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1 Introduction

Control and synchronization of chaotic dynamical systems have received a great deal
of interest among scientists from various fields [5, 13]. These two ideas were first pro-
posed in 1990 [22, 24]. The idea of controlling chaos consists on stabilizing one of the
unstable periodic orbits within the strange attractor of the chaotic dynamics, and the
task was fulfilled by perturbing an accessible parameter around its nominal value. The
idea of synchronizing chaotic systems refers to a process wherein two or many chaotic
systems starting from different initial conditions adjust a given property of their motion
to a common behaviour. Since then, many possible applications of chaos control and
synchronization methods have been discussed by computer simulation and realized in
laboratory condition [3, 8, 12, 14, 17, 19, 20, 21, 26, 28].

The Ott–Grebogi–Yorke method, known as OGY method, is a feedback control
method, which uses the chaos in system to stabilize an unstable periodic orbit. The
main idea of the method is to adjust the parameter perturbations for relatively small
time in order to stabilize the desired unstable periodic orbit (UPO) and obtain an at-
tracting time-periodic motion. This control technique is practical from an experimental
standpoint because it requires no analytical model of the system. It just requires deter-
mining the fixed point and the stable and unstable directions. However, the success of
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the original OGY theory is limited by the fact that, it applies only to systems where the
manifolds are constructed directly by using the Jacobian eigenvalues and eigenvectors.
In most of dynamical systems, the dynamics is not confined to a lower-dimensional at-
tractor. Chaos control in higher dimensional systems is technically difficult because it
may be impossible to construct the stable and unstable directions.

The aim of this letter is to apply both control and synchronization to some chaotic
dynamical systems. This is done by extending the OGY chaos control method. As a
potential application of the proposed control strategy, we used it to study the synchro-
nization of some high order chaotic systems.

The principles of control and synchronization of autonomous chaotic systems are given
in Section 2. In Section 3 we apply control and synchronization to Lorenz dynamical
system and numerical simulations are used to show this process. In Section 4 synchro-
nization and control are applied to Chen chaotic system. Section 5 is devoted to the
control and synchronization of Chua system. We conclude in Section 6.

2 Control and Synchronization Principles

Consider the two nonlinear systems

Ẋ1 = f(X1, p), (1)

Ẋ2 = g(X1, X2), (2)

where f : RN ×R → RN , g : RN ×RN → RN are continuous, X1, X2 ∈ RN are the state
variables and p ∈ R is a parameter control.

The system given by equation (1) will be called the drive system and the system given
by equation (2) will be called the response system.

2.1 Chaos control principle

The chaos control algorithm that we introduce in the following uses, in a large sense,
the Poincaré section properties. Since chaos is the superposition of a number of periodic
motions, it is represented in the Poincaré section by a number of fixed points, called
the system chaotic attractor. The chaos control algorithm developed here relies on the
knowledge of the chaotic attractor and its response to small perturbations of the system.
It is based on the analysis of the Poincaré section to determine how the system approaches
the desired orbit or fixed point. The analysis is carried out in three steps:

1. Among the unstable periodic orbits (UPO) of the attractor, choose the one that
represents the desired performances.

2. Determine the influence of control parameter on the chosen UPO. For this, we vary
the control parameter around the value for which we want to control the system
and each time to generate the associated Poincaré section.

3. Determine the variation that should be applied to the control parameter in order
to force the system to rejoin the desired UPO or fixed point.

After information about this Poincaré section has been gathered, the system is kept
to remain on the desired orbit by perturbing the appropriate parameter. Similar to the
original OGY control method, we wish to make only small controlling perturbations to
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the system. We do not envision creating new orbits with different properties from the
already existing orbits.

The basic idea of our control algorithm is as follows. Given a periodic orbit repre-
sented by a fixed points at the Poincaré section, we wait for the system trajectory to
come close to the control region (which will be defined later) of the desired UPO to bring
the system trajectory near the control region. When the system state is in the control
region, we will try to use a small parametric perturbation to control the unstable direc-
tions of the chaotic state variables x. In other words, we attempt to bring the deviation
δx = x − xf to lie on the linearized stable direction. where xf represents the unstable
fixed point obtained by the Poincaré section.

The control law (3) below is directly derived from the Poincaré section and will be
applied to the drive system as follows:

δp =
∂p

∂xf

(x − xf ), (3)

where ∂p
∂xf

determines the influence of small parametric variation on fixed points varia-

tion.
This perturbation control law acts instantaneously on the system. However, in real

cases, the future system state of a chaotic system depends on the current parametric
variation as well as the previous parametric variations, so the system must take sometime
to react to the correction. It seems more sensitive, from a practical point of view,
to introduce some delay between the computation of the control law and the effective
modification of the control parameter. This is realized by adding to the computed law a
term depending on the previous value of the control parameter weighted with a parameter
γ, which is determined by trial and error.

Thus, equation (3) becomes:

δpnew =
∂p

∂xf

(x − xf ) + γδpold. (4)

However, in terms of the quality of control performance, once the control is activated,
the controlled system must be maintained at its new trajectory along its evolution. This
stability criterion is assured by a good choice of γ for each chaotic system to be controlled.

We expect that, under forward applications of the control law (4), points in the local
neighbourhood of the fixed point will eventually fall into the local neighbourhood and
then be controlled.

2.2 Chaos synchronization principle

Let X1(t, X1(0)) and X2(t, X2(0)) be solutions to the drive system (1) and to the response
system (2) respectively.

In this framework, complete synchronization is defined as the identity between the
trajectories of the response system X2 and of one replica X ′

2
of it Ẋ ′

2
= g(X1, X

′

2
) for

the same chaotic driving system X1.
If the solutions X1(t, X1(0)) and X2(t, X2(0)) satisfy

lim
t→∞

‖X1(t, X1(0)) − X2(t, X2(0))‖ = 0. (5)

Then, the drive system and the response system are said synchronized. In other words,
the response system forgets its initial conditions, though evolving on a chaotic attractor.
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In [24, 25], authors established that this kind of synchronization can be achieved and
provide that all the Lyapunov exponents of the response system under the action of the
driver (the conditional Lyapunov exponents) are negative. This implies that the response
system is asymptotically stable.

3 Control and Synchronization of Lorenz System

The Lorenz system is a differential system with a chaotic behaviour for some values of
parameters, described by:







ẋ = σ(y − x),
ẏ = (r − z)x − y,
ż = xy − bz.

(6)

The parameters setting for the Lorenz system to display chaos are: σ = 10, b = 8/3 and
r = 28.

(a) (b)

Figure 3.1: Lorenz chaotic attractor. (a) Time response. (b) Phase plane.

The drive system is given by:







ẋ1 = σ(y1 − x1),
ẏ1 = ((r + δr) − z1)x1 − y1,
ż1 = x1y1 − bz1.

(7)

Here r is used as the control parameter with δr is the perturbing parameter control.
To apply the chaos control algorithm to the drive system, we have to determine the

Poincaré section. This section is described by one dimensional map and corresponds to
the set of points where attractor is at its maximum. That is z = max(z1).

Figure 3.2 shows the plots given the maxima of z(n + 1) against those of z(n). The
fixed points are then obtained at the intersection of these plots with the straight line
z(n + 1) = z(n).

The value of the third state variable of the fixed point is determined as zf = 39.82.
To determine parametric influence of the small parametric variation on fixed-points

variation, we generate a Poincaré section at r = 28.2 as shown in Figure 3.3.
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Figure 3.2: Successive maxima map of state variable z1.

Figure 3.3: Superposition of two successive maxima map of state variable z1.



156 A. BOUKABOU

In this case, we find z′f = 40.09.

The drive system is under chaos control law (3) of the form:

δrnew =
∂r

∂zf

(z1 − zf) + γδrold

=
28.2 − 28

40.09− 39.82
(z1 − zf ) + γδrold. (8)

Our control method needs to determine the stabilizer parameter γ in the feedback control.
This parameter must be small, so it is chosen from the interval [0.01, 0.5].

The drive system is under control of the form:

δrnew = 0.74(z1 − 39.82) + 0.2δrold. (9)

This control law is activated only when the state variables x and z are located in the
neighbourhood of the appropriates fixed points xf and zf respectively. The condition is
defined by:

(x1 − xf )2 + (z1 − zf)2 < 1 (10)

with xf = 14.89.

The result of the control of the drive system is depicted in Figure 3.4.

(a) (b)

Figure 3.4: Control of the Lorenz chaotic driver. (a) Time response. (b) Phase plane.

To stabilize the chaos on its real unstable periodic orbit, one can see that control gen-
erate a pulse train, each pulse is activated automatically so that, at a sufficient amplitude,
determined by the Poincaré section at each travelling from the fixed point, eventually the
system orbit converges to the desired unstable periodic orbit. We also tested our chaos
control strategy with different initial conditions and it was found to be robust.

Once controlled drive system is obtained, we construct a response system which ex-
hibits a generalized kind of synchronization motion with the driver based on the Pecora
and Caroll concept, by making a simple nonlinear transformation among the response
variable x2.
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Figure 3.5: Synchronization of the Lorenz drive-response systems.

Figure 3.6: Time response of the error variables.
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Thus, the response system will be given by:







ẋ2 = σ(y1 − x2),
ẏ2 = (r − z2)x2 − y2,
ż2 = x2y2 − bz2.

(11)

Notice that (11) consists of a copy of (7) without control (δr = 0) and in the synchro-
nization Pecora and Carroll concept, y1 is the drive signal.

Introducing the error variables e1 = x1 −x2, e2 = y1 − y2 and e3 = z1− z2, we obtain
the error dynamics







ė1 = −σe1,
ė2 = re1 − e2 − z1x1 + z2x2 + δrx1,
ė3 = −be3 + x1y1 − x2y2.

(12)

From (12), we should choose the synchronization subsystem such that an equilibrium
state can be achieved. To find the equilibrium state, we set the three equations equals
to zero, that is:







ė1 = −σe1 = 0,
ė2 = −e2 + re1 − z1x1 + z2x2 + δrx1 = 0,
ė3 = −be3 + x1y1 − x2y2 = 0,

⇒







−σe1 = 0,
−e2 + re1 − z1x1 + z2x2 + x1z2 − x1z2 + δrx1 = 0,
−be3 + x1y1 + x1y2 − x1y2 − x2y2 = 0,

⇒







−σe1 = 0,
−e2 + re1 − x1e3 − z2e1 + δrx1 = 0,
−be3 − x1e2 − y2e1 = 0,

⇒







−σe1 = 0,
−e2 + (r − z2)e1 + (δr − e3)x1 = 0,
−be3 − x1e2 − y2e1 = 0.

(13)

Because the parameters σ, b, r and the state variables x1, y2, z2 are different from zero and
δr → 0, it follows that the error states (e1, e2, e3) asymptotically converges to (0, 0, 0). In
other words, the response system (11) asymptotically synchronizes with the drive system
(7) no matter how they are initialized.

The initial values of the drive system are (x1(0), y1(0), z1(0)) = (−5, 0, 5) and the
initial values of the response system are (x2(0), y2(0), z2(0)) = (3, 6, 15).

Synchronization law is applied for t > 15 and the drive-response systems are in a
perfect synchronized state. The results of the simulation are shown in Figures 3.5 and
3.6.

4 Control and Synchronization of Chen System

Recently, Chen found another chaotic attractor, also in a simple three-dimensional au-
tonomous system, which nevertheless is not topologically equivalent to the Lorenz’s [6]:







ẋ = a(y − x),
ẏ = (c − a − z)x + cy,
ż = xy − bz.

(14)
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System (14) has chaotic behaviour at the parameters values c = 35, a = 28 and b = 3. This
system has the same complexity as the Lorenz equation – they are both three-dimensional
autonomous with only two quadratic terms. The chaotic behaviour of the system is shown
in Figure 4.1.

(a) (b)

Figure 4.1: Chen chaotic attractor. (a) Time response. (b) Phase plane.

For Chen chaotic attractor, the drive system is defined as follows:







ẋ1 = a(y1 − x1),
ẏ1 = ((c + δc) − a − z1)x1 + cy1,
ż1 = x1y1 − bz1.

(15)

Here c is used as the control parameter.
Figure 4.2 shows the Poincaré section realized on the third state variable for different

values of parameter c.
At c = 28, the value of the third state variable of the fixed point is determined as

zf = 27.29 and at c = 28.2, z′f = 27.75.
The control law is defined by

δcnew =
∂c

∂zf

(z1 − zf) + γδcold

=
28.2 − 28

27.75− 27.29
(z1 − zf ) + γδcold. (16)

Then we obtain
δcnew = 0.43(z1 − 27.29) + 0.1δcold. (17)

This control law is activated only when:

(x1 − xf )2 + (z1 − zf)2 < 1 (18)

with xf = 14.89.
The result of the control is shown in Figure 4.3. Figure 4.3(b) depicts the orbit of

the controlled Chen’s chaotic system in the phase space. From Figure 3(a), one can see
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Figure 4.2: Return map of state variable z1.

(a) (b)

Figure 4.3: Control of the Chen chaotic driver. (a) Time response. (b) Phase plane.
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Figure 4.4: Synchronization of the Chen drive-response systems.

Figure 4.5: Time response of the error variables.
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that, to stabilize chaos, the method works by applying instantaneous periodic kicks to
the system variables and eventually the system orbits converge to the desired UPO.

We construct a Pecora-Caroll drive–response configuration with a drive signal y1

introduced in the y2 dynamics of the response system given by:






ẋ2 = a(y2 − x2),
ẏ2 = (c − a − z2)x2 + cy1,
ż2 = x2y2 − bz2.

(19)

The dynamic of the error variables will be given by:






ė1 = −a(e1 − e2),
ė2 = (c − a)e1 − z1x1 + z2x2 + δcx1,
ė3 = −be3 + x1y1 − x2y2.

(20)

Demanding that all of the equations of system (20) are zero, we get the following:






ė1 = −a(e1 − e2) = 0,
ė2 = (c − a)e1 − z1x1 + z2x2 + δcx1 = 0,
ė3 = −be3 + x1y1 − x2y2 = 0,

⇒







e1 = e2,
(c − a − z2)e1 + (δc − e3)x1 = 0,
−be3 − x1e2 − y2e1 = 0,

⇒







e1 = 0,
e2 = 0,
e3 = 0.

(21)

The initial values of the drive system are (x1(0), y1(0), z1(0)) = (−3, 2, 20) and the initial
values of the response system are (x2(0), y2(0), z2(0)) = (5,−2, 10). In this case, synchro-
nization was applied before applying the control law and simulation results are given in
Figures 4.4 and 4.5.

5 Control and Synchronization of Chua System

The Chua circuit is a nonlinear circuit with chaotic behaviour for some values of param-
eters. The normalized equations representing the circuit are:







ẋ = α(y − x − h(x)),
ẏ = x − y + z,
ż = −βy,

(22)

where

h(x) = m1x +
m0 − m1

2
(|x + 1| − |x − 1|) (23)

represents the nonlinear element of the circuit.
When α = 10, β = 14.87, m0 = −1.27, m1 = −0.68, Chua attractor is chaotic and has

a plot as shown in Figure 5.1.
The drive system is given by:







ẋ1 = (α + δα)(y1 − x1 − h(x1)),
ẏ1 = x1 − y1 + z1,
ż1 = −βy1.

(24)
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(a) (b)

Figure 5.1: Chua’s circuit. (a) Time response. (b) Phase plane.

Figure 5.2: Return map of state variable x1.
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In Chua’s circuit, we chose the Poincaré section by plotting the current maxima x(n+1)
against the previous maxima x(n).

The first state of the fixed point is determined by xf = 2.70. At α = 10.2, in this
case, x′

f = 3.31.
The deduced control law is

δαnew =
∂α

∂xf

(x1 − xf ) + γδαold

=
10.2 − 10

3.31 − 2.70
(xn − xf ) + γδαold. (25)

Then we obtain
δαnew = 0.32(xn − xf ) + 0.1δαold. (26)

The activation region of the control is defined by:

(xn − xf )2 + (yn − yf )2 < 1, (27)

where yf = 0.27. In the Chua system, the response system is chosen as follows:







ẋ2 = α(y2 − x2 − h(x2)),
ẏ2 = x1 − y2 + z2,
ż2 = −βy2.

(28)

Consequently, the error variables will be defined by:







ė1 = α(e1 − e2 − h(x1) + h(x2)) + δα(y1 − x1 − h(x1)),
ė2 = −e2 + e3,
ė3 = −βe2.

(29)

To find the equilibrium state of (29), we rewrite as follows:







α(e1 − e2 − h(x1) + h(x2)) + δα(y1 − x1 − h(x1)) = 0,
−e2 + e3 = 0,
−βe2 = 0,

⇒







e1 = 0,
e2 = 0,
e3 = 0.

(30)

Starting from the initial values (x1(0), y1(0), z1(0)) = (−0.1,−0.1,−0.1) of the drive
system and from (x2(0), y2(0), z2(0)) = (0.1, 0.1, 0.1) of the response system, controlled
drive system (24), synchronization of the response system (28) with the controlled drive
system and time response of the error variables (29) are shown together in Figure 5.3(a),
(b) and (c) respectively.

6 Conclusion

This letter demonstrates that control and synchronization can be achieved in autonomous
chaotic systems by different ways. The response system is synchronized with the drive
system even if synchronization is activated before, after or simultaneously with the control
law.
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(a)

(b) (c)

Figure 5.3: Control and synchronization of the Chua system. (a) Time response of the drive
and response systems. (b) Phase plane of the controlled trajectory. (c) Time response of the
error variables.
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