +N1

∫ t

t′
0

(t− γ)−α{‖un − um‖γ,1 + ‖vn − vm‖γ,α}dγ.

(26)
Thus

sup
t′
0
−t≤θ≤0

{‖un(t+ θ) − um(t+ θ)‖1 + ‖vn(t+ θ) − vm(t+ θ)‖α}

≤ A1t
′
0 + C(R, T )Bmn +N1

∫ t

0

(t− γ)−α{‖un − um‖γ,1 + ‖vn − vm‖γ,α}dγ.

(27)
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We have

sup
−τ−t≤θ≤0

{‖un(t+ θ) − um(t+ θ)‖1 + ‖vn(t+ θ) − vm(t+ θ)‖α}

≤ sup
0≤θ+t≤t′

0

{‖un(t+ θ) − um(t+ θ)‖1 + ‖vn(t+ θ) − vm(t+ θ)‖α}

+ sup
t′
0
−t≤θ≤0

{‖un(t+ θ) − um(t+ θ)‖1 + ‖vn(t+ θ) − vm(t+ θ)‖α}.

(28)

By using the inequalities (26) and (27) in the inequality (28), we get

sup
−τ≤t+θ≤t

{‖un(t+ θ) − um(t+ θ)‖1 + ‖vn(t+ θ) − vm(t+ θ)‖α}

≤ 2A1t
′
0 + C(R, T )Bmn +N1

∫ t

0

(t− γ)−α{‖un − um‖γ,1 + ‖vn − vm‖γ,α}dγ.
(29)

Hence, from Gronwall’s Lemma and taking the limit as m → ∞ on both sides, we get
the required result, since Bmn → 0 as m → ∞ provided ‖(Pn − Pm)um‖T,1 → 0 as
m → ∞ for −τ ≤ t ≤ T . Since B2

mn → 0 as m → ∞, hence to prove that Bmn → 0, we
only need to prove that for −τ ≤ t ≤ T , ‖(Pn − Pm)um(t)‖1 → 0 as m → ∞. We can
easily check that for every x ∈ H and η < 0

‖Aη(Pn − Pm)x‖ ≤ λη
m‖(Pn − Pm)x‖ ≤ λη

m‖x‖. (30)

From the equation (19), for any t ∈ [−τ, 0] we have

‖A(Pn − Pm)um(t)‖ = ‖(Pn − Pm)Ah(0)‖. (31)

For t ∈ (0, T ], we have

‖A(Pn − Pm)um(t)‖ ≤ ‖(Pn − Pm)Ah(0)‖ + (M + 1)‖(Pn − Pm)g(0)‖

+ (M + 1)

∫ t

0

‖(Pn − Pm)fm(s, um(s), vm(s), um(s− τ), vm(s− τ))‖ ds.
(32)

Since Aβfm(s, um(s), vm(s), um(s − τ), vm(t − τ)) ∈ H , hence from inequality (30), we
have

‖(Pn − Pm)fm(s, um(s), vm(s), um(s− τ), vm(s− τ))‖

≤ ‖A−β(Pn − Pm)Aβfm(s, um(s), vm(s), um(s− τ), vm(s− τ))‖‖

≤
1

λβ
m

‖Aβfm(s, um(s), vm(s), um(s− τ), vm(s− τ))‖

≤
1

λβ
m

F̃R(T0),

(33)
where

F̃R(T0) = 2L̃f(R)[T θ
0 +R+ ‖h̃‖T,1 + ‖g̃‖T,α] + ‖fn(0, 0, 0, 0, 0)‖. (34)

Using the inequality (33) in the inequality (32), we get

‖(Pn−Pm)um(t)‖1 ≤ ‖(Pn−Pm)Ax0‖+(M+1){‖(Pn−Pm)x1‖+
1

λβ
m

T (F̃R(T0), (35)

which tend to zero as m → ∞ for 0 ≤ t ≤ T . Hence from (32) and (35) we get the
required result. This completes the proof of the theorem. 2
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Theorem 4.2 If (H1)–(H2) and (H3′) are satisfied and (h(0), g(0)) ∈ D(A)×D(A)
then there exists a pair of functions (u, v) ∈ C1

T × Cα
T such that (un, vn) → (u, v) as

n→ ∞ in C1
T × Cα

T and (u, v) satisfies (6)–(7) on [−τ, T ].

Proof Theorem 4.1 implies that there exists (u, v) ∈ C1
T × Cα

T such that (un, vn)
converges to (u, v) in C1

T × Cα
T . Since (un, vn) ∈ WR for each n, (u, v) is also in WR.

Further, we have

‖fn(t, un(t), vn(t), un(t− τ)), vn(t− τ)) − f(t, u(t), v(t), u(t− τ), v(t− τ))‖

≤ ‖f(t, Pnun(t), Pnvn(t), Pnun(t− τ)), Pnvn(t− τ))

− f(t, Pnu(t), Pnv(t), Pnu(t− τ), Pnv(t− τ))‖

+ ‖f(t, Pnu(t), Pnv(t), Pnu(t− τ), Pnv(t− τ))

− f(t, u(t), v(t), u(t− τ), v(t − τ))‖.

Hence from the above inequality, we have

‖fn(t, un(t), vn(t), un(t− τ)), vn(t− τ)) − f(t, u(t), v(t), u(t− τ), v(t − τ))‖

≤ Lf (R)[‖Pnun(t) − Pnu(t)‖1 + ‖Pnvn(t) − Pnv(t)‖α

+ ‖Pnun(t− τ) − Pnu(t− τ)‖1 + ‖Pnvn(t− τ) − Pnv(t− τ)‖α

+ ‖(Pn − I)u(t)‖1 + ‖(Pn − I)v(t)‖α

+ ‖(Pn − I)u(t− τ)‖1 + ‖(Pn − I)v(t− τ)‖α]

≤ Lf (R)[‖un(t) − u(t)‖1 + ‖vn(t) − v(t)‖α

+ ‖un(t− τ) − u(t− τ)‖1 + ‖vn(t− τ) − v(t− τ)‖α

+ ‖(Pn − I)u(t)‖1 + ‖(Pn − I)v(t)‖α

+ ‖(Pn − I)u(t− τ)‖1 + ‖(Pn − I)v(t− τ)‖α].

Thus finally we get

‖fn(t, un(t), vn(t), un(t− τ)), vn(t− τ)) − f(t, u(t), v(t), u(t− τ), v(t − τ))‖

≤ 2Lf (R)[‖un − u‖T,1 + ‖vn − v‖T,α|(P
n − I)u‖T,1 + ‖(Pn − I)v‖T,α].

(36)

Hence, by using the inequality (36) and the bounded convergence theorem we can see
easily that the pair of functions (u, v) must be given by equations (6)–(7). 2

5 Faedo-Galerkin Approximations

From the previous sections we know that for any −τ ≤ T < ∞ we have a unique pair
(u, v) ∈ C1

T × Cα
T satisfying the integral equations (6)–(7).

Also we have a unique pair (un, vn) ∈ C1
T×Cα

T which is the solution of the approximate
integral equations (19)–(20).

If we project the equations (19)–(20) onto Hn, we get the Faedo-Galerkin approxi-
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mation (ûn(t), v̂n(t)) = (Pnun(t), Pnvn(t)) satisfying

ûn(t) =











Pnh(t), t ∈ [−τ, 0],

Pnh(0) − (e−tA − I)A−1Png(0) −
∫ t

0 (e−(t−s)A − I)A−1 ×

Pnfn(s, un(s), vn(s), un(s− τ), vn(s− τ)) ds, t ∈ [0, T ],

(37)

v̂n(t) =











Png(t), t ∈ [−τ, 0],

e−tAPng(0) +
∫ t

0
e−(t−s)APnfn(s, un(s), vn(s), un(s− τ), vn(s− τ)) ds, t ∈ [0, T ].

(38)

The solution (u, v) of (6)–(7) and (ûn, v̂n) of (37)–(38), have the representations

u(t) =

∞
∑

i=0

αi(t)φi, αi(t) = 〈u(t), φi〉, i = 0, 1, . . . ,

v(t) =

∞
∑

i=0

βi(t)φi, βi(t) = 〈v(t), φi〉, i = 0, 1, . . . ,

(39)

and

ûn(t) =

n
∑

i=0

αn
i (t)φi, αn

i (t) = 〈ûn(t), φi〉, i = 0, 1, . . . , n,

v̂n(t) =

n
∑

i=0

βn
i (t)φi, βn

i (t) = 〈v̂n(t), φi〉, i = 0, 1, . . . , n.

(40)

Now, we shall show the convergence of (αn
i , β

n
i ) to (αi, βi). It can be easily checked that

A[u(t) − û(t)] =

∞
∑

i=0

λi(αi(t) − αn
i (t))φi

and

Aα[v(t) − v̂(t)] =

∞
∑

i=0

λα
i (βi(t) − βn

i (t))φi.

Thus, we have

‖A[u(t) − û(t)]‖2 ≥

n
∑

i=0

λ2
i |αi(t) − αn

i (t)|2

and

‖Aα[v(t) − v̂(t)]‖2 ≥

n
∑

i=0

λ2α
i |βi(t) − βn

i (t)|2.

Hence, we have the following convergence theorem.

Theorem 5.1 Let (H1), (H2) and (H3’) be satisfied and (h(0), g(0)) ∈ D(A)×D(A).
Then,

lim
n→∞

sup
−τ≤t≤T

{ n
∑

i=0

λ2
i |αi(t) − αn

i (t)|2 +

n
∑

i=0

λ2α
i |βi(t) − βn

i (t)|2
}

= 0.
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The assertion of Theorem 5.1 follows from the facts mentioned above and from the
following proposition.

Theorem 5.2 Let (H1), (H2) and (H3’) be satisfied and let T be any number such
that 0 < T <∞, and (h(0), g(0)) ∈ D(A) ×D(A). Then,

lim
m→∞

sup
{n≥m, −τ≤t≤T}

{‖A[ûn(t) − ûm(t)]‖ + ‖Aα[v̂n(t) − v̂m(t)]‖} = 0.

Proof For n ≥ m, we have

‖A(ûn(t) − ûm(t))‖ + ‖Aα(v̂n(t) − v̂m(t))‖

= ‖A(Pnun(t) − Pmum(t))‖ + ‖Aα(Pnvn(t) − Pmvm(t))‖

≤ ‖APn(un(t) − um(t))‖ + ‖A(Pn − Pm)um(t)‖

+ ‖AαPn(vn(t) − vm(t))‖ + ‖Aα(Pn − Pm)vm(t)‖

≤ ‖un(t) − um(t)‖1 + ‖vn(t) − vm(t)‖α+ ‖(Pn − Pm)um(t)‖1+
1

λϑ−α
m

‖Aβvm‖.

Hence, the result follows directly from Theorem 4.1. 2

6 Example

Let H = L2((0, 1); R). Consider the following partial delay differential equations

∂2w

∂t2
(t, x) −

∂2w

∂x2
(t, x)

= F (t, x,
∂2w

∂x2
(t, x),

∂2w

∂x∂t
(t, x),

∂2w

∂x2
(t− τ, x),

∂2w

∂x∂t
(t− τ, x)),

x ∈ (0, 1), t > 0,

w(ξ, x) = h1(ξ, x),
∂w

∂t
(ξ, x) = g1(ξ, x) for all ξ ∈ [−τ, 0], x ∈ (0, 1)

and w(t, 0) = w(t, 1) = 0, t ∈ [0, T ], 0 < T <∞,

(41)

where F is a sufficiently smooth nonlinear function, h1 and g1 are given locally Hölder
continuous functions on [−τ, 0].

We define an operator A as follows,

Au = −u′′ with u ∈ D(A) = H1
0 (0, 1). (42)

Here clearly the operator A is self-adjoint with the compact resolvent and is the infinites-
imal generator of an analytic semigroup S(t). Now we take α = 1/2, D(A1/2) is the
Banach space endowed with the norm

‖x‖1/2 = ‖A1/2x‖, x ∈ D(A1/2),

and we denote this space by H1/2.
The equation (41) can be reformulated as the following abstract equation in H :

d2u

dt2
(t) +A

(

du

dt

)

(t) = f

(

t, u(t),
du

dt
(t), u(t− τ),

du

dt
(t− τ)

)

, t > 0,

u(t) = h(t), u′(t) = g(t) for all t ∈ [−τ, 0],

(43)
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where u(t)(x) = w(t, x), h(t)(x) = h1(t, x), g(t)(x) = g1(t, x), the linear operator A is
given by equation (42) and the function f is defined from [0, T ] × D(A) × D(A1/2) ×
D(A) ×D(A1/2) into H such that

f

(

t, u(t),
du

dt
(t), u(t− τ),

du

dt
(t− τ)

)

(x)

= F

(

t, x,
∂2w

∂x2
(t, x),

∂2w

∂x∂t
(t, x),

∂2w

∂x2
(t− τ, x),

∂2w

∂x∂t
(t− τ, x)

)

.

It can be verified that the assumptions of Theorem 3.1 for (43) are satisfied and hence the
existence of a unique solution of (43) is guaranteed which in turn ensures the existence
of a unique solution to (41).
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