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Abstract: In this paper we give an overview of some aspects of chaotic dy-
namics in hybrid systems, which comprise different types of behaviour. Hybrid
systems may exhibit discontinuous dependence on initial conditions leading to
new dynamical phenomena. We indicate how methods from topological dy-
namics and ergodic theory may be used to study hybrid systems, and review
existing bifurcation theory for one-dimensional non-smooth maps, including the
spontaneous formation of robust chaotic attractors. We present case studies of
chaotic dynamics in a switched arrival system and in a system with periodic
forcing.

Keywords: Chaotic dynamics; hybrid systems; symbolic dynamics; nonsmooth
bifurcations.

Mathematics Subject Classification (2000): 34A37, 37B10, 37A40, 34A36,
37G35.

1 Introduction

A hybrid system is a dynamic system which comprises different types of behaviour.
Classic examples of hybrid dynamical systems in the literature are impacting mechan-
ical systems, for which the behaviour consists of continuous evolution interspersed by
instantaneous jumps in the velocity, and dc-dc power converters, in which the behaviour
depends on the state of a diode and a switch. Hybrid control systems occur when a
continuous system is controlled using discrete sensors and actuators, such as thermostats
and switched heating/cooling devices. Hybrid dynamics may also occur due to satura-
tion effects on components of a system, and in idealized models of hysteresis. Finally,
we mention that hybrid systems can be derived as singular limits of systems operating
in multiple time-scales; indeed we may consider almost all hybrid systems to arise in this
way.

From a mathematical point of view, hybrid systems typically exhibit non-smoothness
or discontinuities in the dynamics, and these properties induce new dynamical phenomena
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which are not present in non-hybrid (i.e. smooth) systems. Most notably, hybrid systems
can exhibit robust chaotic attractors, which have been conjectured not to exist for smooth
systems.

This article is designed to give an introduction to hybrid systems for a specialist
in dynamical systems theory, and an introduction to chaotic dynamics for an expert
in hybrid systems. We cover modelling formalisms and solution concepts for hybrid
systems, and discuss three of the main branches of chaotic dynamical systems theory,
namely symbolic dynamics, ergodic theory and bifurcation theory. We assume that the
reader is familiar with basic concepts of dynamical systems theory, including topological
dynamics, ergodic theory and elementary smooth bifurcation theory. This material can
be found in many of the excellent and accessible textbooks on dynamical systems, such
as [24, 27, 42, 21]. The field of hybrid systems is not as mature, and many of the
fundamental theoretical concepts have not yet been developed. The only introductory
general textbook on hybrid systems currently available is [47], and the book [32] contains
qualitative analysis of some classes of hybrid system.

The article is organised as follows. In Section 2, we give an overview of chaotic
hybrid systems and introduce some representative examples. In Section 3, we give a brief
introduction to hybrid systems theory. In Section 4 we discuss statistical and symbolic
techniques for studying hybrid systems. In Section 5, we discuss bifurcation theory for
hybrid systems. In Section 6 we present some case studies showcasing chaotic dynamics.
Finally, we give some concluding remarks in Section 7.

2 Overview

We now give an informal overview of hybrid systems and chaotic dynamics, and give
some motivational examples from the literature.

2.1 Hybrid systems

What exactly do we mean by a hybrid system? For our purposes, the following informal
definition is appropriate:

a hybrid system is a dynamic system for which the evolution has a different form or
structure in different parts of the state space.

Examples of hybrid system include piecewise-affine maps, differential equations with dis-
continuous right-hand sides, and systems in which the evolution jumps between multiple
modes. The meaning of “different form or structure” is deliberately vague, and may de-
pend on the tools we use to study the system. For example, a continuous piecewise-affine
map may be considered “hybrid” when studying bifurcations, since bifurcation theory
deals with the differential category, but from the point of view of topological or statistical
properties it is just a single continuous function.

Within the class of all hybrid systems, we may identify discrete-time, continuous-time
and hybrid-time systems.

Discrete-time hybrid systems are typically the easiest to study, and in applications
usually arise as simplifications of continuous- or hybrid-time systems, such as the stro-
boscopic map of a periodically-forced oscillator or the hitting map of an impact system.
Important classes of discrete-time systems in the literature include piecewise-affine maps,
in which the dynamics is affine, xn+1 = Aixn + bi on each element Pi of a polyhedral
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partition of the state space. These systems can be studied by their symbolic dynamics
in terms of the state-space partition, or by looking at border collision bifurcations which
occur when periodic points cross the partition element boundaries, and may result in
spontaneous transitions to chaos.

A continuous-time hybrid system is described by a differential equation or differential
inclusion in which the right-hand side is non-smooth or discontinuous. If the right-hand
side is continuous and piecewise-smooth, then it is locally Lipschitz, so local existence and
uniqueness of solutions are immediate. The hybrid nature comes up when attempting to
find efficient numerical methods to integrate such systems, since crossings of the switching
boundary must be detected, and when considering bifurcations, since corner-collisions in
the dynamics may lead to border collision bifurcations in time-discretisations. If the right-
hand side is discontinuous, then the system can be reformulated as a differential inclusion
using the Filippov solution concept [18]. Uniqueness of solutions is not guaranteed, and
we shall see that this may result in discontinuous dependence on initial conditions due to
corner-collisions and grazing phenomena, though as we shall see later, a grazing impact
in a mechanical system does not induce discontinuous spacial dependence.

A hybrid-time system has both discrete-time and continuous-time dynamics. Hybrid-
time systems naturally occur when continuous systems are controlled by actuators with
a finite number of states, such as an electronic switch or a three-level induction motor,
or using sensors which can only detect a finite number of states, such as a thermostat.
Instantaneous transitions in the state occur when a discrete event is activated, causing
a change in the mode of the system. Between discrete events the system evolves contin-
uously. Although a discrete event causes a discontinuity in the system state, if an orbit
crosses a guard set transversely, then nearby orbits undergo the same discrete event at
nearly the same time, and no lasting discontinuities in the spacial dependence occur.
However, a tangency of the system evolution with the activation set of a discrete event
does introduce discontinuous spacial dependence, as does a situation when two discrete
transitions are simultaneously activated.

The non-smooth or discontinuous dependence on initial conditions which can occur in
hybrid systems is the main phenomenological difference between hybrid and non-hybrid
systems. This often causes difficulties—invariant measures need not exist, topological
methods either fail outright or need to be modified, and new bifurcations are seen to
occur. However, these features also allow the possibility of robust chaos, by which we
mean the presence of a chaotic attractor over an open set in parameter space; behaviour
which is not seen in non-hybrid systems. Since non-smooth and discontinuous dependence
on initial conditions are the key of hybrid systems, we shall pay considerable attention
to determining the discontinuities and singularities of the evolution.

Discontinuous dependence on initial conditions can cause fundamental difficulties in
applying existing techniques of dynamical systems theory, which were originally devel-
oped for systems without discontinuities. However, many methods can be modified to
apply to either upper-semicontinuous or lower-semicontinuous systems. Hence a regu-
larisation step is required to bring the system into a form which is amenable to analysis.
As part of this regularisation, either existence or uniqueness of solutions is typically lost.

2.2 Chaos in hybrid systems

There are many definitions of “chaos” in the literature. We shall adopt the terminology
that a system is chaotic if it has positive topological entropy. Chaotic behaviour may
be transient, which means that the positive entropy is supported on a repelling set, or
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attracting, which means that the positive entropy is supported on a minimal attractor, i.e.
an attractor with a dense orbit and hence no proper sub-attractors. From an applications
point of view, transient chaotic behaviour is often unimportant; it is the dynamics on
the attractors which is important. However, in practice it is impossible to distinguish
between a very-high period limit cycle and a chaotic attractor.

It is often fairly easy to prove the existence of chaotic dynamics using techniques based
on topological index theories, either the Lefschetz-Nielsen theory [6] for periodic points
and the Conley index theory [34] for more general invariant sets. For interval maps,
the ordering of points of a periodic orbit can be used to prove the existence of chaos,
and for two-dimensional homeomorphisms, there is a rich theory based around periodic
and homoclinic orbits. These tools are relevant for hybrid systems since they require
only (local) continuity of the system evolution, and can be used directly for non-smooth
hybrid systems, and with some modifications to piecewise-continuous systems. However,
the main disadvantage of these methods is that they cannot distinguish between chaotic
transients and a chaotic attractor.

The most important quantitative measure of chaos in a dynamical system is the topo-
logical entropy. It is known [51] that the topological entropy is upper-semicontinuous
for the class of C∞-smooth systems. It is also know that topological entropy is lower-
semicontinuous for C0 maps in one dimension, but not for C∞ maps in d ≥ 2 dimen-
sions [35]. This means that for non-hybrid (i.e. smooth) systems, chaos cannot be
spontaneously created, and for low-dimensional systems, chaos cannot be spontaneously
destroyed.

In differentiable systems, it is extremely difficult to rigorously prove the existence
of a minimal attractor with “high” topological entropy; the unimodal map [3] and the
Lorenz system [46] are notable exceptions. Let us consider the simplest smooth chaotic
family, namely the unimodal family xn+1 = fa(xn) := 1 − ax2

n. It is well-known that if
fa has a periodic orbit of period m which is not a power of two, then f has a chaotic set
with positive topological entropy. In [3] it was shown that for a positive measure set of
parameters, there exists a minimal chaotic attractor. For other parameter values, almost
all points lie in the basin of a stable periodic orbit, though this orbit may have a very
high period, and numerically appear to be “chaotic”. However, the proof of this result is
highly delicate, and it has been conjectured that there does not exist an open and dense
set of smooth C2 maps of the interval with a minimal chaotic attractor.

The situation for hybrid systems is quite different. For the non-smooth equivalent of
the unimodal family, namely the family of tent maps xn+1 := ǫ − a|xn|, it is possible to
spontaneously create chaos, in the form of chaotic attractors with non-vanishing topo-
logical entropy which are robust with respect to perturbation. From this point of view
alone, hybrid systems are important for the study of chaotic dynamics.

The intuitive explanation for this difference between non-hybrid and hybrid systems is
that to generate chaos, we need “stretching” and “folding” in the map. In one dimension,
the existence of a critical point c is needed for the “folding” property, but since f ′(c) = 0,
this orbit is highly attracting, and it is difficult to get enough stretching away from the
critical point to compensate.

2.3 Examples of chaotic hybrid systems

We now present some examples of hybrid systems which have been extensively studied
in the literature.
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Electronic circuits are one of the most well-studied experimental examples of chaotic
systems. Perhaps the most well-studied example is Chua’s circuit [11, 10], which contains
a nonlinear resistor with piecewise-linear characteristic. Another interesting example is
a circuit with a hysteresis element [36, 43]. The books [48, 45] contain an overview on
chaotic dynamics in electronic circuits.

From a practical perspective, the most relevant examples are the boost and buck
dc-dc power converters, as shown in Figure 2.1. The boost power converter is used to
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Figure 2.1: (a) Boost dc-dc power converter. (b) Buck dc-dc power converter

step-up a voltage E, and the buck power converter to step-down a voltage. The equations
of motion for the boost converter are

S Open, I ≥ 0 or V ≤ E :
dV

dt
=

I

C
− V

RC
, L

dI

dt
= E − V ;

S Open, I = 0 and V < E :
dV

dt
= − V

RC
; (1)

S Closed :
dV

dt
= − V

RC
, L

dI

dt
= E.

When the switch is closed, the diode isolated the inductor from the capacitor. The
capacitor supplies energy to the load resistance, while the power supply supplies energy
to the inductor. When the switch is open, the energy in the inductor is transferred
to the capacitor. However, the diode prevents the current through the inductor falling
below zero; if the current reaches zero, then no energy is supplied to the circuit until the
voltage at the capacitor drops below that of the power supply. The system is controlled
by opening and closing the switch in response to the voltage V . Some possible switching
strategies are

Duty cycle: S = Closed for t/T mod 1 ≤ α.

Ramp switching: S = Closed for V ≥ VR, where VR = VL + (VU − VL)(t/T mod 1).

Hysteresis: S → Open if V ≤ VL; S → Closed if V ≥ VU .

Chaotic behaviour in power converters has been extensively discussed in the literature [2,
17, 25].

Another important source of examples of chaotic hybrid systems arise in mechan-
ics, especially the mechanics of impacting systems or systems with stick-slip behaviour
caused by friction. The book [30] contains an overview of the dynamics of non-smooth
mechanical systems.

A simple impact oscillator with chaotic dynamics [7] is given by the equations

ẍ + ζẋ + x = cos(ωt), x < d;

ẋ 7→ −λẋ, x = d.

We let the phase φ be given by φ = t mod T . Note that despite the discontinuity in the
velocity at an impact, the time evolution has continuous dependence on initial conditions
since the velocity reset is the identity for ẋ = 0.
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Figure 2.2: A simple mechanical impact oscillator.

A grazing bifurcation occurs at a parameter value for which a periodic motion of the
body oscillator has an impact with zero relative velocity. The grazing bifurcation was
independently discovered by Peterka [41], Whiston [50, 49] and Nordmark [37]. There
have been many subsequent analyzes, including [9, 19, 28, 52, 16].

One way of studying grazing phenomena is to consider the impact map. If (v, φ) are
the velocity and phase of an impact, then (v′, φ′) are the velocity and phase of the next
impact. The advantage of the impact map are that it is fairly easy to compute, and is
derived naturally from the system. However, the impact map has the disadvantage of
being discontinuous at the preimage of the grazing surface, whereas the time evolution of
the system is continuous. For this reason, it may be preferable to study the stroboscopic
(time T ) map. A normal-form analysis shows that the grazing impact gives rise to a
square-root singularity in the return map, which gives rise to many bifurcation scenarios,
including period-adding and spontaneous transitions to chaos.

3 Basic Hybrid Systems Theory

In this section, we give a brief introduction to hybrid-time systems, including appropri-
ate solution spaces, frameworks for system modelling and definition, and semantics of
solution. Frequently, the appropriate definitions depend on the class of system being
studied, or the properties of interest; here we give definitions which are appropriate for
the study of chaotic dynamics.

3.1 Solution spaces for hybrid-time evolution

The evolution of a hybrid-time system consists of both continuous-time evolution and
discrete transitions. Hence the state x(t) of the system is a discontinuous function of time.
We adopt the convention of taking cadlag (continue à droit, limit à gauche) functions,
as shown in Figure 3.1, and let tn be the time of the nth discrete transition.

t

x

Figure 3.1: A cadlag solution of a hybrid-time system.

The cadlag representation of solutions is sufficient for hybrid-time systems with at
most one discrete-event at any time instance. For hybrid-time systems which admit the
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possibility of two or more events at any time instant, the cadlag representation is not
appropriate as the intermediate points are lost. Instead, we represent solutions on a
hybrid time domain [1, 23, 12], which also records the number of discrete events which
have occurred.

For continuous-time systems, an appropriate topology on solution spaces is the
compact-open topology, with basic open sets

U(ξ,K,ǫ) = {x : R → X | ∀t ∈ K, d(x(t), ξ(t)) < ǫ}. (2)

In other words, solutions are close if they are uniformly close on compact sets.
Taking the uniform distance between solutions leads for trajectories which are close,

but have slightly different event times, being considered far apart. For if

x1(t) =

{
0 if t < t1,

1 if t ≥ t1;
x2(t) =

{
δ if t < t2,

1 + δ if t ≥ t2;
(3)

with t1 < t2 < t1 + ǫ, then the uniform distance between the solutions at time t with
t1 < t < t2 is equal to 1 + δ, so d(x1, x2) = 1. This is usually inappropriate, since the
distance between solutions is large even if the initial conditions are close and there are
no irregularities in the behaviour.

t

x

t̂

x

t

Figure 3.2: (a) Two solutions which are close in the hybrid Skorohod topology despite being
far apart at time t̂. (b) Two solutions which are far apart in the hybrid Skorohod topology
despite the interval on which they are not close being small.

A better topology on solutions is the compact-open Skorohod topology [5], originally
developed for stochastic processes. The Skorohod topology allows small reparameterisa-
tions of the time domain. An equivalent topology is the graph topology, which is simply
the Fell topology on the solution graphs. The basic open sets are:

U(ξ,K,δ,ǫ) = {x : R
+ → X | ∀τ ∈ K, ∃t ∈ (τ − δ, τ + δ) d(x(t), ξ(τ)) < ǫ}. (4)

An equivalent metric description of the topology can also be formulated.
A solution x(t) of a hybrid system is Zeno if infinitely many discrete events occur in

finite time T . This means that limn→∞ tn < ∞, where tn is the time of the nth discrete
transition. Zeno behaviour in a hybrid-time model is often exhibited as chattering in the
real-life system.

3.2 Modelling frameworks for hybrid systems

A commonly used framework for describing hybrid-time systems is the hybrid automaton
framework. Informally, a hybrid automaton is based on an underlying discrete-event
system, with discrete modes connected by discrete events. Within each discrete mode,
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the continuous state evolves under a flow until the guard set corresponding to a discrete
event is reached. A discrete transition the occurs, and the discrete mode and continuous
state are instantaneously updated according to a reset map.

The hybrid automaton framework is usually very convenient for modelling, but con-
tains details which are superfluous for describing the dynamics. A simpler modelling
framework is that of impulse differential inclusions, introduced in [1].

Definition 3.1 An impulse differential inclusion is a tuple H = (X, D, F, G, R)
where

• The state space X is a differential manifold;

• D ⊂ X is the domain or invariant ;

• ẋ ∈ F (x) is a differential inclusion defining the flow or dynamic Φ : X × R ⇉ X ;

• G ⊂ X is the guard set or activation;

• R : X ⇉ X is the reset relation.

Here, we use the notation X ⇉ Y to denote a multiple-valued map from X to Y .
A solution of an impulse differential inclusion is a cadlag function x : R

+ → X with
finitely or infinitely many discontinuities which occur at times t1, t2, . . . such that

1. between event times, we have x(t) ∈ D and x(t) is absolutely continuous with
ẋ(t) ∈ F (x(t)) almost everywhere.

2. at event times times, we have x−(ti) ∈ G and x(ti) ∈ R(x−(ti)).

where x−(ti) := limtրti
x(t).

Notice that if x(t) ∈ D◦∩G, then both continuous evolution and a discrete transition
are possible, hence the evolution is multivalued or indeterminate. As we shall see in
the next section, the solutions of an arbitrary impulse differential inclusion may have
irregularities which need to be tamed, giving rise to different solution concepts.

Henceforth we make the following simplifying assumptions on our hybrid systems
with respect to the general framework of Definition 3.1:

• The guard set G is a subset of the boundary of the domain D.

• The continuous dynamics is given by a locally Lipschitz differential equation ẋ =
f(x).

• The guard set G is partitioned into subsets Gi such that the reset map ri := r|Gi

is single-valued and continuous.

In the hybrid automaton framework, the sets Gi correspond to activation sets for different
discrete events.

Given a hybrid time system, we can define the return map which takes an initial point
to the point We alternatively define the hitting map as the set of points which can be
reached by a discrete transition followed by continuous evolution into a guard set.

3.3 Solution concepts

Many techniques of dynamical systems rely on the solutions having continuous or smooth
dependence on initial conditions. As previously mentioned, the evolution of a hybrid
system may not have continuous dependence on initial conditions. Further, this property
is lost in hybrid systems in the following situations, which are depicted in Figure 3.3
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• A solution of the differential equation ẋ = f(x) crosses ∂D at a point not in G. At
this time, no further evolution is possible and the system is said to be blocking.

• A solution of the differential equation touches ∂D at a point of G but does not
leave D. At this time, both a discrete transition and further continuous evolution
may be allowed.

• A solution of the differential equation reaches a point at which the reset map r is
discontinuous. At this point, continuous dependence on initial conditions is lost.

However, it is often sufficient to have semicontinuous dependence on initial conditions,
giving rise to two different semantics of evolution.

(a) (b)

Figure 3.3: (a) Discontinuity of solutions due to multiply-enabled transitions (corner collision).
(b) Discontinuity of solutions due to tangency with the guard set.

For upper semantics, we assume that at a tangency with the guard set, then both
a discrete transition and continuous evolution are possible. Further, if the continuous
evolution reaches a point in Gi ∩ Gj , then both resets ri and rj are possible. Hence
the system evolution is multivalued or nondeterministic, but under these semantics, the
limit of a sequence of solutions is also a solution, and the solution set varies upper-
semicontinuously with the system parameters [22]. Further, it is possible to effectively
compute over-approximations to the set of points which can be reached from a given
initial set [13, 20].

For lower semantics, we assume that at a tangency with the guard set, at a discon-
tinuity point of the reset map, then no further evolution is possible. Hence solutions
which exist for all time only exist on the set of initial conditions from which further
evolution does not reach a discontinuity point. Under fairly mild conditions on the reset
map, finite-time evolution is defined on an open set of initial conditions, and solutions
vary continuously on this set. This property is useful for topological techniques based on
index theory. Under the same conditions, infinite-time evolution is defined on a Gδ set
of initial conditions, which is dense by the Baire category theorem.

3.4 Dependence on initial conditions in continuous time

We have seen that for hybrid-time systems, discontinuous dependence on initial condi-
tions occurs at tangencies with the guard set and on the boundary of activation sets



178 P. COLLINS

for different discrete events. However, discontinuities in the evolution may also occur in
continuous-time hybrid systems.

Given a differential equation ẋ = f(x) with discontinuous right-hand side, or a dif-
ferential inclusion ẋ ∈ F (x), the Filippov regularisation of F is the function

F̂ (x) =
⋂

ǫ→0

convF (Nǫ(x)). (5)

The Filippov regularisation of F is an upper-semicontinuous multivalued function with
closed, convex values.

Theorem 3.1 If F : R
n → R

n is an upper-semicontinuous multivalued function with
compact, convex values, then for every x0 ∈ R

n there exists an absolutely continuous
function x : [0, T ) → X such that x(0) = x0 and ẋ(t) ∈ F (x(t)) a.e.

Additionally, the set of solutions is a closed set in the compact-open topology, and the
set of points reachable from a given x0 at time t > 0 is closed.

Hence Filippov solution concept gives existence of solutions for arbitrary differential
equations, possibly at the expense of introducing nondeterminism.

Filippov solutions are useful when a discontinuity set of the right-hand side is attract-
ing from both sides, since one obtains sliding orbits. Using an explicit hybrid model, one
would obtain Zeno or chattering behaviour, as the solution would constantly switch from
one mode to the other.

In some circumstances, the set of Filippov solutions may be larger than one would
obtain using a hybrid-time model with explicit mode switching. Consider the generic

(a) (b)

Figure 3.4: (a) Grazing at a sliding mode causes instability. (b) Discontinuity on a sliding
mode.

situations shown in Figure 3.4. In (a), orbits which reach the sliding surface have the
same future behaviour, and leave the sliding surface by the indicated trajectory. In
(b) orbits which reach the sliding surface from below cross it immediately, except for
the indicated orbit. Using the classical Filippov solution concept, the grazing orbit may
slide along the discontinuity surface, even though this is unstable, and leave the switching
hypersurface at any time. The evolution is nondeterministic, and any point and continues
nondeterministically into the shaded region. Using a mode-switching solution concept,
the grazing orbit either switches immediately into the upper region, or continues in the
lower region. Which solution is more appropriate depends on the system being modelled.
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In a system in which the discontinuity of the right-hand side is an approximation to a
fast-varying function, then the Fillipov solution concept is appropriate, since it captures
approximations to the solution of the original system. If the discontinuity of the right-
hand side is due to a state-dependent switching, then a mode-switching solution concept
is more appropriate, since the system is either in one mode or the other.

Whichever solution concept is used in (b), the solution varies discontinuously with ini-
tial condition. In contrast, the solution in (a) varies continuously with initial conditions.
This is because one side of the switching hypersurface is attracting.

Theorem 3.2 Let ẋ = f(x) be a system with discontinuous right-hand side, and let
M be a codimension-1 switching boundary. Suppose that at every point of M , at least
one side is strictly attracting. Then the evolution across M is continuous, and for every
initial point there exists a unique Filippov solution.

A special case of grazing behaviour occurs in impact oscillators.

Definition 3.2 An impact oscillator is a dynamical system such that that is ẋ = f(x)
for g(x) ≥ 0, and x′ = r(x) if g(x) = 0 and f(x) · ∇g(x) < 0. where g : M− → M+ is
such that g(x) → x as x → M0, where M0 = {x ∈ X | g(x) = 0 and f(x) · ∇g(x) = 0},
M− = {x ∈ X | g(x) = 0 and f(x) · ∇g(x) < 0} and M+ = {x ∈ X | g(x) = 0 and f(x) ·
∇g(x) > 0}.

Theorem 3.3 Let (f, g, r) define an impact oscillator. Then under the identification
x ∼ r(x) on M− × M+, the evolution is continuous.

A similar situation to that shown in Figure 3.4 occurs at corner collisions, as shown
in Figure 3.5.

(a) (b)

Figure 3.5: (a) A corner collision causing non-smoothness. (b) A corner collision causing
discontinuity in the evolution.

We may obtain continuous (but non-smooth) evolution, or may obtain discontinuities
in the evolution, the exact nature of which depends on whether we use Filippov seman-
tics or switching semantics. The following result gives conditions under which a corner
collision does not induce discontinuities in the system evolution.

Theorem 3.4 Let ẋ = f(x) be a system with discontinuous right-hand side, let g :
X → R

2 be such that ∇gi(x) 6= 0 if gi(x) = 0. Let X− = {x | g(x) < 0} and X+ =
{g1(x) > 0 ∨ g2(x) > 0}. Let MC = {g(x) = 0} Suppose that f(x) · ∇g1(x) > 0 and
f(x) · ∇g2(x) < 0 for all x ∈ XC. Then evolution is continuous in a neighbourhood of
XC.
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Proof In a neighbourhood of XC , the time spent in X0 is continuous, and tends to
0 as x → XC . Hence Φt(x) = Φ+

t3
◦ Φ−

t2
◦ Φ+

t1
(x) with t1, t2, t3 continuous functions of x

and t2 → 0 as x → XC .

4 Symbolic Dynamics and Invariant Measures

Symbolic dynamics is potentially a powerful tool to study hybrid systems, since these
have a naturally-defined partition of the state space into the discrete modes. Since
symbolic dynamics is most naturally defined for discrete-time systems, in this section,
we assume that we are considering a discrete-time hybrid system, possibly originating as
a time-discretisation of a continuous- or hybrid-time system.

Given a finite collection of sets {Rs ⊂ X : s ∈ S}, which need not be disjoint or cover
X , we say that a sequence (s0, s1, s2, . . .) is an itinerary for an orbit (x0, x1, x2, . . .) of a
discrete-time system f if xk ∈ Rsk

for all k. The closure of the set of allowed itineraries
of a system f is called the shift space of f , denoted Σf . The shift space of f is invariant
under the shift map σ : SN → SN defined by σ(s0, s1, s2, . . .) = (s1, s2, . . .). The main
aim of symbolic dynamics is to compute the set of itineraries and/or the shift space.

If the Rs are mutually disjoint compact sets, then every point has at most one
itinerary, and if f is continuous, then the set of itineraries itself is closed. Further,
if we define Rs0,s1,...,sk

= {x ∈ X | f i(x) ∈ Ri ∀i = 0, . . . , k}, then (s0, s1, s2, . . .) is an
itinerary for f if, and only if, every Rsj ,...,sk

is nonempty. Hence it is possible to com-
pute over-approximations to Σf by starting with the entire space SN and removing all
sequences which contain a forbidden word, that is, a word (sj , . . . , sk) with Rsj ,...,sk

= ∅.
In many applications, the sets Rs are not disjoint, but form a topological partition of

X , which means that X =
⋃

s∈S R◦
s and R◦

s1
∩R◦

s2
= ∅ if s1 6= s2. In this case, we obtain

different shift spaces depending on whether the sets Rs to be open or closed. However,
if the sets Rs are closed, we often obtain too many itineraries, since for example, a fixed
point p ∈ ∂Rs ∩ ∂Rs′ would have any sequence with si ∈ {s, s′} as an itinerary, so it is
usually preferable to consider itineraries with respect to R◦

s and take the closure in SN

to obtain the shift space. If ~x is an orbit, then we say ~s is a limit itinerary for ~x if there
exist orbits ~xi with itineraries ~si such that ~xi → ~x and ~si → ~s

If f has the property that the preimage of an open and dense set is dense, then⋂∞
i=0 f−i(R◦), where R◦ =

⋃{R◦
s | s ∈ S} is a Gδ set, and hence is dense by the Baire

Category Theorem. Therefore, for a dense set of points, the itinerary exists and is unique.

Computing under-approximations to the shift space is usually much more difficult
than computing over-approximations. This is because although we can deduce that sN

is not an itinerary of f if Rs ∩ f−1(Rs) = ∅, we cannot deduce that sN is an itinerary
of f even if Rs,s 6= ∅, since we may have Rs,s,s = ∅. The most important methods
for proving that an itinerary exists are based Lefschetz and Nielsen fixed-point theory,
and the Conley index theory, all of which can be used to prove the existence of periodic
itineraries sn+i = si.

In one dimension, it is easier to compute infinitely many periodic orbits using cov-
ering relations. If I, J are intervals, we say that I f -covers J if f(I) ⊃ J . Using the
intermediate value theorem, we can show that if I0, I1, I2, . . . is a sequence of intervals
and Ik covers Ik+1 for all k, then there exists a point x such that fk(x) ∈ Ik for all k.
Further, if In+k = Ik for all k, then x can be chosen such that fn(x) = x.



NONLINEAR DYNAMICS AND SYSTEMS THEORY, 8(2) (2008) 169–194 181

4.1 Piecewise-continuous systems

Let f : X → X a single-valued, piecewise-continuous function. Let P = {Ps | s ∈ S} be a
locally-finite topological partition of X such that f is continuous when restricted to each
P ◦

s , and that f |P◦

s
extends over each Ps to a continuous function fs. Let ∂P =

⋃{∂P |
P ∈ P} and P◦ =

⋃{P ◦ | P ∈ P} Define f̄ : X ⇉ X by f̄(x) =
⋃{fs(x) | x ∈ Ps}, and

assume that f̄(x) ⊃ f(x) (notice that f̄(x) = f(x) unless f is discontinuous at x. We
may also define f◦ by f◦ := f |⋃{P◦

s |s∈S}.

The function f̄ is a finite-valued upper-semicontinuous over-approximation to f ob-
tained by taking all accumulation points of the graph of f . By upper-semicontinuous, we
mean f̄−1(A) is closed whenever A is closed. Consequently, the set of itineraries of f̄ is
an over-approximation to the set of itineraries of f .

The function f◦ is a single-valued partially-defined lower-semicontinuous under-
approximation to f obtained by discarding all values of f at discontinuity points. By
lower-semicontinuous, we mean that (f◦)

−1
(U) is open whenever U is open. taking all

accumulation points of the graph of f . By upper-semicontinuous, we mean f̄−1(A) is
closed whenever A is closed.

4.2 Computing over-approximations to the shift space

If f is not continuous, computing over-approximations of the set of itineraries is more
complicated. For if f(Rs) ∩ Rs′ = ∅ but f(Rs) ∩ Rs′ 6= ∅, it may be extremely difficult
to show that the word (s, s′) is forbidden. However, if we take the upper-semicontinuous
over-approximation of f , then we can compute itineraries in a similar way to the contin-
uous case, though a little care is needed over the definitions.

We define

Rs0,s1,...,sk
= {x ∈ X | ∃x0, x1, . . . , xk such that x = x0, xi ∈ Pi and xi ∈ f(xi−1)}. (6)

We can compute the sets Rs0,s1,...,sk
by the recurrence relation

Rs0,s1,...,sk
= Rs0

∩ f−1(Rs1,...,sk
). (7)

We can then define a finite-type shift on S by taking disallowed words

{s0, s1, . . . , sk | Rs0,...,sk
= ∅}. (8)

By disallowing successively more words, we can construct a sequence of finite type shifts
converging to Σf .

Theorem 4.1 (s0, s1, . . .) ∈ Σf ⇐⇒ ∀k, Xs0,s1,...,sk
6= ∅.

For many hybrid systems, the state space X is disconnected, with the components
{Xq | q ∈ Q} corresponding to the discrete modes of the system. In this case, by
taking the upper-semicontinuous over-approximation f̄ to f , we can compute over-
approximations to the set of allowed sequences of discrete events. An example is given
in Section 6.

4.3 Computing under-approximations to the shift map

We can compute lower approximations to the shift space by attempting to compute
periodic orbits. We recall the Lefschetz fixed point index, which for each triple (f, X, U)
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Figure 4.1: A piecewise-continuous interval map.

where f : X → X is a continuous map and U ⊂ X is an open set such that fix f∩∂U = ∅,
assigns an index ind(f, X, U) ∈ Z such that if ind(f, X, U) 6= ∅, then f has a fixed point
in U . Further, the index is local, which means that it depends only on the values of f
on U .

If we define P ◦
s0,s1,...,sk−1

analogously to in Section 4.2, then fk is continuous on
P ◦

s0,s1,...,sk−1
and indeed extends to a continuous function fs0,s1,...,sk−1

:= fsk−1
◦· · ·◦fs1

◦
fs0

on Ps0,s1,...,sk−1
. Hence for any open set U in X such that U ⊂ Ps0,s1,...,sk−1

, we can
define the fixed-point index of fs0,s1,...,sk−1

over U . Then if ind(fs0,s1,...,sk−1
, P0, U) 6= ∅,

then f has a periodic orbit with itinerary s0, s1, . . . , sk−1, s0, s1, . . ..

Just as for continuous functions, the methods presented here can only be used to
deduce the existence of finitely many periodic orbits. However, since the functions
fs0,s1,...,sk−1

are continuous on Ps0,s1,...,sk−1
, we can in principal use advanced topological

methods to approximate the dynamics. Again, the one-dimensional case is much easier.
Using the regularisation of f , we can show that if fsi

(Psi
) ⊃ Psi+1

for all i, then there
exists an orbit (x0, x1, x2, . . .) with xi ∈ Psi

for all i.

4.4 Ergodic theory and statistical behaviour

We now try to give a probabilistic description of a hybrid system by finding an invariant
probability measure for its return map. If f : X → X is a single-valued map, a measure µ
on X is invariant under f if µ(f−1(A)) = µ(A) for all measurable sets A. Any continuous
map on a compact metric space has an invariant probability measure.

It is known that for piecewise-expanding maps of the interval, there exists an
absolutely-continuous invariant measure [29]. A major generalization of this result is
that certain piecewise monotone-convex mappings also have an absolutely continuous
invariant measure [4]. In higher dimensions the situation is considerably more compli-
cated, though for a generic class of piecewise-expanding maps, there do exist absolutely-
continuous invariant measures [14, 15].

The following example shows that discontinuous maps of the interval need not have
an invariant probability measure.
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Example 4.1 Let

f(x) =






−1 − x if − 2 ≤ x ≤ −1;

x/2 − 1 if − 1 < x < 0;

x/2 + 1 if 0 ≤ x ≤ 1;

1 − x if 1 < x ≤ 2,

as shown in Figure 4.1. Then every orbit starting in [−2, 2] converges to the sequence
(0+, 1+, 0−,−1−, 0+, . . .) but the sequence (0, 1, 0,−1, 0, . . .) cannot be an orbit of and
single-valued map.

The difficulty in the above example is that the the natural “invariant” measure would
assign nonzero weight to the discontinuity point. In cases where an absolutely-continuous
invariant measure exists, the discontinuity points have measure zero and therefore cause
no difficulties.

To obtain an invariant measure for general piecewise-continuous maps, we can lift the
map to the product of the state space and the symbol space.

Let f be piecewise-continuous, with fs := f |Ps
continuous on each element Ps of a

topological partition P , and such that fs extends continuously over P s. Let Σf be the
shift space of f with respect to the partition elements P ◦

s .
For each itinerary ~s, let X~s be the set of points with itinerary or limit itinerary ~s, and

define X̂ :=
⋃

~s∈Σf
{X~s × ~s} with the inherited product topology. Then X̂ is compact if

X is compact, and f lifts to a continuous function f̂ : X̂ → X̂.
There must therefore always exist an invariant measure µ̂ for f̂ . Further, define

µ(A) := µ̂(π−1(A)), where π(x, ~q) = x. We call µ a shift-invariant measure for f . If
µ̂(∂P) = 0, then µ is an invariant measure for f .

We therefore have the following simple theorem.

Theorem 4.2 If f is piecewise-continuous, then f has a shift-invariant measure.

5 Bifurcation Theory for Non-smooth Maps

In this section we describe the most important border-collision bifurcations for one-
dimensional piecewise-smooth maps. The analysis of these bifurcations is considerably
simpler than the analysis of bifurcations in three-dimensional flows, but provides insight
into the higher-dimensional cases. In particular, the nonsingular border-collision bifur-
cations provide a model for corner-collision bifurcations in continuous- and hybrid-time
systems, and the border-collision bifurcations with a square-root singularity provide a
model for grazing bifurcations. and use these to study corner-collision and grazing bifur-
cations in continuous- and hybrid-time systems. In both cases, we consider the continuous
and discontinuous cases separately.

For more detailed exposition of bifurcations in non-smooth systems, see the book [53].

5.1 Continuous border-collision bifurcations

The border-collision bifurcation can occur in systems with continuous evolution, such as
piecewise-affine maps. Border-collision bifurcations were observed in [26, 44, 31, 39, 38];
here we follow the exposition in [40].
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x x

f (x) f (x)

Figure 5.1: A border collision bifurcation for a non-smooth map.

Let fǫ : R → R be a continuous piecewise smooth map with parameter ǫ whose
derivative is discontinuous at 0, as shown in Figure 5.1. The simplest example of a border-
collision bifurcation occurs when fǫ(0) = 0. Assume further that fǫ is differentiable in ǫ
and c = dfǫ(0)/dǫ > 0 at ǫ = 0. We let a = limxր0 f ′

0(x) and b = − limxց0 f ′
0(x), and

assume 0 < a < 1 < b.
Now for ǫ > 0 small, we have fǫ(0) = cǫ+O(ǫ2) > 0, and f2

ǫ (0) = c(1−b)ǫ−O(ǫ)2 < 0.
Further, if xǫ = ξǫ + O(ǫ2) for ξ ≤ 0, then fǫ(x) = (c + aξ)ǫ + O(ǫ2) > x. Taking
Iǫ = [f2

ǫ (0), fǫ(0)], we see that fǫ(Iǫ) ⊂ Iǫ. Hence for ǫ > 0 small, the dynamics is
contained in an interval of size O(ǫ) about 0. The linearization of fǫ(x) about x = 0 is
therefore a good approximation to fǫ in Iǫ.

It can be rigorously shown that linearising at x = 0 yields a normal form of the
bifurcation as an affine map

Fa,b,ǫ(x) =

{
ǫ + ax if x ≤ 0;

ǫ − bx if x ≥ 0,
with 0 < a < 1 and b > 0. (9)

as shown in Figure 5.2. For simplicity, we henceforth only consider the map (9). linearized

D

ε+ax

ε−bx

Figure 5.2: Near a border collision bifurcation and for a piecewise-affine map.

If ǫ < 0, then xp := ǫ/(1 − a) ≤ 0 is a fixed point, and since Fa,b,ǫ(x) ≤ ǫ for all x, all
orbits converge to xp. If ǫ = 0, then 0 is a fixed point, which is stable if b < 1 and
one-sided unstable if b > 1. If ǫ > 0 and 0 < b < 1 then x0 = ǫ/(1 + b) is a stable fixed
point.
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Note that f(0) = 1 and f(1) = 1 − b < 0, and that if x < 0, then x < f(x) < 1.
Hence all orbits eventually enter the interval [0, 1].

The interesting case is ǫ > 0 and b > 1.
Note that by the coordinate transformation x 7→ x/ǫ, we can scale ǫ to equal 1;

we define Fa,b := Fa,b,ǫ. Taking c = 0, the critical point, we see that Fa,b(0) = 1,
F 2

a,b(0) = 1 − b < 0, and F 3
a,b(0) = 1 + a − ab. Let I0 = [1 − b, 0] and I1 = [0, 1].

Clearly Fa,b(I1) = I0 ∪ I1. Then if 1 < b < 1 + 1/a, we have Fa,b(1 − b) = 1 + a − ab >
1 + a − (1 + a) = 0, so f(I0) ⊂ I1. Then for all x ∈ [1 − b, 1], we have (f2)′(x) is either
−ab or b2, so if b > 1/a, then |(f2)′(x)| > 1.

We have therefore shown that

1. Fa,b([1 − b, 1]) ⊂ [1 − b, 1], and

2. |(F 2
a,b)

′(x)| > 1 for all x ∈ [1 − b, 1].

3. [1 − b, 1] =
⋂∞

n=0 Fn
a,b(U) for all bounded U ⊃ [1 − b, 1].

Hence [1 − b, 1] is a minimal chaotic attractor for Fa,b; in particular, Fa,b has no stable
periodic orbits and strictly positive topological entropy.

Since this situation occurs for any ǫ > 0 regardless of the value of ǫ, we have a
bifurcation to a robust chaotic attractor. Note that the entropy of the attractor is
bounded away from zero, but the size of the attractor is ǫb.

Following [40] we see that the map Fa,b has positive entropy and may have a chaotic
attractor. Similar windows exist in which the system has a chaotic attractor with k
pieces, separated by periodic orbits.

Note that for smooth interval maps, the entropy varies continuously with the param-
eters. Here, the entropy jumps discontinuously at the border-collision bifurcation. By
considering the change in a and b, we can rigorously prove the existence of a chaotic
attractor with high entropy in a generic two-parameter family of maps. Since fǫ is
unimodal, the symbolic dynamics is determined by the kneading theory [33].

5.2 Singular border-collision bifurcation

In an impact oscillator, grazing the impact set causes a square root singularity in the
evolution. If this occurs on a periodic orbit, we have a grazing bifurcation. A normal
form for the grazing bifurcation is given by

f(x) =

{
ǫ + ax if x ≤ 0;

ǫ − b
√

x if x ≥ 0,
(10)

as shown in Figure 5.3. Note that unlike the affine border collision, we cannot scale away
the bifurcation parameter ǫ without affecting the form of the square root term:

F (y) =

{
1 + ay if y ≤ 0;

1 − (b/
√

ǫ)
√

y if y ≥ 0,
(11)

where y = x/ǫ. We therefore prefer to work with the original form (10).
We again look for conditions under which there exists a chaotic attractor. It is easy

to see that the interval [−b
√

ǫ + ǫ, ǫ] is globally attracting. There is a single fixed point
p = (1 + 2ǫ −

√
1 + 4ǫ)/2ǫ, so p ∼ ǫ2 for small ǫ. We also have have f ′(ǫ) = −1/2

√
ǫ.
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ε+ax

ε−√
x

Figure 5.3: A border collision bifurcation for a map with a square-root singularity.

Now, if −√
ǫ < x < 0, then fn(x) is first greater than 0 for n ∼ log(c−x), so if we let

n(x) be the minimum n such that Fn(x)(x) > 0, then (fn(x))′(x) ≥ 1/(c + x) for some
constant c depending only on a. Hence for ǫ sufficiently small, there must be a chaotic
attractor of f for x ∈ [−√

ǫ+ǫ, ǫ]. This is a one-piece attractor if 0 < 1−a+a/
√

ǫ < q ∼ ǫ,
which is impossible for small ǫ. Indeed, as ǫ → 0, the critical point spends increasingly
long in [ǫ−√

ǫ, 0], and the kneading theory shows that the topological entropy approaches
log 2.

5.3 Discontinuous border-collision bifurcation

We now consider a discontinuous border-collision bifurcation of a stable fixed-point.

f(x) =

{
ax + ǫ if x ≤ 0;

bx − c if x ≥ 0,
(12)

as shown in Figure 5.4.
Assume a < 1, and aNb > 1 for some least integer N ≥ 0. Assume further that ǫ <

1/b. Then f(0−) = ǫ, f(ǫ) = bǫ−1 < 0, and f(bǫ−1) > bǫ−1. If f i(x) < 0 for 0 ≤ i < n,
then a closed form for fn(x) is fn(x) = anx+ǫ(1−an)/(1−a). Since x ≥ bǫ−1, we have
fn(x) ≥ anbǫ−an+ǫ(1−an)/(1−a), so fn(x) > 0 ⇐⇒ ǫ(anb(1−a)+1−an) > an(1−a).

bx−1

ax+ ε

Figure 5.4: A border collision bifurcation for a discontinuous affine map.
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We again look for conditions under which there exists a chaotic attractor. It is easy to
see that the interval [bǫ−1, ǫ] is globally attracting. However, since expansion only occurs
on the interval [0, ǫ], and this interval maps to [−1, bǫ − 1], for small ǫ, the contraction
for x < 0 outweighs the expansion for x > 0. Hence, the the bifurcation, the fixed point
first jumps to a periodic orbit, and this periodic orbit may then split up into a chaotic
attractor as ǫ increases. Hence spontaneous chaos does not occur at this bifurcation.

5.4 Discontinuous singular border-collision bifurcation

We now consider a discontinuous border-collision bifurcation of a stable fixed-point with
a square-root singularity.

f(x) =

{
ax + ǫ if x ≤ 0;

b
√

x − c if x ≥ 0,
(13)

as shown in Figure 5.5.

ax+ ε

b
√

x−1

Figure 5.5: A border collision bifurcation for a map with a discontinuity.

Let d = 0, the discontinuity point, and suppose 0 < a, ǫ < 1 Then f(0−) = ǫ,
f(ǫ) =

√
ǫ − 1 < 0, and f ′(x) > 1/2

√
ǫ for x > 0. Similarly to the case studied in

Section 5.3, a point x < 0 becomes positive if

fn(x) = anx + ǫ(1 − an)/(1 − a) (14)

which takes at most n = log(1 − x(1 − a)/ǫ)/ log(1/a) steps. Since x > −1, we find
n ∼ − log ǫ for fixed a. Hence the derivative of the return map is (an)/2

√
ǫ ∼ √

ǫ for
small ǫ, and so the singularity in the derivative is not sufficient to compensate for the
discontinuity, and the bifurcation causes high-period periodic orbits which may later
break-up to give a chaotic attractor.

6 Case Studies

6.1 Switched queueing/arrival systems

The following switched arrival system was first considered in [8], and later in the book [32].
Tanks Ti, i = 1, 2, 3 containing volume xi of fluid with constant outflows ρ1, ρ2 and

ρ3 can be filled by a single pipe with inflow ρin = ρout := ρ1 + ρ2 + ρ3. There are three
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ρ

ρ

Figure 6.1: A switched arrival system.

modes qi corresponding to filling tank Ti. Since the total volume is preserved, we have
x1 + x2 + x3 = xtot.

A simple switching law is to switch to filling tank Ti whenever xi = 0. The dynamics
of the system is shown in Figure 6.2. If the system begins in mode qi with xi = 0, then
the system switches to mode qj over mode qk if tank Tj empties first, which occurs if
xj/ρj < xk/ρk. Hence the return map f is defined on the sets Ii := {(x, qi) | xi = 0}.
Under the return map we have f(I1) ⊃ I2∪I3, f(I2) ⊃ I3∪I1 and f(I3) ⊃ I1∪I2. Hence
any sequence of mode switches is possible.

x1

x2

x1

x2

x1

x2

q3q1 q2

Figure 6.2: A simple switching law with Zeno behaviour.

Since the system on average spends time ρi/ρ filling tank i, an invariant measure for
the flow is given by 2ρiλ/ρ, where λ is Lesbesgue measure. An invariant measure for the
return map f is given by a measure which is uniform on each Ii, with

µ(Ii) =
1

2

ρi(ρ − ρi)

ρ1ρ2 + ρ2ρ3 + ρ3ρ1
.

Using this, we can deduce that the average switching time is

Tav =
1

4

ρ1 + ρ2 + ρ3

ρ1ρ2 + ρ2ρ3 + ρ3ρ1
=

1

2

ρ

ρ2 − ρ2
1 + ρ2

2 + ρ2
3

.
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If all inflows are equal, this yields 3/4ρ, and if one inflow is twice the other two, this yields
4/5ρ. Compare this with a regular cyclic switching strategy with an average switching
time of 1/3ρ.

A major problem with this switching law is that if two tanks are both close to being
empty, then we switch rapidly between them, and if two tanks become empty at exactly
the same time, then the system deadlocks due to Zeno behaviour. We therefore seek a
switching law with a lower average number of switches.

x1

x2

x1

x2

x1

x2

q3q1 q2

Figure 6.3: A switching law without Zeno behaviour.

A modified switching law is to switch preferentially from tank T1 to tank T2, from T2

to T3, and from T3 to T1. We accomplish this by switching from mode qi to mode qi+1 if
xi+1 drops below a non-zero threshold ξi+1. This succeeds in avoiding Zeno behaviour,
since if x1 and x2 are both low in mode q3, the system switches to mode q1 before x1

reaches 0, and then immediately to mode q2 if x2 is small. The system then remains
away from mode q3 until both x1 and x2 have recovered.

To obtain a return map f in the form of a self map on the sets Ii defined above, we
take the state after switching to mode qi and flow backwards until xi = 0. The resulting
map is shown in Figure 6.4. Notice that we do not now have f(I1) ⊃ I3, as it is not
possible to switch from mode q1 to mode q2 with a value of x1 greater than xtot − ξ2. As
a result, the symbolic dynamics will not include all transition sequences, but sequences
with a large number of repetitions of two modes will be cut (see Figure 6.3).

x3

x2

I2

x1

x2

I3

I1 ξ2 I1

Figure 6.4: The return map from interval I1 in mode q1 for threshold-controlled preferred
switching compared with switching when empty (light).

6.2 Control systems with periodic forcing

We finally consider a simple example of a control system with periodic forcing, where
the control objective is to keep some value within a certain bound.
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ẋ = k(a + b sinωt − x) + u, (15)

where u is some input. Taking period T = 2π/ω and φ = t mod T , we obtain an
autonomous system with two degrees of freedom.

We assume x is some quantity which we need to control below some safe threshold
xmax by means of an safety system described by the input u, which can take values
uoff = 0 and uon < 0. Without any control i.e. u = 0, there is a unique globally
asymptotically stable periodic orbit,

x = a +
b

1 + ω2/k2
sin(ωt − α) where α = tan−1(ω/k). (16)

We consider a number of switching strategies, which illustrate the various bifurcation
scenarios mentioned in Section 5.

First, consider the switching law:

s ; on if x ≥ xmax and φ < φL; s ; off if φ ≥ φU . (17)

The control is turned on if x becomes too high, but the phase is less than a critical value;
the rationale being that if the phase is above the critical value, then the maximum value
of x will only be slightly higher than xmax. The system is turned off at a fixed time
φU . As shown in Figure 6.5, this leads to a discontinuous corner collision if ẋ > 0 and
(x, φ) = (xmax, φL), and a discontinuous grazing if ẋ = 0 and φ < φL when x = xmax.
The bifurcations indicated in Section 5 occur if the corner collision or grazing occur on
the periodic orbit.

x

t

x

t

OFF

ON

φL φU

xmax

Figure 6.5: (a,b) Discontinuous corner collision and discontinuous grazing in a switched control
system. (c) Continuous grazing. (d) Hysteresis switching.

An alternative control law is given by

s ; on if x ≥ xmax; s ; off if x < a + b sinωt. (18)

The control is turned on when x ≥ xmax, and is turned off when the external forcing
a + b sin ωt is sufficiently low that x would decrease without the input u. This leads to
a continuous grazing bifurcation scenario, as depicted in Figure 6.5(c), since we always
have ẋ = 0 immediately after the control is turned off.

Hysteresis switching is a commonly used technique to control a variable within bounds
and avoid overly fast switching. The control law is given by

s ; on if x ≥ xmax; s ; off if x < xoff. (19)
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Assuming −uon is sufficiently large, the system turns before the end of forcing period at
time T . This gives rise to a discontinuous square-root singularity.

Another possible control law is a switching law with fixed hold,

s ; on if x ≥ xmax; s ; off after time τ. (20)

This always gives rise to a stable periodic orbit, since the switching does not introduce
stretching between nearby orbits.

7 Conclusions

In this article, we have considered chaotic dynamics in low-dimensional hybrid systems.
We have seen that the key feature of such systems is discontinuous or non-differentiable
spacial dependence, which allows for the formation of robust chaotic attractors. We
have seen that discontinuous hybrid systems can be regularized to give shift-invariant
measures, and that it is possible to effectively compute approximations to the symbolic
dynamics. We have also considered bifurcations in non-smooth systems arising from
corner collisions and grazing, and shown that these features can spontaneously generate
chaos. Finally, we have illustrated these features using examples from hybrid control
systems.
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