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Abstract: In this note, an attempt is made to generalize the Sturm’s com-
parison theorem. Let t1 and t2 be two consecutive zeros of a solution y of an
implicit equation

g1(y
′′(t)) + r(t)g2(y(t)) = 0

and x be a solution of

f1(x
′′(t)) + q(t)f2(x(t)) = 0.

Under certain conditions stated on the given functions f1, f2, g1, g2, q and r, we
show that x has a zero between t1 and t2. Sturm’s comparison theorem turns
out to be a consequence of the established result.
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1 Introduction

Sturm’s comparison theorem plays an important role in the theory of oscillations. In this
note an attempt is made to generalize the Sturm’s comparison theorem. Let f1, f2, g1

and g2 ∈ C(ℜ,ℜ) and q, r ∈ C(ℜ+,ℜ) be given functions. Let x and y be solutions of
the implicit second order equations

f1(x
′′(t)) + q(t)f2(x(t)) = 0, (1.1)

g1(y
′′(t)) + r(t)g2(y(t)) = 0. (1.2)

In this note, we assume the existence of solutions x and y of (1.1) and (1.2) on J = [0, α],
α > 0. Under certain conditions on f1, f2, g1, g2, q and r, we establish that between any
two consecutive zeros t1, t2 of y, there is a zero of x, where [t1, t2] ⊆ J . Hypotheses along
with the main result are stated in Section 2. Section 3 is devoted to a few consequences
and examples of this result.
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2 Main Result

This section deals with the main result. Let f1, f2, g1 and g2 ∈ C(ℜ,ℜ) and q, r ∈
C(ℜ+,ℜ). We need the following hypotheses for further study

H1 : min
06=u∈ℜ

g1(u)

u
≥ max

06=u∈ℜ

f1(u)

u
,

H2 : min
06=u∈ℜ

f2(u)

u
≥ max

06=u∈ℜ

g2(u)

u
,

H3 : uf1(u) > 0, ug2(u) > 0, ∀ 0 6= u ∈ ℜ.

Theorem 2.1 Let x and y be nontrivial solutions of (2.1) and (2.2) respectively.

f1(x
′′(t)) + q(t)f2(x(t)) = 0. (2.1)

g1(y
′′(t)) + r(t)g2(y(t)) = 0. (2.2)

Assume that the hypotheses H1 −H3 hold. Let t1, t2 be consecutive zeros of y and q(t) >
r(t) > 0 for t ∈ I = (t1, t2). Then, x vanishes at least once on I.

Proof By hypothesis, y(t1) = 0 = y(t2) and y(t) 6= 0, ∀ t ∈ I. Suppose x(t) 6= 0,
∀ t ∈ I. Suppose if, y′′(t) = 0 for some t ∈ I, then from H1, H3 and (2.2), we have
g2(y(t)) = 0 as well, but this contradicts the non vanishing of y(t) in I. So y′′(t) 6= 0,
∀ t ∈ I. Similarly x′′(t) 6= 0, ∀ t ∈ I. From H1–H3, we have

g1(y
′′(t))/y′′(t) ≥ f1(x

′′(t))/x′′(t) > 0, ∀ t ∈ I

and f2(x(t))/x(t) ≥ g2(y(t))/y(t) > 0, ∀ t ∈ I.

From the above two inequalities and since 1/r(t) > 1/q(t) > 0, for all t ∈ I, we have

y(t)g1(y
′′(t))

g2(y(t))r(t)y′′(t)
>

x(t)f1(x
′′(t))

q(t)f2(x(t))x′′(t)
. (2.3)

Define m(t) = x(t)y′(t) − x′(t)y(t), t ∈ I. Then, m′(t) = x(t)y′′(t) − x′′(t)y(t).
Case 1. x(t) > 0, y(t) > 0 on I.
In this case, m(t1) > 0, m(t2) < 0. This implies that

m(t2) − m(t1) < 0. (2.4)

From (2.1) we have,
f1(x

′′(t)) < 0, t ∈ I.

The sector condition H3 on f1 now implies x′′(t) < 0 for all t ∈ I. Similarly y′′(t) < 0
for all t ∈ I. We notice that

m′(t) = −x(t)f1(x
′′(t))y′′(t)

q(t)f2(x(t))
+

y(t)g1(y
′′(t))x′′(t)

g2(y(t))r(t)
∀ t ∈ I. (2.5)

By (2.3), we have m′(t) > 0, t ∈ I,

m(t2) − m(t1) > 0. (2.6)

Inequalities (2.4) and (2.6) lead to a contradiction. Thus, x vanishes at least once between
t1 and t2. The cases when x(t) > 0, y(t) < 0; x(t) < 0, y(t) > 0; x(t) < 0, y(t) < 0 are
similarly dealt. These proofs are omitted for brevity. 2

Remark 2.1 When f1, f2, g1 and g2 are identity functions, the celebrated Sturm’s
comparison theorem is a particular case of Theorem 2.1, see [3, 4]. Theorem 2.1 can also
be viewed as a nonlinear version of the Sturm’s comparison theorem.
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3 A Few Consequences

This section primarily deals with consequences concerning Theorem 2.1. We observe that
the hypotheses H1 and H2 can be relaxed. Let S1 = {x(t) : t ∈ I}, S2 = {y(t) : t ∈ I}
and S ⊇ S1 ∪ S2. Then the condition in H1 and H2, we can replace u ∈ ℜ by u ∈ S.
In practice it is hard to figure out what S is? For nonlinear equations these conditions
could be impracticable unless we have a prior bounds on the solutions. Secondly, none
of the condition have monotonicity criteria, see [1, 2] but sector condition is a part and
parcel of it. Thirdly, we can derive results by comparing the implicit equations with an
explicit equation for nonoscillation also, as shown below,

Proposition 3.1 Let y be any nontrivial solution of

y′′(t) + f(y′′(t)) +
1

5t2
y(t) = 0, t > 0, (3.1)

where, f : ℜ → ℜ be any continuous function satisfying uf(u) > 0, ∀ 0 6= u ∈ ℜ. Then
(3.1) is non oscillatory.

Proof Consider the differential equation

x′′(t) +
1

4t2
x(t) = 0. (3.2)

(3.1) and (3.2) can be identified as (2.2) and (2.1) respectively, with f1(u) = u = f2(u) =
u, q(t) = 1

4t2
, g1(u) = u + f(u), uf(u) > 0, ∀ 0 6= u ∈ ℜ, g2(u) = u, r(t) = 1

5t2
.

Equation (3.2) is nonoscillatory, as y(t) = t
1

2 is a solution of (3.2). It is easy to see that
f1, f2, g1 and g2 satisfy the hypotheses H1 − H3. So, Theorem 2.1 implies that (3.1) is
nonoscillatory.

Proposition 3.2 Let x be any nontrivial solution of

x′′(t) + 2(k2x(t) + f(x(t))) = 0, (3.3)

where, f : ℜ → ℜ be any continuous function satisfying uf(u) > 0 for all 0 6= u ∈ ℜ,
k > 0. Then (3.3) is oscillatory.

Proof Consider the differential equation

y′′(t) +
k2

4
y(t) = 0. (3.4)

With f1(u) = u, f2(u) = k2u + f(u), uf(u) > 0, ∀ 0 6= u ∈ ℜ, g1(u) = u, g2(u) = k
2

4
u,

q(t) = 2, r(t) = 1 (3.3) and (3.4) can be identified as (2.1) and (2.2). It is easy to see
that f1, f2, g1 and g2 satisfy the hypotheses H1–H3. So, Theorem 2.1 implies that x
vanishes between any two consecutive zeros of y(t) = sin k

2
t. Since (3.4) is oscillatory.

So, by Theorem 2.1, (3.3) is oscillatory. 2

Remark 3.1 In proving (3.3) is oscillatory, we are using conditions different from
what has been used in [1, Remark 1] and [2].
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Example 3.1 Consider the differential equations

f1(x
′′(t)) + q(t)f2(x(t)) = 0, (3.5)

g1(y
′′(t)) + r(t)g2(y(t)) = 0, (3.6)

where, f1(u) = ue−|u|, f2(u) = u, q(t) = e−|sin t|, g1(u) = u = g2(u), r(t) = e−1.
Then, x(t) = sin t satisfies (3.5). Compare this with the equation

y′′(t) + r(t)y(t) = 0,

with the solution y(t) = sin(t/
√

e) on [0, π
√

e]. It is trivial to check that f1, f2, g1 and
g2 satisfy the hypotheses H1 − H3. Also q(t) > r(t) > 0. Theorem 2.1 implies that not
only must sin t vanish in [0, π

√
e], which is clear, but also so must every other nontrivial

solution of (3.5).

Example 3.2 Consider the differential equations

f1(x
′′(t)) + q(t)f2(x(t)) = 0, (3.7)

g1(y
′′(t)) + r(t)g2(y(t)) = 0, (3.8)

where f1(u) = u, f2(u) = ue|u|, q(t) = 2, g1(u) = u = g2(u), r(t) = 1. Here f1, f2,
g1 and g2 satisfy the hypotheses H1–H3. Also q(t) > r(t) > 0. Let x be a nontrivial
solution of (3.7). Then, Theorem 2.1 implies that x vanishes at least once between any
two consecutive zeros of y(t) = sin t. Since (3.8) is oscillatory, so (3.7) is oscillatory.
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