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Abstract: This paper presents the adaptive control of chaotic systems, which
are nonlinear in parameters (NLP). A method based on Lagrangian of an ob-
jective functional is used to identify the parameters of the system. Also this
method is improved to result in better rate of convergence of the estimated
parameters. Estimation results are used to calculate the Lyapunov exponents
adaptively. Finally, the Lyapunov exponents placement method is used to as-
sign the desired Lyapunov exponents of the closed loop system. Simulation
results are provided to show the effectiveness of the results.
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1 Introduction

Chaotic systems have been widely studied by many scientists and engineers from differ-
ent viewpoints. The recent applications of chaotic systems have raised new questions
regarding chaos control [1, 2, 3]. From a practical control system design point of view,
an important issue in the analysis and control of chaotic systems can be the uncertainty
associated with the system parameters. Equally important is the time varying nature of
many system parameters. In [4, 5] an adaptive strategy is proposed for the on-line iden-
tification and control of chaotic systems. However, the method is restricted to chaotic
systems that are linear in parameters. In this paper, the adaptive control of nonlinear
in parameter chaotic systems is considered.

Parameter estimation methods for nonlinear chaotic systems, such as NARX (non-
linear autoregressive with exogenous inputs) [6], NARMAX (nonlinear autoregressive
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moving average with exogenous inputs) [7, 8] are employed for linear in parameter (LP)
systems. For NLP systems, nonlinear programming methods can be used [9, 10]. In this
paper, a proper local objective functional is defined and minimized based on the La-
grangian of an objective functional using the speed gradient (SG) method. The method
results in fast convergence and estimated parameters are unbiased [11].

To achieve faster convergence rate of the estimated parameters, the SG method is
improved. In the new improved SG (ISG) method, descent gradient method [9, 10] is
used to optimize step length matrix of SG method in each iteration, to minimize another
local objective functional.

Lyapunov exponents are commonly used for chaos identification in nonlinear dynam-
ical systems. Lyapunov exponents show the average rate of growing or shrinking of a
small volume of initial conditions. These exponents provide a quantitative measure for
the sensitivity of the nonlinear system to the change of initial conditions. Also Lyapunov
exponents demonstrate the chaotic behavior of the system [12, 13].

There are several methods for numerical calculation of Lyapunov exponents [14, 15].
Throughout this paper, we use a Jacobian approach with QR factorization to extract the
Lyapunov exponents from long term product of the local Jacobian matrices.

Lyapunov exponents placement has been used for chaotization and anti-chaotization
of a system [16]. It also could be used for the adaptive control of unknown or time
varying LP chaotic systems [4]. This paper proposes an adaptive methodology for NLP
chaotic systems.

The paper is organized as follows. Section 1 provides the introduction. In Section 2,
the SG method for identification of NLP systems is described. In Section 3, we use
descent gradient method to formulate the improved SG method. In Section 4, Lyapunov
exponents of the system are determined. In Section 5, Lyapunov exponents placement
strategy is described and is used to calculate the control input for the system. Finally,
simulation results for the chaotic Duffing and Lorenz systems are provided in Section 6.

2 Adaptive Parameter Estimation

Consider the system described by:
{rfc(t) = f(@(t),p(1)), 0

x(0) : is given,

where ¢t > 0 is time, z € R" is state vector of the plant, p € R¥ is the vector of unknown
parameters and f: R™ x R¥ — R is a vector function of state variables and parameters.
Let the system estimator be described as follows:

{g*c(t) = f(&(t),p(t)), (2)

Z(0) : is given,
where & € R" is the estimated state vector, # € RF is the vector of estimated parameters

and f : R" x R¥ — R is a vector function of state variables and parameters. We make
the assumption that the structure of the system is clear

F@(0),0(8) = f(@(),p(t) = [fl(i'(t)vﬁ(t))v s fn(@(8),P(1)] 3)
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where f; R"x R* — R, i=1,2,...,n. The objective can be formulated as

Tim [5(1) — p(t)] = 0. ()

Define a positive scalar functional Ji(z,#). We choose Ji(z,Z) in a way that when

Ji1(z, Z) is minimized, (4) is achieved. The total rate of change is given by the substantial
derivatives of the Jy(x, %)

dJi  0J A R
& ot + f(&(t),p(t))VJ1, (5)
o 0 o\ . . . .
where V = | —, —, ..., — is the gradient operator in the estimated state
071 0o 0%y
space. Now, let
op dJy
ot~ Vg (©)

where G > 0 is the step length matrix. By defining,

I, @) = (81— 21)” + o S —2a)? = Y e (7)
i=1
where e; = ; — x; are the state errors, we have
Al dei | o
= S wies (B + 000 ) ®)
i=1
As d d dz
T = g = JEW.p0) — Fa(),p(0) (9)
equation (8) reduces to
d)y < YPUR
S = > wies (20, l0) — Sa(0),p(0). (10)
i=1
Using equations (6) and (10) and because of V; {fi(z(t),p(t))}, we get
% = —sza% = —2GV,3 {Z wieifi(:%(t),]ﬁ(t))} . (11)
i=1

This provides the updating law for estimated parameters in the identified system.

3 Improvement of the SG Method

In this part we adaptively select step length matrix, G, in a way to minimize a new local
objective functional J,. For this purpose we use descent gradient method
dgij . dJQ
= — s
dt dgij

(12)
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where G = |g;5|, 4,5 =1,2,...,k and a > 0. Consider the following objective functional
candidate
N V1, . Un , . n Vi
Jo(z, %) = ?1(1171 —z)? 4+ 7(‘% —an)? = 5(61‘)27 (13)

where e; = Z; — x; are the state errors, we will have

Ay _ 01,03 0

= . 14
dg;; 0% Op dgs; (14)
By using (13) we have
o.J.
8—352 = [v1e1, v2€a, ..., Vnenlnx1- (15)
g; we use (2)

vi_ow_aoi_ofos of "

op Opdi diop 0z 0p  0p

where & = [£1, 22, ...,%y] and it is assumed that
0 di d 0%

and the sufficient conditions for the validity of this equality are given in [23], page 279.
ot 0% Z
ot’ 9p op ot
piece-wise continuous. Hence, equation (17) is valid. By using (3), (16) we get

We have that Z(t) = f(¢,p) is continuous.

D D
() o e
dt \0p /.. dt 83'371 ‘ 83'371
opp  Opk
55 dfr 0 _+§ﬁl 55 df1 0 afl' (18)
— \ 9%: Op opr =\ 0% Opy 3I3k
ié aﬁa@ aﬂ ﬁi 8ﬂﬂhz aﬂ
| = \ 0%i Op 8]51 =\ 0% Opk Bﬁk_

where 2 € R™ is the estimated state vector, p(t) € R* is the vector of estimated param-
eters.

agij

For calculation of we use (6)

op A o
E GVPE - _Gfp(x(t)vp(ﬂaguat)v (19)
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where fﬁ(i'(t)uﬁ(t)vgijvt) = f;%(‘%(t)uﬁ(t)vgijvt)v SRR fg(‘%(t)vﬁ(t)vgijvt) ' and we have

0 _ 0 A 4B O 0% 0% ). (20)
dg9ij  Ogij dt  dtdgi; — Op Ogij  Ogij’ e
Using (20) gives
O9p 9pr Op1
9911 9giz "7 Ogrk
d ( 9p d |22 :
_ < - ) — | 9911
dt \0Gij ) pyp2  dt :
Opk 9Pk
9911 T OJkk
rk 1 1 k 3 1 k £1 £1 7]
ofs ops of; Ofp 0p; of; afs op af}
1; ((’)ﬁi 8?]11) + agfl 1; (Bﬁi 8?]12) + afhpz T 1; (Bﬁi OGkk + ag:k (21)
k F2 2
of; op; ofz
_ Z; <aﬁri’ 3?]11) + afhpl
i ofy op; ofy - ofy ap; ofy
_Z; 0p; 9g11 + 9g11 T Z; ODi OJkk + Agkk |

By using (15), (18), (21) in (14), using (12), and by using appreciate numerical
methods we can adaptively calculate G in each iteration. With the calculated G and
(6) we can estimate system parameters. For assigning the initial value of step length
matrix, G(0), we could use genetic algorithms. In (12) a > 0 is arbitrary. But we can
use a suitable 1-dimensional nonlinear programming method [17, 20], in each iteration,
to calculate a.

4 Adaptive Calculation of Lyapunov Exponents

A Jacobian approach is used to calculate the Lyapunov exponents. Let the discrete time
system be described by

where z(k) € R"™ is the state vector and f(.) is a continuously differentiable smooth
function. Linearization of the system gives

ap=Jk—Da(k—1), Jk-1)= (ﬁ> € R, (23)

ox

k—1
Lyapunov exponents are defined as follows [14].

Definition 4.1 Let Y* = Jy_1Jx_5...Jo, then the following symmetric positive
definite matrix
1
A= lim ((Yk)T~Yk)(2") (24)

t—o0o

exists and the logarithms of its eigenvalues are called Lyapunov exponents.
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To compute the Lyapunov exponents a QR factorization is used to decompose the
Jocobian matrix as J = QR, where @ is an orthonormal matrix and R is upper triangular
with positive diagonal elements. Then, using (23) Lyapunov exponents become

k
. 1 i i . 1 7
Ai = thi& E ln(Rk . RO) = thigo E ;:1 ln(Rk)a (25)

where R} is the i-th diagonal element of R in k-th step. We can rewrite equation (24)
into following recursive form
tn—l i

1 .
A= =N+ o Ln(RY). (26)

5 Controller Design Methodology

In this section, an adaptive controller based on Lyapunov exponents placement is pro-
posed. Calculating the Lyapunov exponents of the open loop system (), if there exists
at least one positive Lyapunov exponent, then the system is chaotic. For suppressing
chaotic behavior of system, we choose some suitable negative Lyapunov exponents for
closed loop system (Ay). Then the control input (uy) is applied to the open loop system,
equation (22)

z(k) = fx(k —1)) + ug, (27)
x(0) is given,
where wy, is calculated from an adaptive state feedback law [16]
U = Byxy. (28)

Let Aoy and A be the Jacobians of the open loop and closed loop systems, respectively.
Then
Jea = Joi + By. (29)

To assign the Lyapunov exponents of the closed loop system in the desired locations,
feedback matrix By, is calculated from following equation

Bo— —Ju(k)+ |...... o . (30)

The Lyapunov exponent of the closed loop system will be the desired ones and since
they are negative the system will suppress chaos.

If the control action is large and we want a smaller control input for suppressing chaos,
we can apply control action when we are in a neighborhood of the desired (equilibrium)
point.

6 Simulation Results

In this section, simulation results are used to show the main points of the paper. The
first example is the NLP chaotic Duffing system. The second example is the Lorenz
chaotic system which is LP and the proposed method, with fixed step length matrix, is
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compared with the previous Lyapunov exponent identification strategy based on recursive
least squares estimation. The third example compares proposed method with fixed step
length matrix and adaptive step length matrix to show the effectiveness of the improved
method.

Example 6.1 State equations of the forced Duffing’s oscillator are

{‘7“ — (31)

By = —p121 — pox§ — pxo + qcos(wt),

where p1, p2, p, ¢ and w are the parameters of the NLP system. And x, o are the states
of the system. This equation arises in models of the forced vibration of buckled beams
and in electrical circuits [17, 18, 19, 20]. For p = 0.168, p; = —0.5, p2 = 0.5, ¢ = 0.21,
w = 1 system is chaotic. Figure 6.1 is the Lyapunov exponents of this uncontrolled
system. One of the exponents is positive then the system is chaotic.

Open Loop Lyapunov Exponents

0.4

a2t _
-0.3
-0.4 -
.05 L L L 1 L L L 1 L
] 20 40 =[] B0 100 1200 140 180 180 200
Time(Sec.)

Figure 6.1: Lyapunov exponents of the open loop Duffing system.

Selected sampling period is 0.004 second and the desired closed loop Lyapunov ex-
ponents are A\l, = —0.5, A3 = —0.6. Figure 6.2 shows the estimated parameters that
converge to the real values. Figure 6.3 shows the states of the system where in the 30-th
second, the control signal is applied to the system. Figure 6.3 shows the chaotic behavior
of the open loop system. Chaotic System has aperiodic noise-like behavior.

Figure 6.4 shows the closed loop Lyapunov exponents that converge to the desired
values. Prior to 30-th second Lyapunov exponents are for the open loop system and after
that they converge to the desired values (—0.5,—0.6). It is important to know that the
control input implemented when system is chaotic. Figure 6.5 shows the control input.
Figure 6.6 shows the states of the closed loop system that becomes a stable limit cycle.

Example 6.2 In this example, the proposed method is applied to the Lorenz system
and the results are compared with the RLS method. State space equations of the system
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Figure 6.2: Estimated parameters.
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Figure 6.3: States of the Duffing system.

:t:U(y_m)a
Yy=rx—y— zx,

Z =vyx — bz,

(32)

where parameters are r = 27, 0 = 10 and b = 8/3. This equation arises in models of
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Close Loop Lyapunoy Exponents

0.1
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Figure 6.4: Closed loop system Lyapunov exponents.

Control Input
0.4 T T T T T T T T T

_D. 1 1 1 1 1 1 1 1 1
0 20 40 60 g0 100 120 140 160 180 200

Time(Sec.)
Figure 6.5: Control input.

Orginal system States
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Figure 6.6: States of closed loop Duffing system.
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the turbulent motion in convection systems [21, 22, 12]. The equilibrium points of this
system are (£+/b(r — 1), £1/b(r — 1), r — 1) and (0,0,0). Figure 6.7 shows estimated
parameters with RLS method. And Figure 6.8 shows the estimated parameters with the
proposed method.

- O
25 --—BH

20 B

!
] 5 10 15 20 25 30 35 40 45 50
Time(Sec.)

Figure 6.7: Estimated parameters of the system by RLS method.

Estimated Parameters

-20

I
g 10 15 20 25 30 35 40 45 a0
Time(Sec.)

Figure 6.8: Estimated parameters of system by the proposed method.

It is obvious that the estimation performance of the proposed method is superior to
the RLS based approach in faster convergence and unbiased estimates.

Example 6.3 In this example we want to show the effectiveness of the improved SG
method. We have used the following G(0), which is resulted from genetic algorithms.
Figure 6.9 is resulted from the simulation of equation (6).
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Estimated Parameters
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Figure 6.9: Estimated parameters of system by the proposed method.

Estimated Parameters

I I I I I I
&} 10 12 14 16 18 20
Time(Sec.)

Figure 6.10: Estimated parameters of system by the Improved SG method.
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Figure 6.10 is resulted from simulation of (6) and (12). Comparison of the figures
intuitively clears that the Improved SG Method has faster convergence rate.

48.5 0 5.5711
0 434.25 4815
1.2119 0.7902 48.1986

7 Conclusions

This paper provides an estimation method for on-line identification of the Lyapunov
exponents of nonlinear in parameters chaotic systems. This method is based on the
minimization of two objective functionals. For faster convergence rate of the parame-
ters, the new improved SG (ISG) method is developed. Also, the parameter estimation
and Lyapunov exponent placement methods are combined for adaptive control of NLP
chaotic systems. Simulation results are provided for adaptive control of Duffing’s Os-
cillator. Also, a comparison with the RLS method in LP systems is given to show the
superior performance of the proposed method. Finally, we showed the effectiveness of
the improved SG Method in identification of the parameters of the Lorenz system.
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