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Abstract: Autonomous close flight and docking of a chaser spacecraft to a
target are still challenging problems. In this paper the Hill–Clohessy–Wiltshire
equations are taken as dynamic model and inverted, after a variable change,
in order to be used by a control algorithm to drive the chaser spacecraft along
a specified path. The path parameterization is performed by using cubic B-
splines and by having the curvilinear abscissa as parameter. The proposed
optimization algorithm uses dynamic programming to find quasi-optimal con-
trols. The number of optimization parameters is drastically reduced by working
only on the acceleration component along the vehicle trajectory. The shape of
the path can be chosen according to the specific maneuver requirements. In
particular, the optimization algorithm is split into a trajectory planner which
generates the best tangential acceleration sequence through backward explo-
ration of a tree of possible policies, and a control generator which inverts the
parameterized dynamics in order to get the thrusters commands sequence. The
optimization algorithm has been coded in Simulink as a library of embedded
functions and has been experimentally proved to run in real time.
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Nomenclature

~a, a = Generic vector and its magnitude
B = Universal transformation matrix for cubic B-splines
ds = Path section length
d2 (.)

dt2
= Time derivatives with respect to the inertial frame

δ (.)

δs
= Partial derivative with respect to s

~γ = Cubic B-splines parameter
J = Cost functional
K = Matrix containing the vector positions of the cubic B-splines control points
LV LH = Local vertical local horizontal coordinate system
µ = Earth gravitational constant
NL = Number of levels in dynamic programming tree
NC = Number of values for control discretization
n̂ = Path normal unit vector
~ωLV LH = Angular velocity in LVLH
~r = Position vector
r = Dyadic of position vector ~r

~rc = Chaser position vector in the inertial frame
~rt = Target position vector in the inertial frame
~rrel = Chaser-target relative position vector
~r∗ = [rx, ry, 0]T

ρ = Local curvature of path
s = Curvilinear abscissa
t = Time
τ̂ = Path tangent unit vector
~u = Acceleration control vector
x, y, z = Components of ~rrel in LVLH
1 = Unitarian dyadic
(.)

0
, (.)f = Value at initial and final time

˙(.), (̈.) = Time derivatives in LVLH
(.)x (.)y (.)z = Components along x, y, z axis of LVLH

1 Introduction

Many researches have been performed on modeling [1]–[8] and optimizing [9] the maneu-
vers for Spacecraft Rendezvous and Docking, but real-time implementation of the optimal
control is still a difficult task. In [10] and [11] the maneuvers for passing from an initially
stable relative motion to a final stable state are optimized. In these works there is no
possibility of considering generic initial conditions for the relative position and velocity
of the chaser vehicle with respect to the target. In [9] the optimization is performed in
two stages: the first part of the trajectory is optimized without any restriction on the
chaser vehicle position, the last phase of docking is along a fixed direction.

All of the above references prove the effectiveness of their respective approaches
by using numerical simulations. None of them perform hardware experimentation on
real-time computing. Furthermore, the current docking missions, such as the Space
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Shuttle-International Space Station (ISS) mating, and the planned Automated Transfer
Vehicle-ISS supply service, do not include any closed-loop optimization for the rendezvous
trajectories.

The objective of our research is threefold: first, we want to be able to impose a certain
path in order to guarantee a priori the safety of the maneuver, second, we want to track
the set path with minimum propellant consumption, third, we want our solution to be
suitable for real time implementation.

The proposed strategy is a direct optimization method similar to the one used in [12]
and [13] for the control of robotic manipulators and in [14] for the control of aircraft. The
basic idea is to parameterize the trajectory in a way that allows for independent choice
of path and velocity profile. In order to obtain such feature, we use here the curvilinear
abscissa as in [12] and [13].

Dynamic Programming [15] is used as the optimization method. This approach has
been proved to be suitable for real-time implementation, especially when a sub-optimal
solution is searched through a step-by-step optimization of the trajectory [16, 17].

Our contribution is focused on real-time autonomous control during the very last
phases of satellites docking procedure.

The paper is organized as follows: Section 2 formally states the problem. Subsection
2.1 describes the dynamic model and the inversion of the dynamics. Section 3 presents
the path parameterization via cubic B-splines. Section 4 is dedicated to the developed
optimization algorithm. Section 5 reports some significant results obtained via numerical
simulations. Section 6 illustrates the real-time test which has been performed to prove
the capability of running in real-time. Finally, Section 7 concludes the paper.

2 Problem Statement

The aim of the present work is to quickly design an optimal control sequence which drives
the chaser vehicle towards the target on a specified path ~rrel = ~r (s). Without loss of
generality, the boundary conditions are assumed to be ~rrel(t0) = ~r0, ~rrel(tf ) = ~0.

The following minimum-propellant cost function is considered for the optimal control
problem:

J =

∫ tf

t0

|~u|2dt. (1)

2.1 Dynamic model and dynamics inversion

We use the well known Hill-Clohessy-Wiltshire equations in order to model the system
dynamics. We consider the x axis of the LVLH coordinate system centered on the target
directed along the radial line, the y axis directed along the orbital velocity, and the z

axis consequently directed to complete the right frame.
The HCW equations can be written in vector form as:

~̈rrel + 2~ωLV LH × ~̇rrel − ω2

LV LH~r∗rel =
µ

r5
t

(

3rt − r2

t 1
)

· ~rrel + ~u. (2)

As stated above, the proposed optimization approach is based on the search for a
suboptimal policy to drive the chaser vehicle along a specified path. The specified path
is parameterized in terms of the curvilinear abscissa as follows [13]:

~rrel = ~r (s) = [x (s) , y (s) , z (s)]. (3)
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Differentiation with respect to time and substitution of this relation into (2) gives:

δ2~r

δs2
ṡ2 +

δ~r

δs
s̈ + 2~ωLV LH ×

δ~r

δs
ṡ − ω2

LV LH~r∗ =
µ

r5
t

(

3rt − r2

t 1
)

· ~r + ~u. (4)

The tangential acceleration profile s̈ to be tracked by the chaser spacecraft is considered
as the free parameter for the optimization. Once the tangential acceleration profile is
obtained, the actual controls (accelerations along the three axis) are then determined by
inverting the dynamics equation. In particular, by starting from (4), it results:

~u = −
µ

r5
t

(

3rt − r2

t 1
)

· ~r +
δ2~r

δs2
ṡ2 +

δ~r

δs
s̈ + 2~ωLV LH ×

δ~r

δs
ṡ − ω2

LV LH~r∗. (5)

Since we work in terms of acceleration along the path, it is not practical to impose
directly constraints on the controls by using (5).

3 Geometric Representation of the Path

We use cubic B-spline curves to represent the trajectory ~rrel = ~r (s). B-splines have
the advantage of narrowly propagating the local changes [18]. Given n control points,
a first and second order continuous curve which fits them is univocally determined by a
composition of n − 1 B-splines. As the positions of the control points change, the curve
shape changes consequently. Each spline is defined by four control points and has the
parametric representation:

~r (~γ) = ~γBK, (6)

where ~r (~γ) is the position vector of a generic point of the spline, ~γ is the parameter
vector, defined as:

~γ =
[

γ3 γ2 γ 1
]

, 0 ≤ γ ≤ 1, (7)

K contains the vector positions of the control points:

K =
[

~r0 ~r1 ~r2 ~r3

]T

(8)

and B is the universal transformation matrix, obtained by imposing continuity, which
contains the same numerical values for every B-spline ([18]):

B =
1

6









−1 3 −3 1
3 6 3 0
−3 0 3 0
1 4 1 0









. (9)

Accordingly, the partial derivatives of the path with respect to the arc length, needed in
Eq. (4) and Eq. (5), are given by:

δ~r

δs
=

δ~r
δγ

∣

∣

∣

δ~r
δγ

∣

∣

∣

,
δ2~r

δs2
=

δ2~r
δγ2

∣

∣

∣

δ~r
δγ

∣

∣

∣

2
−

δ~r

δγ

δ~r
δγ

· δ2~r
δγ2

∣

∣

∣

δ~r
δγ

∣

∣

∣

4
, (10)

where
δ~r

δγ
=

[

3γ2 2γ 1 0
]

BK,
δ2r̃

δγ2
=

[

6γ 2 0 0
]

BK. (11)
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Since the B splines, by definition, do not pass through the end points, two additional
artificial control points are added at the extremes of the curve.

In order to convert the value of the global arc length along the path s to the corre-
sponding value of the parameter along the local spline γ it is sufficient to numerically
find the zero of the following function:

h (γ) = s −



s0current spline
+

γ
∫

0

ds

dγ
dγ



 , (12)

where

ds

dγ
=

√

(

dx (γ)

dγ

)2

+

(

dy (γ)

dγ

)2

+

(

dz (γ)

dγ

)2

. (13)

4 Optimization Approach by Dynamic Programming

Dynamic programming [15] is very useful in problems where one needs to take subse-
quent decisions. The word “dynamic” states that the decisions are sequentially taken.
Sequenced problems can be solved according to the Bellman’s principle of optimality:

Definition 4.1 An optimal strategy has the property that, no matter the initial
state and decision, the future decision’s set has to constitute an optimal strategy with
respect to the state reached according to the decisions taken until that moment.

Dynamic programming takes the decisions one by one. At every step the optimal
policy for the future is found, independently of the past decisions. The cost function is
divided in the sum of elementary costs, one for each segment of the trajectory. In the
present work we adopt a similar approach to the one of [16].

The curvilinear acceleration on the specified curve is taken as the parameter for the
optimization. By limiting to one the number of variables the algorithm has to work with,
the issue of “curse of dimensionality” [16] is greatly mitigated. Once the optimal s̈ profile
is determined, the controls are calculated according to (5). On a certain segment of the
entire path, where the acceleration s̈ is kept constant, we know that the section length
ds needs a time interval t to be run:

t = −
ṡ0

s̈
±

√

(

ṡ0

s̈

)2

+
2ds

s̈
(

s (t) = s0 + ṡ0t + s̈
t2

2
ds = ṡ0t + s̈

t2

2
→ t2 +

2ṡ0

s̈
t −

2ds

s̈
= 0

)

.

(14)

The complete path is divided into segments of length ds, the controls and time requested
to run each segment are calculated and finally the integral 1 is evaluated. In particular,
the algorithm tests different possibilities, in terms of possible sequence of levels of s̈,
by using the tree approach described below. Feasibility of the sequences is tested by
imposing the satisfaction of the following constraints:

{

s(tf ) = sf = trajectory length,

ṡ(tf ) = 0 = final velocity.
(15)
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The tree of possible policies is a graph structure, with no cycles, in which every node
generates different branches, every one connected to a subsequent node, called son-node.
A son can generate other sons. Every node, but the root, has only one entering branch
which belongs to the parental node. The root does not have any father. Starting from
the initial condition, the tree of possible trajectories is built in an incremental way,
by exploring the reachable states in order to find the optimal path. Every step adds
new branches (so new nodes) to the tree, only if they are acceptable: in particular, only
positive velocities are admitted. Therefore, nodes with zero velocity and zero acceleration
are not taken into account. Moreover, the cases when equation (14) does not have real
solutions are discarded, since this implies that the current section cannot be run with
the current value of s̈. A cost value is associated to every node. The cost is calculated
through a trapezoidal integration formula of the control magnitude. The algorithm goes
on till the stopping condition is reached. At this point it is necessary to run the tree
backwards in order to find the optimal policy, i.e. the one which brings to the final node
at minimum cost.

The algorithm outline follows (see also Figure 4.1):

1. Start from the initial condition s0, ṡ0 (ROOT).

2. Apply one of the NC possible value of s̈ until the trajectory segment ds is completed.

3. Repeat step 2 for each possible value of acceleration: one generation is then ob-
tained.

4. Calculate the cost function for each node of the present generation.

5. Starting from every son, repeat step 2 and 3 and obtain the second generation.

6. Iterate step 2, 3 and 4 until the final desired condition sf , ṡf is reached.

7. Recognize the minimum cost node of the last generation. In Figure 4.1 the numbers
at the top report, as an example, the total cost associated with every node.

8. Individuate the optimal policy, by starting from the optimal son of the last gener-
ation and run the tree backward.

From the software point of view each son-node is represented by a 7 elements array:

1. Value of the curvilinear abscissa s (this value is the same for every node of the
same generation).

2. Value of the velocity along the path ṡ.

3. Value of the acceleration along the path s̈ (“control”).

4. Time to reach the node from the previous one.

5. Cost associated to the last branch.

6. Total time (from beginning of the path) to run until that point.

7. Index (identifier of the father).



NONLINEAR DYNAMICS AND SYSTEMS THEORY, 8(2) (2008) 137–150 143

Figure 4.1: Tree of possible policies.

By keeping memory of the father for every node it is possible to quickly run the tree
backwards once the final condition is reached in order to find the best s̈ profile. The
number of generations NL (that is, the number of segments in which the path is divided)
and the number NC of admissible acceleration values s̈ can be selected by the user.

The required memory and computation time increase very quickly with the number
of levels, as the maximum number of nodes to be evaluated is NNL

C .
The tree exploration is the most time consuming portion of the algorithm. A prun-

ing approach is implemented in order to increase the computation efficiency. The new
nodes of a generation are analyzed while building the tree and pruned if the remaining
length of trajectory to be run is not sufficient to brake down with the minimum available
acceleration in order to reach the final point with zero velocity.

5 Simulation Results

Two sample simulation cases are here presented in order to show the main features of
the proposed approach.

5.1 Simulation test case 1

The first simulation shows the behavior of the proposed algorithm in the computation of
a quasi-optimal docking maneuver as a function of the number of path segments (number
of generations or levels, of the dynamic programming algorithm). The parameters of the
maneuver are reported in Table 5.1. A cubic path (y = (y0

/

x3

0
)x) is taken as reference.

The same constrained path has been correctly obtained for any number of levels, as
the nature of the algorithm implies. This result is reported in Figure 5.1.
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Parameter Units Value
Height above the Earth surface km 480

Maximum (minimum) tangential acceleration s̈max (−s̈min)
m
s2 5 · 10−4

Initial velocity ṡ0
m
s

0.2
Initial position (x0, y0, z0) m (300, 400, 0)

Number of path segments NL - 5
Number of possible tangential acceleration values NC - 3

Table 5.1: Numerical values for cubic manoeuvre.

Figure 5.1: Cubic path tracked by the chaser.

Figure 5.2 shows the fuel consumption and time required for the manoeuvre, Figure
5.3 shows the CPU time (on a Pentium IV machine). The independent variable is the
number of levels.

It is apparent in Figure 5.2 that increasing the number of levels means a larger tree
to build and explore, i.e. higher CPU resources. Figure 5.3 is worth some comment
on the goal of the proposed technique. The proposed approach gives a sub-optimal
solution. In particular, by dividing the trajectory in a finite number of segments, and
imposing a limited set of values for the command acceleration, we are clearly introducing
considerable discretization into the problem. Therefore the solution is heavily dependent
on the number of levels. For the presented simulation case and for several other tests
we have run, it results that the algorithm gives the best result for a number of levels
between 4 and 6, as indicated in Figure 5.2 (a). The CPU time is also reasonable within
that range. Figure 5.4 reports the controls profile for three different numbers of levels.

5.2 Simulation test case 2

The second simulation (see Table 5.2) considers the final straight line maneuver (along
the y direction) bringing a chaser spacecraft to dock with its target, as previously studied
in [9]. We show here how the tree strategy is able to generate similar results to [9], but in
a quicker way. Furthermore, initial and final conditions are exactly satisfied. The initial
conditions here adopted are the intermediate conditions (breakpoint between two stages)
reported in [9]:
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Figure 5.2: a) Fuel vs. levels; b) Time for manoeuvre vs. levels.

Figure 5.3: CPU time vs. n. of levels.
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Figure 5.4: Controls vs. Time, increasing NL

Figure 5.5: Straight line trajectory.
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Figure 5.6: a) Controls vs. time; b) Acceleration vs. time.

Figure 5.7: Velocity vs. time.
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Parameter Units Value
Height above the Earth surface km 480

Maximum (minimum) acceleration s̈max (−s̈min)
m
s2 5 · 10−4

Initial velocity ṡ0
m
s

0.2
Initial position (x0, y0, z0) m (0, 300, 0)

Number of levels NL - 5
Number of possible tangential acceleration values NC - 3

Table 5.2: Numerical values for straight line maneuver.

Figure 5.5 shows that the trajectory is perfectly tracked. The controls, acceleration
and velocity profile are reported on Figure 5.6 and Figure 5.7. The time required to

complete the docking is 1800 s, with a total cost of 1.566 · 10-4
m2

s3
, while in [9] the

corresponding values are: 1885 s, 1.538 ·10−4
m2

s3
. Discrepancies in cost and time are due

to the fact that in [9] the final boundary conditions, are not exactly matched, whereas
we are here maneuvering between two specified and accurately achieved positions and
velocities.

6 Real-Time Validation

For the above reported simulations, the optimization algorithm was coded in Matlab-
Simulink.

Furthermore, validation of the capability of our proposed approach to run in real
time has been experimentally obtained. In particular, a desktop computer, running the
Mathworks-XPC target operative system, has been used as target hardware by down-
loading the compiled version of the optimization software.

Figure 6.1 shows the Simulink model. It is composed by two main Embedded Func-
tions. The Planner generates a sequence of nodes following the near-optimal s̈ profile.
This sequence is feed forwarded to the dynamic inversion function (called “control gener-
ation”). On a Pentium II 800 Mhz machine, the algorithm run in real time at a sample
frequency of 5 Hz.

7 Conclusion

The present work uses a direct approach for real time sub-optimal control of spacecraft
rendezvous and docking along a constrained path. The Hill–Clohessy–Wiltshire equa-
tions are used as basis for a dynamic inversion computation and the path is parameterized
through cubic B-splines having the curvilinear abscissa as parameter. Dynamic program-
ming operating on the curvilinear acceleration is proposed as optimization method in or-
der to find the fuel optimal policy to drive the chaser spacecraft to the target spacecraft.
The reliability of the algorithm has been assessed for different number of levels in the
dynamic programming tree, and the results have been compared to an example reported
in recent literature. Real time implementation of the optimization algorithm has been
tested on a Pentium II machine with a sample time up to 0.2 seconds.
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Figure 6.1: Simulink model for real time testing.

Further developments include modifying the path by moving the splines control points
in order to optimize it, and adding control bounds. Further experiments are going to be
performed on an hardware-in-the-loop laboratory test-bed [19].
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