Nonlinear Dynamics of a Two-Degrees of Freedom Hamiltonian System: Bifurcations and Integration

G.M. Scarpello and D. Ritelli *

Dipartimento di Matematica per le Scienze Economiche e Sociali viale Filopanti,
540126 Bologna

Received: April 26, 2006; Revised: December 4, 2007

Abstract: In this paper we treat the motion induced by a starting pulse on a system of two-degrees of freedom \(s, \theta \). Decoupling the motion equations, we obtain the \(s \)-nonlinear ordinary differential equation

\[
\ddot{s} = c^2 \frac{s}{(d^2 + s^2)^2} - \lambda^2 s,
\]

where \((c, d, \lambda) > 0\), and the dots mean time derivatives. A bifurcation analysis has revealed the onset of periodic motions for \(\lambda \neq 0 \) (presence of elastic forces inside the system), whilst for \(\lambda = 0 \) nonperiodic motions will appear. Almost all the cases (five for \(\lambda \neq 0 \), three for \(\lambda = 0 \)) have been integrated by obtaining \(t = t(s) \) by means of the Jacobi elliptic functions.

The other (angle) coordinate \(\theta \) has been in any case brought to the quadratures by knowing \(s \).

Keywords: Nonlinear differential equations; Hamiltonian systems; bifurcations; elliptic functions.

Mathematics Subject Classification (2000): 34A05, 34C25.

* Research supported by MURST grant: Equazioni differenziali e problemi geometrici.
* Corresponding author: daniele.ritelli@unibo.it