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1 Introduction

In a variety of control systems design problems it is often required not only to stabilize
given programmed motions but to ensure also boundedness for every solution of system
investigated. Of great practical interest is the case when all the solutions enter a neigh-
borhood of the origin and remain within it thereafter. Generally the time period needed
for the solution to enter this neighborhood depends on the initial values of the solution.
In this case solutions are called ultimately bounded [14].

The main approach for finding the conditions of boundedness of solutions for nonlinear
systems is the Lyapunov direct method. Using this method, numerous results on various
types of boundedness are obtained [6, 11, 12, 14, 16]. However, there are still no general
constructive approaches for the construction of Lyapunov’s functions.

In the present paper, a certain class of differential equations systems is considered.
An approach for the construction of Lyapunov’s functions for these systems is suggested.
The conditions for the existence of Lyapunov’s functions in the given form, satisfying
the assumptions of the Yoshizawa ultimate boundedness theorem [14] are investigated.
The results obtained are used for the analysis of the asymptotic behavior of solutions of
essentially nonlinear complex systems.
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2 Statement of the Problem

Consider the system of differential equations

ẋs = asfs(xs) +

ks∑

j=1

bsjf
α

(j)
s1

1 (x1) . . . f
α(j)

sn
n (xn), s = 1, . . . , n. (2.1)

Here as and bsj are constant coefficients, α
(j)
si are nonnegative rationals with odd denom-

inators, functions fs(xs) are defined and continuous for xs ∈ (−∞,+∞) and possess the
following properties: xsfs(xs) > 0 for xs 6= 0, fs(xs) → −∞ as xs → −∞, fs(xs) → +∞
as xs → +∞.

System (2.1) is a generalization of this one

ẋs =

n∑

j=1

bsjfj(xj), s = 1, . . . , n,

which is widely used in automatic control systems design [3, 7, 9].
In this paper we shall assume that coefficients as and bsj in (2.1) satisfy the conditions

as < 0, bsj > 0, j = 1, . . . , ks, s = 1, . . . , n. (2.2)

For instance, inequalities (2.2) are valid if (2.1) is obtained as comparison system for a
complex system [4, 13].

Consider, at first, the case where

n∑

i=1

α
(j)
si > 0, j = 1, . . . , ks, s = 1, . . . , n. (2.3)

Then system (2.1) has the zero solution.

Definition 2.1 [2] System (2.1) is called absolutely stable if the zero solution of this
system is asymptotically stable for any admissible functions f1(x1), . . . , fn(xn).

The criterion of absolute stability for (2.1) was established in [2].

Definition 2.2 [2] System (2.1) satisfies the Martynyuk–Obolenskij condition [8]
(MO-condition) if for any δ > 0 there exists solution θ̃1, . . . , θ̃n of the system

asθs +

ks∑

j=1

bsjθ
α

(j)
s1

1 . . . θ
α(j)

sn
n < 0, s = 1, . . . , n, (2.4)

such that 0 < θ̃s < δ, s = 1, . . . , n.

It was proved [2] that (2.1) is absolutely stable if and only if it satisfies the MO-
condition.

The proof of necessity of this criterion is based on the fact, that for the special choice
of admissible functions f1(x1), . . . , fn(xn) system (2.1) is Wazewskij’s one, and for it
the general criterion of asymptotic stability of autonomous Wazewskij’s systems [8] is
applicable.
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To prove the sufficiency, it was suggested [2] to construct Lyapunov’s function for
(2.1) in the form

V (x) =

n∑

s=1

λs

∫ xs

0

fµs

s (τ)dτ, (2.5)

where x = (x1, . . . , xn)∗, λs > 0 are constant coefficients, µs > 0 are rationals with
odd numerators and denominators. It was shown that (2.1) is absolutely stable if and
only if for this system there exists Lyapunov’s function in the form (2.5), satisfying the
assumptions of the Lyapunov asymptotic stability theorem.

Definition 2.3 We call (2.1) absolutely ultimately bounded if solutions of this sys-
tem are ultimately bounded for any admissible functions f1(x1), . . . , fn(xn).

The main goal of the present paper is to obtain the criterion of absolute ultimate
boundedness for (2.1). To solve this problem, let us determine the conditions under which
for system investigated there exists Lyapunov’s function in the form (2.5), satisfying the
assumptions of the Yoshizawa ultimate boundedness theorem [14].

Remark 2.1 In what follows, we do not assume the fulfilment of inequalities (2.3).

3 Conditions of Ultimate Boundedness for Wazewskij’s Systems

Let us note, just as in [2], that in the case where f1(x1), . . . , fn(xn) are nondecreasing
functions, system (2.1) is Wazewskij’s one. Therefore, we shall investigate, first, condi-
tions of ultimate boundedness of solutions for autonomous Wazewskij’s systems of the
general form.

Consider the system
ẋ = g(x), (3.1)

where x = (x1, . . . , xn)∗ and vector function g(x) is defined and continuous for all x ∈ Rn.
Assume that system (3.1) possesses the following properties:
(a) for any t0 ∈ (−∞,+∞) and any x0 ∈ Rn the initial value problem for (3.1) has

unique solution x(t, x0, t0);
(b) system (2.1) is Wazewskij’s one;
(c) there exists a number D > 0 such that in the region ‖x‖ ≥ D there is no equilib-

rium position of (3.1).
Here ‖ · ‖ is the Euclidean norm of the vector.

Remark 3.1 Condition (c) is a necessary one for the solutions of (3.1) to be ulti-
mately bounded.

Furthermore, we shall assume that nonnegative cone K+ = {x ∈ Rn : xs ≥ 0, s =
1, . . . , n} is an invariant set for (3.1).

Definition 3.1 The solutions of (3.1) are ultimately bounded in K+ if there exists
a H > 0 and if, corresponding to every Q > 0, one can choose a T > 0 such that for any
t0 ∈ (−∞,+∞) and for any x0 ∈ K+, ‖x0‖ < Q, the inequality ‖x(t, x0, t0)‖ < H holds
for all t ≥ t0 + T .

Definition 3.2 We shall say that (3.1) satisfies the M̃O-condition if for any ∆ > 0
there exists vector θ = (θ1, . . . , θn)∗, ‖θ‖ > ∆, such that θ > 0 and g(θ) < 0 (the
inequalities are componentwise).
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By the use of Lemmas 3.1 and 3.2 from [8], we get the validity of the following

Theorem 3.1 (necessary condition of ultimate boundedness) If the solutions of (3.1)

are ultimately bounded in K+, then this system satisfies the M̃O-condition.

Remark 3.2 The M̃O-condition is a necessary one for the ultimate boundedness of
solutions. However, it is not, generally, the sufficient condition.

Example 3.1 Let system (3.1) be of the form

ẋ1 = −x1 + x2
1x2,

ẋ2 = −x2.
(3.2)

This system possesses properties (a) – (c) and K+ is an invariant set for it.

Consider the inequalities

− θ1 + θ21θ2 < 0, −θ2 < 0. (3.3)

For given ∆ > 0 there exists positive vector θ̃ = (1/(2∆),∆)∗, satisfying (3.3), such that

‖θ̃‖ > ∆. Thus, for system (3.2) the M̃O-condition is fulfilled.

At the same time, (3.2) has the solution x(t) = (2et, e−t)∗. Hence, solutions of this
system are not ultimately bounded in K+.

Definition 3.3 We shall say that (3.1) satisfies the MO-condition if for any ∆ > 0
there exists vector θ = (θ1, . . . , θn)∗ such that θs > ∆, s = 1, . . . , n, and g(θ) < 0.

Using Lemma 3.3 from [8], it is easy to show the validity of the following

Theorem 3.2 (sufficient condition of ultimate boundedness) If system (3.1) satisfies
the MO-condition, then its solutions are ultimately bounded in K+.

Remark 3.3 The MO-condition is a sufficient one for the ultimate boundedness of
solutions. However, it is not, generally, the necessary condition.

Example 3.2 Let the system

ẋ1 = −x1 + x1x2,

ẋ2 = −x2

(3.4)

be given. This system satisfies all the above assumptions (properties (a)–(c) and invari-
ance of K+).

By the direct integration, one can verify that solutions of (3.4) are ultimately bounded.

On the other hand, if for a positive vector θ = (θ1, θ2)
∗ the inequalities

− θ1 + θ1θ2 < 0, −θ2 < 0,

are valid, then θ2 < 1. Hence, for (3.4) the MO-condition is not fulfilled.
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4 Construction of Lyapunov’s Functions

Now, let us investigate the problem of absolute ultimate boundedness for system (2.1).
Construct Lyapunov’s function for this system in the form (2.5), where, as before,

λs > 0 are constant coefficients and µs > 0 are rationals with odd numerators and
denominators.

Function V (x) is positive for all x 6= 0, and V (x) → +∞ as ‖x‖ → ∞. On differenti-
ating this function with respect to (2.1), one arrives at

dV

dt

∣∣∣∣
(2.1)

=
n∑

s=1

λsasf
µs+1
s (xs) +

n∑

s=1

λsf
µs

s (xs)

ks∑

j=1

bsjf
α

(j)
s1

1 (x1) . . . f
α(j)

sn
n (xn).

Hence, V (x) satisfies the assumptions of the Yoshizawa ultimate boundedness theorem
for any admissible functions f1(x1), . . . , fn(xn), if coefficients λs and exponents µs,
s = 1, . . . , n, are chosen for the function

W (y) =

n∑

s=1

λsasy
µs+1
s +

n∑

s=1

λsy
µs

s

ks∑

j=1

bsjy
α

(j)
s1

1 . . . y
α(j)

sn
n (4.1)

to be negative in a region ‖y‖ > R. Here y = (y1, . . . , yn)∗, while R > 0 is a constant.
Let us denote hs = 1/(µs + 1), s = 1, . . . , n. By the use of generally-homogeneous

functions properties [15], we get that W (y) might be negative for all ‖y‖ > R only in the
case, where following inequalities are valid:

−hs +

n∑

i=1

α
(j)
si hi ≤ 0, j = 1, . . . , ks, s = 1, . . . , n, (4.2)

Remark 4.1 If there exist positive rationals h1, . . . , hn for which all the inequalities
in (4.2) are strict, i.e.

−hs +

n∑

i=1

α
(j)
si hi < 0, j = 1, . . . , ks, s = 1, . . . , n, (4.3)

then for corresponding values of µs and for any admissible values of as, bsj and λs,
j = 1, . . . , ks, s = 1, . . . , n, one can choose a constant R > 0 such that W (y) < 0 for
‖y‖ > R.

5 Auxiliary Results

Let us determine the conditions of the existence of positive solutions for systems (4.2)
and (4.3).

Remark 5.1 It is known [4, 13], that in the case where ks = 1, s = 1, . . . , n, for the
existence of a positive solution for (4.3) it is necessary and sufficient for the matrix

A =




α
(1)
11 − 1 α

(1)
12 . . . α

(1)
1n

α
(1)
21 α

(1)
22 − 1 . . . α

(1)
2n

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

α
(1)
n1 α

(1)
n2 . . . α

(1)
nn − 1




to satisfy the Sevast’yanov–Kotelyanskij conditions.
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Lemma 5.1 If there exists a positive solution for (4.3), then for system (2.1) the
MO-condition is fulfilled.

Proof Let inequalities (4.3) be valid for positive constants h̃1, . . . , h̃n. Then for given

number ∆ > 0, one can choose τ > 0 so large that the constants θ̃s = τ h̃s , s = 1, . . . , n,
satisfy inequalities (2.4), and θ̃s > ∆ for s = 1, . . . , n. 2

Along with (4.2), consider the system

−hs +

n∑

i=1

α
(j)
si hi = c(j)s , j = 1, . . . , ks, s = 1, . . . , n,

where c
(j)
s are nonpositive constants. This system can be splitted into n subsystems

Ash = cs, s = 1, . . . , n. (5.1)

Here h = (h1, . . . , hn)∗, cs = (c
(1)
s , . . . , c

(ks)
s )∗,

A1 =



α

(1)
11 − 1 α

(1)
12 . . . α

(1)
1n

. . . . . . . . . . . . . . . . . . . . . . . . . . . .

α
(k1)
11 − 1 α

(k1)
12 . . . α

(k1)
1n


 , . . . , An =



α

(1)
n1 α

(1)
n2 . . . α

(1)
nn − 1

. . . . . . . . . . . . . . . . . . . . . . . . . . . . .

α
(kn)
n1 α

(kn)
n2 . . . α

(kn)
nn − 1


.

Let us apply to (5.1) the modified Gaussian elimination procedure. On the s-th step
of this procedure each of the equations with negative coefficient of hs is used for the
elimination of hs from the (s+1)-th, etc., and n-th subsystems. This results in a new set
of subsystems with (generally) the other number of equations than in the initial system.

Lemma 5.2 System (4.2) possesses a positive solution if and only if the above mod-
ified Gaussian elimination procedure reduces system (5.1) to the form

Bsh = c̃s, s = 1, . . . , n,

where

B1 =



β

(1)
11 . . . β

(1)
1n

. . . . . . . . . . . . . .

β
(q1)
11 . . . β

(q1)
1n


 , B2 =




0 β
(1)
22 . . . β

(1)
2n

. . . . . . . . . . . . . . . . . .

0 β
(q2)
22 . . . β

(q2)
2n


 , . . . , Bn =




0 . . . 0 β
(1)
nn

. . . . . . . . . . . . . .

0 . . . 0 β
(qn)
nn


 ,

c̃1 =
(
c̃
(1)
1 , . . . , c̃

(q1)
1

)
∗

, . . . , c̃n =
(
c̃(1)n , . . . , c̃(qn)

n

)
∗

,

c̃
(j)
s ≤ 0, β

(j)
ss ≤ 0, β

(j)
si ≥ 0 for j = 1, . . . , qs, i = s + 1, . . . , n, s = 1, . . . , n, and if

β
(j)
ss = 0 for some values of indices s and j, then β

(j)
si = 0, i = s + 1, . . . , n, for all such

s and j.

Remark 5.2 In the case where β
(j)
ss < 0, j = 1, . . . , qs, s = 1, . . . , n, there exist

positive numbers h̃1, . . . , h̃n satisfying strict inequalities (4.3).

Lemma 5.3 If for (2.1) the MO-condition is fulfilled, then there exists a positive
solution for system (4.2).
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The proofs of Lemmas 5.2 and 5.3 are similar to those ones of Lemmas 4.2 and 4.3
from [2].

Remark 5.3 The proof of Lemma 5.2 contains a constructive algorithm for finding
a positive solution h̃1, . . . , h̃n for (4.2). Moreover, let us note that using this algorithm
one may choose h̃1, . . . , h̃n for the numbers µs = 1/h̃s − 1, s = 1, . . . , n, to be positive
rationals with odd numerators and denominators.

6 Conditions of Absolute Ultimate Boundedness

Consider the necessary conditions of absolute ultimate boundedness for system (2.1).

Theorem 6.1 If system (2.1) is absolutely ultimately bounded, then it satisfies the

M̃O-condition.

Proof Suppose that (2.1) is absolutely ultimately bounded. Then its solutions are
ultimately bounded for any admissible functions f1(x1), . . . , fn(xn).

Let fs(xs) = xms
s , s = 1, . . . , n, where ms are odd positive integers such that

α
(j)
si mi ≥ 1 for j = 1, . . . , ks, i, s = 1, . . . , n. For chosen admissible functions, system

(2.1) possesses all the properties from Section 3 (properties (a)–(c) and invariance ofK+).

Using Theorem 3.1, we get that (2.1) satisfies the M̃O-condition. 2

Theorem 6.2 Let there exist positive constants h̃1, . . . , h̃n, and for every s = 1, . . . , n
there exists at least one value of j ∈ {1, . . . , ks} such that

−h̃s +

n∑

i=1

α
(j)
si h̃i > 0.

Then system (2.1) is not absolutely ultimately bounded.

Proof Choose, again, functions f1(x1), . . . , fn(xn) for the obtained system to satisfy
all the assumptions from Section 3.

Consider the numbers θ̃s = τ h̃s , τ > 0, s = 1, . . . , n. For all sufficiently large values
of τ the inequalities

asθ̃s +

ks∑

j=1

bsj θ̃
α

(j)
s1

1 . . . θ̃
α(j)

sn
n > 0, s = 1, . . . , n,

are fulfilled. Applying Lemma 3.4 from [8], we get that for chosen admissible functions,
the solutions of system (2.1) are not ultimately bounded. 2

Consider, next, the sufficient conditions of absolute ultimate boundedness.

Theorem 6.3 If for system (2.1) the MO-condition is fulfilled, then it is absolutely
ultimately bounded.

Proof Let us show that for system investigated there exists Lyapunov’s function
in the form (2.5), satisfying the assumptions of the Yoshizawa ultimate boundedness
theorem.

According to Lemma 5.3, we obtain that if for (2.1) the MO-condition is fulfilled,
then one can choose positive rationals µ1, . . . , µn with odd numerators and denominators
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such that for the numbers h̃s = 1/(µs + 1), s = 1, . . . , n, inequalities (4.2) are valid. We
shall take these values of µ1, . . . , µn as exponents in Lyapunov’s function (2.5).

Let us show the existence of positive coefficients λ1, . . . , λn under which function (4.1)
is negative in a region ‖y‖ > R, where R > 0 is a constant.

Consider inequalities (4.2) for hs = h̃s, s = 1, . . . , n. It should be noted that in the
case where for some values of indices j and s the corresponding inequalities are strict,
one can construct, instead of (4.1), new function Ŵ (y) by setting bsj = 0 for all such j

and s. If there exist positive coefficients λ1, . . . , λn for which Ŵ (y) is negative definite,
then for these values of λ1, . . . , λn and for some number R > 0, the inequality W (y) < 0
holds in the region ‖y‖ > R. Therefore, we may assume, without loss of generality, that
for the numbers h̃1, . . . , h̃n all the inequalities in (4.2) turn to equalities.

The rest part of the proof is similar to that one of Theorem 5.1 from [2]. 2

Remark 6.1 Theorem 6.3 looks similar to Theorem 3.2. However, in comparison
with the conditions of ultimate boundedness of solutions for autonomous Wazewskij’s
systems obtained in Section 3, Theorem 6.3 states that the only MO-condition is a
sufficient one for the absolute ultimate boundedness of (2.1), i.e. the other assumptions
from Section 3 (properties (a)–(c) and invariance of K+) are redundant.

Corollary 6.1 Let system (4.2) has a positive solution. Then (2.1) is absolutely ulti-
mately bounded if and only if there exists at least one set of positive constants θ̃1, . . . , θ̃n,
satisfying inequalities (2.4).

Proof The necessity follows from Theorem 6.1.
To prove the sufficiency, suppose that the positive vectors h̃ = (h̃1, . . . , h̃n)∗ and

θ̃ = (θ̃1, . . . , θ̃n)∗ are solutions of systems (4.2) and (2.4) correspondingly. Then the

numbers θ̂s = τ h̃s θ̃s, τ > 0, s = 1, . . . , n, satisfy inequalities (2.4) for all sufficiently large
values of τ . Hence, the MO-condition is fulfilled for (2.1). 2

Corollary 6.2 For system (2.1) there exists Lyapunov’s function in the form (2.5),
satisfying the assumptions of the Yoshizawa ultimate boundedness theorem, if and only if
the MO-condition is fulfilled for this system.

Proof The sufficiency follows from Theorem 6.3. Let us prove the necessity.
In Section 4 it was noted that if function (2.5) satisfies the assumptions of the

Yoshizawa ultimate boundedness theorem, then system (4.2) possesses a positive solu-
tion. On the other hand, the existence of such Lyapunov’s function provides the absolute
ultimate boundedness for (2.1). Then, according to Theorem 6.1, there exists a positive
solution for system (2.4). By analogy with the proof of Corollary 6.1, we get that for
(2.1) the MO-condition is fulfilled. 2

Consider now, along with (2.1), the perturbed system

ẋs = asfs(xs) +

ks∑

j=1

bsjf
α

(j)
s1

1 (x1) . . . f
α(j)

sn
n (xn) + ψs(t, x), s = 1, . . . , n. (6.1)

Here functions ψs(t, x) are continuous for all t ∈ (−∞,+∞), x ∈ Rn, and satisfy the
inequalities |ψs(t, x)| ≤ γs + εs|fs(xs)|, where γs and εs are positive constants, s =
1, . . . , n.
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Corollary 6.3 Let for (2.1) the MO-condition be fulfilled. Then solutions of (6.1)
are uniformly ultimately bounded for sufficiently small values of ε1, . . . , εn.

Proof Construct for system (2.1) Lyapunov’s function in the form (2.5), satisfying
the assumptions of the Yoshizawa ultimate boundedness theorem. It is easily shown
that for sufficiently large number R > 0 and for sufficiently small values of ε1, . . . , εn

the derivative of Lyapunov’s function constructed with respect to (6.1) is negative in the
region ‖x‖ > R. 2

Remark 6.2 In a similar way, the conditions of absolute ultimate boundedness can
be obtained for the case when the inequalities bsj > 0 in (2.2) are replaced by those con-

necting coefficients bsj and a basis ω1, . . . , ωn: bsjωsω
α

(j)
s1

1 . . . ω
α(j)

sn
n > 0 for j = 1, . . . , ks,

s = 1, . . . , n [9]. Here every constant ω1, . . . , ωn takes either of the values +1 or −1.

7 Systems with the Special Structure of Connections

In the previous section it was proved that for (2.1) to be absolutely ultimately bounded
it is sufficient the fulfilment of the MO-condition. Consider now some types of systems
of the form (2.1) with the special structure of connections for which the MO-condition
is not only sufficient one but also a necessary one for absolute ultimate boundedness.

Example 7.1 Consider system (2.1) with k1 = 1, . . . , kn = 1:

ẋs = asfs(xs) + bsf
αs1
1 (x1) . . . f

αsn

n (xn), s = 1, . . . , n. (7.1)

Here as < 0 and bs > 0 are constant coefficients, αsi are nonnegative rationals with odd
denominators. For (7.1) the corresponding system of inequalities (4.2) is of the form

−hs +

n∑

i=1

αsihi ≤ 0, s = 1, . . . , n. (7.2)

According to Corollary 6.1, we get that if (7.2) possesses a positive solution, then for
(7.1) to be absolutely ultimately bounded it is necessary and sufficient for this system to
satisfy the MO-condition.

On the other hand, if (7.2) has no positive solutions, and αsi > 0 for s 6= i, then there
exist positive constants h̃1, . . . , h̃n such that

−h̃s +

n∑

i=1

αsih̃i > 0, s = 1, . . . , n.

Hence (v. Theorem 6.2), system (7.1) is not absolutely ultimately bounded.
Thus, in the case where αsi > 0 for s 6= i, i, s = 1, . . . , n, system (7.1) is absolutely

ultimately bounded if and only if the MO-condition is fulfilled for this system.

Example 7.2 Let system (2.1) be of the form

ẋ1 = a1f1(x1) + b1f
α1
n (xn),

ẋi = aifi(xi) + bif
αi

i−1(xi−1), i = 2, . . . , n− 1,

ẋn = anfn(xn) + bnf
β1

1 (x1) . . . f
βn−1

n−1 (xn−1),

(7.3)
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where as < 0 and bs > 0 are constant coefficients, αj > 0 and βj ≥ 0 are rationals with
odd denominators, j = 1, . . . , n− 1, s = 1, . . . , n.

Consider inequalities (2.4), corresponding to system (7.3). We get

θ1 > −
b1
a1
θα1

n , θi > −
bi
ai

θαi

i−1, i = 2, . . . , n− 1, θn > −
bn
an

θβ1

1 . . . θ
βn−1

n−1 .

It is easily shown that (7.3) is absolutely ultimately bounded if and only if the inequality

α1β1 + α1α2β2 + · · · + α1 . . . αn−1 βn−1 ≤ 1 (7.4)

holds, and in the case where (7.4) turns to equality, the condition

(
−
b1
a1

)ξ1
(
−
b2
a2

)ξ2

. . .

(
−
bn−1

an−1

)ξn−1
(
−
bn
an

)
< 1

is fulfilled. Here ξi = βi + αi+1ξi+1, i = 1, . . . , n− 2, ξn−1 = βn−1. Hence, the absolute
ultimate boundedness of system (7.3) implies that this system satisfies theMO-condition.

Thus, for (7.3) the sufficient condition of absolute ultimate boundedness is also a
necessary one.

Example 7.3 Consider the system

ẋi = aifi(xi) + bif
αi

n (xn), i = 1, . . . , n− 1,

ẋn = anfn(xn) + bnf
β1

1 (x1) . . . f
βn−1

n−1 (xn−1).
(7.5)

Here parameters as, bs, αj and βj, j = 1, . . . , n − 1, s = 1, . . . , n, possess the same
properties as in the previous example. We get, again, that if the system investigated is
absolutely ultimately bounded, then it satisfies the MO-condition.

It can be easily shown that for the absolute ultimate boundedness of (7.5) it is nec-
essary and sufficient the validity of the inequality α1β1 +α2β2 + · · ·+αn−1βn−1 ≤ 1. If
this inequality turns to equality, then for coefficients as and bs the condition

(
−
b1
a1

)β1
(
−
b2
a2

)β2

. . .

(
−
bn−1

an−1

)βn−1
(
−
bn
an

)
< 1

should be fulfilled.

8 Systems with Additive Connections

Let system (2.1) be of the form

ẋs =

n∑

j=1

psjf
αsj

j (xj), s = 1, . . . , n, (8.1)

where αsj > 0 are rationals with odd denominators, αss = 1, and psj are constant
coefficients, pss < 0, psj ≥ 0 for j 6= s, j, s = 1, . . . , n. Thus, connections in the
equations considered are additive.

Theorem 8.1 System (8.1) is absolutely ultimately bounded if and only if it satisfies
the MO-condition.
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Proof The sufficiency follows from Theorem 6.3. Let us prove the necessity.
Suppose that (8.1) is absolutely ultimately bounded. Then (v. Theorem 6.1) the M̃O-

condition is fulfilled for this system. Therefore, there exists a sequence of positive vectors
θ̃(m) = (θ̃1m, . . . , θ̃nm)∗ such that ‖θ̃(m)‖ → ∞ as m → ∞, and for every m = 1, 2, . . .
vector θ̃(m) is a solution of the system

n∑

j=1

psjθ
αsj

j < 0, s = 1, . . . , n. (8.2)

One may assume, without loss of generality, that θ̃sm → +∞ as m → ∞ for
s = 1, . . . , k, where 1 ≤ k ≤ n, and for s > k the sequences {θ̃sm} are bounded.

If k = n, then for system (8.1) the MO-condition is fulfilled. Consider, further, the
case where k < n. The inequalities

n∑

j=1

psj θ̃
αsj

jm < 0, s = k + 1, . . . , n,

are valid for m = 1, 2, . . . . Hence, (8.1) can be splitted into the following two subsystems:

ẋs =

k∑

j=1

psjf
αsj

j (xj) +

n∑

j=k+1

psjf
αsj

j (xj), s = 1, . . . , k, (8.3)

ẋs =
n∑

j=k+1

psjf
αsj

j (xj), s = k + 1, . . . , n. (8.4)

Since (8.1) is absolutely ultimately bounded, then subsystem (8.4) possesses the same
property. For this subsystem, one can to repeat the above arguments. Continuing this
process, we get that (8.1) can be splitted into a ordered set of subsystems such that every
subsystem does not influence the subsequent ones.

The last subsystem satisfies the MO-condition. Let us show that for the set of the
last two, three, etc. subsystems the MO-condition is also fulfilled.

We shall assume, without loss of generality, that (8.1) is splitted only into the two
subsystems: (8.3) and (8.4).

System (8.4) and the system

ẋs =

k∑

j=1

psjf
αsj

j (xj), s = 1, . . . , k,

satisfy the MO-condition. Hence, for every ∆ > 0 there exist numbers θ̂1, . . . , θ̂n such
that θ̂s > ∆, s = 1, . . . , n, and

k∑

j=1

psj θ̂
αsj

j < 0, s = 1, . . . , k;

n∑

j=k+1

psj θ̂
αsj

j < 0, s = k + 1, . . . , n.

By the use of Lemma 5.3, we get that the system

−hs + αsjhj ≤ 0, j 6= s, j, s = 1, . . . , k,
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has a positive solution h̃1, . . . , h̃k. Then for the numbers θ̄j = τ h̃j θ̂j , j = 1, . . . , k, τ > 1,
following inequalities are valid:

k∑

j=1

psj θ̄
αsj

j < 0, s = 1, . . . , k,

Thus, for sufficiently large values of τ the vector (θ̄1, . . . , θ̄k, θ̂k+1, . . . , θ̂n)∗ is a solution
of system (8.2), and all the entries of this vector are greater than ∆. Hence, (8.1) satisfies
the MO-condition. 2

Remark 8.1 Theorem 8.1 states that for systems with additive connections theMO-
condition is not only sufficient one but also a necessary condition for the absolute ultimate
boundedness. On the other hand, the M̃O-condition is a necessary one for (8.1) to be
absolutely ultimately bounded. However, this condition is not a sufficient one.

Example 8.1 Let system (8.1) be of the form

ẋ1 = −f1(x1),

ẋ2 = −f2(x2) + f2
3 (x3),

ẋ3 = −f3(x3) + f2
2 (x2).

(8.5)

It is easily verified that the M̃O-condition is fulfilled for (8.5). At the same time, if
fs(xs) = xs, s = 1, 2, 3, then solutions of this system are not ultimately bounded.

9 Conditions of Ultimate Boundedness for Large Scale Systems

Let us show now that the results obtained in the present paper can be used for the
determination of conditions of ultimate boundedness of solutions for essentially nonlinear
complex systems.

Consider the system

ẋs = Fs(xs) +

ks∑

j=1

Qsj(t, x), s = 1, . . . , n, (9.1)

where xs ∈ Rms , x = (x∗1, . . . , x
∗

n)∗; the elements of the vectors Fs(xs) are continuous
homogeneous functions of the orders σs > 0; the vector functions Qsj(t, x) are continuous
for t ≥ 0, x ∈ Rm (m = m1+· · ·+mn). We will assume that in the region t ≥ 0, ‖x‖ ≥ H
(H > 0 is a constant) functions Qsj(t, x) satisfy the inequalities

‖Qsj(t, x)‖ ≤ csj ‖x1‖
β

(j)
s1 . . . ‖xn‖

β(j)
sn , csj > 0, β

(j)
si ≥ 0.

System (9.1) describes the dynamics of complex system composed of n interconnected
subsystems [4, 13]. Here xs are state vectors, the functions Fs(xs) define the interior con-
nections of subsystems while the functions Qsj(t, x) characterize the interaction between
the subsystems.

Consider the isolated subsystems

ẋs = Fs(xs), s = 1, . . . , n. (9.2)
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Let the zero solutions of subsystems (9.2) be asymptotically stable. In [1, 2, 5, 10] the
conditions are obtained under which asymptotic stability of the zero solutions of (9.2)
implies that the zero solution of (9.1) is also asymptotically stable. In the present section,
we will look for the conditions of ultimate boundedness of solutions for system (9.1).

Assume that for isolated subsystems there exist Lyapunov’s functions Vs(xs), s =
1, . . . , n, with the following properties:

(a) Vs(xs) are positive definite;

(b) Vs(xs) are continuously differentiable for all xs ∈ Rms ;

(c) Vs(xs) are positive homogeneous functions of orders γs − σs + 1;

(d) the derivatives of Vs(xs) with respect to (9.2) are negative functions.

Remark 9.1 In the case where F1(x1), . . . , Fn(xn) are continuously differentiable
functions, the existence of such Lyapunov’s functions it was proved in [17].

Remark 9.2 In the capacity of γ1, . . . , γn one may choose arbitrary numbers such
that γs > σs, s = 1, . . . , n.

By the use of the homogeneous functions properties [17], we get that functions
V1(x1), . . . , Vn(xn) satisfy the inequalities a1s‖xs‖

γs−σs+1 ≤ Vs(xs) ≤ a2s‖xs‖
γs−σs+1,

∥∥∥∥
∂Vs

∂xs

∥∥∥∥ ≤ a3s‖xs‖
γs−σs ,

(
∂Vs

∂xs

)
∗

Fs ≤ −a4s‖xs‖
γs

for all xs ∈ Rms , where a1s, a2s, a3s, a4s are positive constants, s = 1, . . . , n.
On differentiating Vs(xs) with respect to (9.1), one can deduce that the estimations

dVs

dt

∣∣∣
(9.1)

≤ −a4s‖xs‖
γs + a3s‖xs‖

γs−σs

ks∑

j=1

csj‖x1‖
β

(j)
s1 . . . ‖xn‖

β(j)
sn

are valid for t ≥ 0, ‖x‖ ≥ H , s = 1, . . . , n.
Consider the function

V (x) =

n∑

s=1

λsVs(xs),

where λ1, . . . , λn are positive coefficients. For all t ≥ 0 and ‖x‖ ≥ H we obtain

dV

dt

∣∣∣
(9.1)

≤ −

n∑

s=1

λsa4s‖xs‖
γs +

n∑

s=1

λsa3s‖xs‖
γs−σs

ks∑

j=1

csj‖x1‖
β

(j)
s1 . . . ‖xn‖

β(j)
sn .

Hence, to prove the ultimate boundedness of solutions for (9.1) it is sufficient to show
that one can choose coefficients λ1, . . . , λn for the function

W (y) = −

n∑

s=1

λsa4sy
γs

s +

n∑

s=1

λsa3sy
γs−σs

s

ks∑

j=1

csj y
β

(j)
s1

1 . . . y
β(j)

sn
n

to be negative in a region ‖y‖ > R. Here R > 0 is a constant.
Suppose that parameters γ1, . . . , γn satisfy the inequalities

−
σs

γs

+

n∑

i=1

β
(j)
si

γi

≤ 0, j = 1, . . . , ks, s = 1, . . . , n. (9.3)

In this case, by analogy with the proof of Theorem 6.3, we get the validity of the following
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Theorem 9.1 If there exist positive numbers θ̃1, . . . , θ̃n such that

−a4sθ̃
σs

s + a3s

ks∑

j=1

csj θ̃
β

(j)
s1

1 . . . θ̃
β(j)

sn
n < 0, s = 1, . . . , n, (9.4)

then solutions of (9.1) are uniformly ultimately bounded.

Remark 9.3 Coefficients a3s, a4s in (9.4) depend, in general, on the chosen values
of γ1, . . . , γn.

Remark 9.4 If for chosen values of γ1, . . . , γn all the inequalities in (9.3) are strict,
then solutions of (9.1) are uniformly ultimately bounded (the verification of the exis-
tence of the positive numbers θ̃1, . . . , θ̃n, satisfying the inequalities (9.4), in this case is
redundant).
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