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Nonlinear Dynamics of a Two-Degrees of Freedom

Hamiltonian System: Bifurcations and Integration ⋆
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Abstract: In this paper we treat the motion induced by a starting pulse on
a system of two-degrees of freedom s, θ. Decoupling the motion equations, we
obtain the s-nonlinear ordinary differential equation

s̈ = c2 s

(d2 + s2)2
− λ2s,

where (c, d, λ) > 0, and the dots mean time derivatives. A bifurcation analysis
has revealed the onset of periodic motions for λ 6= 0 (presence of elastic forces
inside the system), whilst for λ = 0 nonperiodic motions will appear. Almost
all the cases (five for λ 6= 0, three for λ = 0) have been integrated by obtaining
t = t(s) by means of the Jacobi elliptic functions.
The other (angle) coordinate θ has been in any case brought to the quadratures
by knowing s.
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1 Introduction

The cases in which the ordinary differential equations (ode) can be integrated in closed
form, or even reduced to the quadratures, are quite limited.

Since much time we are involved in the integrable systems with and without friction,
contributing with closed form integrations of ode by means of higher transcendental
functions [3, 4, 5]. In this frame we treated single degree of freedom systems.

This article tackles a system1 whose planar, frictionless motion depends upon two

Lagrangian coordinates (the displacement s and the angle θ). The couple of nonlinear
ode with the coordinates tied, has been de-coupled and integrated. A bifurcation analysis
has been carried out on the basis of the values of a certain parameter λ which is controlling
the elastic force inside the system: its description follows. An homogeneous straight pipe
of mass M and length ℓ can rotate on a horizontal plane, around its middle fixed point
O, without friction.

A punctual body P of mass m can flow frictionless inside it, acted by a spring which
is at rest only when P≡O. Consequently the deformation of the spring entering its elastic
potential, will coincide with the particle’s coordinate s.

The movement is induced by a starting instantaneous pulse (s0, ṡ0, θ0, θ̇0): the ab-
sence of any propelling force, drag, friction is assumed then it will persist indefinitely.
Let the angle θ be the pipe axis inclination, and s = OP be the instantaneous distance

θ

χ

s

P

O

Figure 1.1: The elastic pendulum: a system’s geometrical sketch.

of P from the pivot O. For the system L-function is

L = −χ
s2

2
+

1

2
Jθ̇2 +

m

2
ṡ2 +

m

2
s2θ̇2,

being J =
1

12
Mℓ2 the pipe moment of inertia, and χ > 0 a measure of the spring elastic

stiffness.

1 The problem has been introduced -and only sketched- on pages 279–280 of [6], where the Lagrange
equations (1) and (2) are obtained, and the second order ode (6) integrated a first time. But a mistake
occurred (ṡ instead of ṡ2). The second integration has not been carried out there, nor the motion any
way analyzed, nor qualitatively discussed.
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The above system could be termed as elastic pendulum, namely a non-circular pendu-
lum obtained from the classic one, by replacing its unextensible, weightless rod between
the body P and the suspension O, with the deformable constraint of a linear elastic
spring OP. Of course the weight force on P is perpendicular to the motion’s plane shown
in Figure 1.1. The Lagrange equation for s gives

m s̈ + χ s − m s θ̇2 = 0,

s(0) = s0, ṡ(0) = ṡ0,
(1)

while, for L not depending upon θ, we get the other one:

d

dt

(

J θ̇ + m s2 θ̇
)

= 0,

θ(0) = θ0, θ̇(0) = θ̇0.

(2)

By (2), putting ℓ = 2
√

3b and then J = Mb2, we have immediately a first integral:

(

Mb2 + m s2
)

θ̇ = θ̇0

(

Mb2 + m s2
0

)

≡ c1 (3)

for c1 being a positive constant depending on both the system characteristic and the
initial conditions.

2 Bifurcation Analysis in the Presence of Elastic Force

Starting from (3), we have

θ(t) = θ0 +
c1

m

∫ t

0

dτ

γ2 + s2(τ)
(4)

with

γ2 =
M

m
b2 > 0, (5)

then θ is known if we succeed in evaluating s(t). Moreover, if (3) is replaced in (1), we
can get rid of θ̈, obtaining

s̈ = c2 s

(d2 + s2)
2 − λ2s = f(s), (6)

where all the constants below are positive, i.e.

c =
c1

m
, d =

b

m
, λ2 =

χ

m
. (7)

Of course the meaning of the parameter λ is the presence, or the absence, λ = 0, of the
elastic force inside the system. This will induce the system to bifurcate.

Following the Weierstraß method [8], we write the relevant time equation as

t = ±
∫ s

s0

du
√

Φ(u)
,

with

Φ(s) = 2

∫ s

s0

f(u) du + ṡ2
0,
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the sign has to be taken, according to the sign of the initial speed ṡ2
0, or, if ṡ2

0 = 0
according to the f(s0) sign, as it is well known, see e.g. [7] page 114 or [1] pages 287–292.

The Φ = 0 roots’ existence and kind, marks completely the motion, deciding its
periodic or aperiodic nature. Obviously the reality condition Φ(s) ≥ 0 must be met: it
is always satisfied in a neighborhood of s2

0. We have

Φ(s) = h2 − λ2s2 − c2

d2 + s2
, (8)

where

h2 = h2(c, d, λ; s0, ṡ0) = λ2s2
0 +

c2

d2 + s2
0

+ ṡ2
0 > 0. (9)

Therefore the motion reality condition stems from the positivity of the 4th degree
polynomial

p(s) = −λ2s4 + (h2 − d2λ2)s2 + d2h2 − c2.

Such a problem is an elementary, but quite tedious exercise of Calculus. First notice that
in any case, by construction, we have p(s0) = ṡ2

0(d
2 + s2

0) > 0. The discussion is pivoted
on the number of roots of its first derivative

p′(s) = 2s
(

h2 − d2λ2 − 2s2λ2
)

.

Therefore all the treatment is centered on the motion (6) which takes place along a
rotating straight-line of variable inclination (4) during the time.

Degeneracy

If θ̇0 = 0, then c1 = 0, and (6) would return the elementary harmonic movement with
period 2π/λ. Then the presence of a nonzero initial pulse of angular speed θ̇0 6= 0 is
essential: from now on our analysis will deal with non-degenerate cases only.

2.1 First case: p′(s) has three real roots (h2 > d2λ2)

Suppose first that
h2 − d2λ2 > 0. (10)

If (10) holds, the first derivative of p(s) has three real roots, say

ŝ = 0, ŝ+ =

√
h2 − d2λ2

λ
√

2
, ŝ− = −ŝ+.

Moreover (10) implies that ŝ = 0 is for p(s) a relative minimum given by

p(0) = h2d2 − c2, (11)

and at ŝ+ and ŝ− p(s) has two relative maxima whose common value is

p(ŝ−) = p(ŝ+) =
(h2 + d2 λ2)

2

4λ2
− c2.

Three following sub-cases are possible.
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First, p(s) has two real zeros if the condition

h2d2 > c2 (12)

holds. This means that, as far as it concerns the s coordinate, the particle oscillates
periodically along the pipe between the symmetrical extremes

s± = ± 1

λ
√

2

√

h2 − d2 λ2 +

√

(h2 + d2 λ2)
2 − 4 c2 λ2. (13)

Second, if, vice-versa, we have

h2d2 < c2 (14)

and if we have also
(h2 + d2λ2)

2

4λ2
> c2, (15)

we are in the presence of four real zeros of p(s) placed symmetrically on the real axis,
i.e.: −s2 < −s1 < 0 < s1 < s2; the motion will be periodic between the two positive or
the two negative roots, according to the sign of s0. We have

s2 =
1

λ
√

2

√

h2 − d2λ2 +

√

(h2 + d2λ2)
2 − 4c2λ2, (16)

s1 =
1

λ
√

2

√

h2 − d2λ2 −
√

(h2 + d2λ2)
2 − 4c2λ2. (17)

The range of coordinates (−s1, s1) is forbidden to the motion for the reality condition
p(s) > 0 being not met.

Notice that the situation

h2d2 < c2,
(h2 + d2λ2)

2

4λ2
< c2

would be against the reality of the motion, as implying all the roots of p(s) to be complex,
the negativity of p(s), and so forth.

Finally, third, if

h2d2 = c2 (18)

we are faced with a double root at the origin for p(s), whose form is

p(s) = s2(h2 − d2λ2 − λ2s2).

Then it will be p(s) ≥ 0 for

− 1

λ

√

h2 − d2λ2 ≤ s ≤ 1

λ

√

h2 − d2λ2,

but the double zero at the origin implies an asymptotic motion, not a periodic one. The
motion will take place for positive or negative values of s according to the sign of s0. If
s0 = 0, the sign of ṡ0 will determine the region of motion. Finally, if s0 = ṡ0 = 0, there
will be no motion at all.
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2.2 Second case: p′(s) with one real root (h2 < d2λ2)

Suppose that
h2 − d2λ2 < 0. (19)

Now p(s) has only one stationary point in ŝ = 0 which is a maximum. The relative
extremum is once more given by (11), and the motion reality is ensured again by (12).

The particle’s movement is periodic between the roots singled out by (13).

2.3 Third case: p′(s) has a real triple root (h2 = d2λ2)

We now have
h2 − d2λ2 = 0. (20)

This means that p(s) = −λ2s4 + λ2d4 − c2, p′(s) = −4λ2s3. In order to meet the reality
condition we must require that

d2 >
c

λ
. (21)

So the motion is periodic between the two real symmetric roots of p(s) = 0.

3 Integration: λ 6= 0

The time equation

t = ±
∫ s

s0

du
√

h2 − λ2u2 − c2(d2 + u2)−1
(22)

will be solved by transforming the integral (22) in a form studied in [2], involving the I
and III kind canonical elliptic integrals. For the purpose, let we pass from u to the new
variable ζ defined by u =

√

ζ2 − d2. Discarding the problem of the sign, we can take
both s0 and s positive without loss of generality. Then (22) will be transformed into

t =
1

2

∫ d2+s2

d2+s2

0

√

ζ

[−λ2ζ2 + (h2 + d2λ2)ζ + c2](ζ − d2)
dζ. (23)

The discriminant ∆ of the second degree polynomial

q(ζ) = −λ2ζ2 + (h2 + d2λ2)ζ + c2, (24)

appearing in (23) is

∆ = (h2 − 2cλ + d2λ2)(h2 + 2cλ + d2λ2), (25)

and its positivity depends on the sign of the first factor h2 − 2cλ + d2λ2. If we consider
it as a function of λ, its discriminant is

∆1 = c2 − d2h2. (26)

Now we have to go back to the discussion about the Weierstraß function Φ introduced
in (8).

1. Assume (10) and (12) hold.
2. Assume (10), (14) and (15) hold.
3. Assume (10) and (18) hold.
4. Assume (19) and (12) hold.
5. Assume (20) and (21) hold.
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Case 1

The quantity ∆1 introduced in (26) is negative and so (25) is positive. This implies that
q(ζ), see (24), has two real roots ζ1 < ζ2, and recalling that ζ1 ≤ d2 + s2

0 ≤ d2 + s2 ≤ ζ2,
we infer s2

0 ≤ ζ − d2 ≤ s2. We have now to locate the position of d2 with respect to ζ1

and ζ2; this can be done because for (12) we have q(d2) = h2d2 − c2 > 0 and this means
that ζ1 < d2 < ζ2. Now if we write (23) as

t =
1

2

∫ d2+s2

d2+s2

0

√

ζ

(ζ2 − ζ)(ζ − d2)(ζ − ζ1)
dζ, (27)

we can use first the integrals 256.13 page 122, and then 339.01 page 203, of [2] to evaluate
(27). In fact, first we write (27) as

t =
1

2

{

∫ d2+s2

d2

R(ζ) dζ −
∫ d2+s2

0

d2

R(ζ) dζ

}

,

where

R(ζ) =

√

ζ

(ζ2 − ζ)(ζ − d2)(ζ − ζ1)
.

In such a way the time is expressed by

t(s) = A(d2 + s2) − A(d2 + s2
0), (28)

where

A(y) =
1

d
√

(ζ2 − ζ1)

[

ζ1F (ϕ1(y), k1) + (d2 − ζ1)Π(ϕ1(y), α2
1, k1)

]

and

ϕ1(y) = arcsin

√

(ζ2 − ζ1)(y − d2)

(ζ2 − d2)(y − ζ1)

is the amplitude of the elliptic integrals of I and III kind F (ϕ1, k1) and Π(ϕ1, α
2
1, k1) of

modulus k1 and parameter α2
1:

k2
1 =

(ζ2 − d2)ζ1

(ζ2 − ζ1)d2
, α2

1 =
ζ2 − d2

ζ2 − ζ1
.

Of course the oscillation period T will be given by

T

2
= A(d2 + s2

+) − A(d2 + s2
−).

Case 2

In such a case the inequality (15) ensures that the discriminant of q(ζ) is positive, in fact
from (15) we infer that

h2 + d2λ2 > 2cλ

and by this we get that the first factor of (25) is positive:

h2 − 2cλ + d2λ2 > 2cλ − 2cλ = 0.
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As before, we have to single out the location of d2 with respect to the roots ζ1 and ζ2

of the polynomial q(ζ) introduced in (24). Taking into account that the condition (14)
holds, we find out q(d2) = h2d2 − c2 < 0 and then d2 /∈ [ζ1, ζ2]. To establish if d2 lies on
the left or on the right of [ζ1, ζ2], we evaluate the half-sum Σ of ζ1 and ζ2 and, by (10),
we find

Σ − d2 =
h2 − d2λ2

2λ2
> 0.

Therefore the inequality holds:
d2 < ζ1 < ζ2.

Henceforth the integral (27) is again evaluated by means of the formulae 256.13 page
122, and 339.01 page 203, of [2], but now the lower extreme of integration is ζ1:

t(s) =
1

2

{

∫ d2+s2

ζ1

R(ζ) dζ −
∫ d2+s2

0

ζ1

R(ζ) dζ

}

.

The time is then expressed by

t(s) = B(d2 + s2) − B(d2 + s2
0), (29)

where

B(y) =
1

√

ζ1(ζ2 − d2)
[d2F (ϕ2(y), k2) + (ζ1 − d2)Π(ϕ2(y), α2

2, k2)],

with

k2
2 =

(ζ2 − ζ1)d
2

(ζ2 − d2)ζ1
, α2

2 =
ζ2 − ζ1

ζ2 − d2

and

ϕ2(y) = arcsin

√

(ζ2 − d2)(y − ζ1)

(ζ2 − ζ1)(y − d2)
.

Of course the oscillation period T will be

T

2
= B(d2 + s2

2) − B(d2 + s2
1).

Case 3

In this occurrence (asymptotic motion), the integration of (22) does not require elliptic
integrals any longer, but elementary functions only. First, notice that solving with respect
to h in (18), the condition (10) becomes:

c2 − d4λ2 > 0. (30)

Therefore by (18), (22) gives

t(s) =
1

λ

∫ s

s0

1

u

√

d2 + u2

Λ2 − u2
du, (31)

where, for (30)

Λ2 =
c2 − d4λ2

d2λ2
> 0.

The integration of (31) is elementary: t(s) = 1
λ
[C(s) − C(s0)], where

C(s) = arctan

√

d2 + s2

Λ2 − s2
− d

Λ
arctanh

√

Λ2(d2 + s2)

d2(Λ2 − s2)
. (32)
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Case 4 and Case 5

In these last two situations the analytical treatment is the same as in the case 1, because
we find q(d2) > 0. This means that ζ1 < d2 < ζ2 allowing us to repeat the integration
seen in the case 1.

4 Bifurcation Analysis: λ = 0

The case of the absence of the elastic force, is a free motion of a m-particle pulsed by
some speed on a rotating straight line. Putting λ = 0 in (6), we obtain

s̈ = c2 s

(d2 + s2)2
(33)

with c = c1

m
, d = b

m
. Neither (27), nor the conclusions expressed by formulae (28) and

(29) involving the real roots ζ1 and ζ2 of q(ζ), (24), can be used for this occurrence. It
is now necessary to go back to the Weierstraß method in order to write the λ = 0 time
equation2

t = ±
∫ s

s0

du
√

Φ∗(u)
= ±

∫ s

s0

√

d2 + u2

((h∗)2d2 − c2) + (h∗)2u2
du,

where

h2(c, d, λ; s0, ṡ0)
∣

∣

λ=0
= (h∗)2 =

c2

d2 + s2
0

+ ṡ2
0 > 0

and with the usual cautions about the sign’s choice. We can see three different situations

(a) (h∗)2d2 > c2, which implies Φ∗(s) > 0 for any s (aperiodic motion for any allow-
able s);

(b) (h∗)2d2 < c2, which implies Φ∗(s) > 0 for s2 > c2(h∗)−2 − d2 and Φ∗(s) = 0 for
s2 = c2(h∗)−2 − d2 (simple root), (aperiodic motion with forbidden region);

(c) (h∗)2d2 = c2, which implies Φ∗(s) > 0 for any s > 0 and Φ∗(0) = 0, double root
(asymptotic motion towards the origin).

The reader should be aware that the physical sense is fully met by the analytical
discussion just done: in fact the elastic force disappearance is the physical cause leaving
any periodicity from the straight-linear motions.

5 Integration: λ = 0

After the former discussion, we perform the relevant integration.

2We mark by a star (∗) the quantities Φ and h in the case λ = 0. On the contrary, the same symbols
s0 and ṡ0 have been kept for meaning the initial conditions also in the λ = 0 motion. If a λ 6= 0 motion
previously took place, the last computed values by (6), will provide the initial conditions input for (33).
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Case (a)

Let us write the numerator of Φ∗ as

(h∗)2
(

d2 − c2

(h∗)2

)

+ (h∗)2s2 = (h∗)2(Γ2 + s2),

where hypothesis (a) ensures that 0 < Γ2 = d2 − c2

(h∗)2 < d2. Discarding the sign (i.e. we

can take ṡ0 > 0 with no loss of generality) we find

t(s) =
1

h∗

{

∫ s

0

√

d2 + u2

Γ2 + u2
du −

∫ s0

0

√

d2 + u2

Γ2 + u2
du

}

. (34)

Both integrals at the right hand side of (34) are once more evaluated in [2]: first we use
integral 221.03 page 61, and then integral 321.02 page 198, obtaining

t =
1

h∗
[A0(s) − A0(s0)], (35)

where
A0(y) = d [F (ϕ3(y), k3) − E(ϕ3(y), k3)

+ dn(F (ϕ3(y), k3), k3) tn(F (ϕ3(y), k3), k3)]
(36)

is a function depending on y through the amplitude ϕ3(y)

ϕ3(y) = arctan
y

Γ
, k2

3 =
d2 − Γ2

d2
=

c2

(h∗)2d2
,

and where u = F (ϕ3, k3) and E(ϕ3, k3) are the Legendre elliptic integrals of I and II
kind with modulus k3 and amplitude ϕ3; dnu, tn u are two Jacobian elliptic functions of
argument u and modulus k3.

Case (b)

Once again let the numerator of Φ∗ be written as (h∗)2(s2 − Θ2), where

Θ2 =
c2

(h∗)2
− d2 > 0. (37)

In such a way, the relevant time equation, defined for 0 < Θ ≤ s0 ≤ s, taking the square
root’s positive determination and minding (37), becomes

t =
1

h∗

{

∫ s

Θ

√

u2 + d2

u2 − Θ2
du −

∫ s0

Θ

√

u2 + d2

u2 − Θ2
du

}

. (38)

To evaluate the integrals in (38), we refer for the last time in this paper, to [2], integrals
211.03 page 82 and 321.02 page 198. We find

t =
1

h∗
[B0(s) − B0(s0)], (39)

where
B0(y) =

c

(h∗)2
[F (ϕ4(y), k4) − E(ϕ4(y), k4)

+ dn(F (ϕ4(y), k4), k4) tn(F (ϕ4(y), k4), k4)] ,
(40)
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is a function of y through the amplitude ϕ4(y):

ϕ4(y) = arccos

√

c2 − (h∗)2d2

h∗y
, k2

4 =
d2(h∗)2

c2
. (41)

As usually, u = F (ϕ4, k4) and E(ϕ4, k4) denote the Legendre elliptic integrals of I and II
kind with modulus k4 and amplitude ϕ4. Furthermore dnu, tn u are two Jacobi elliptic
functions of argument u and modulus k4. Finally, notice that in (41) and in (40) we used
the identity

√

d2 + Θ2 =

√

c2

(h∗)2
=

c

h∗
.

Case (c)

In such asymptotic sub-case, the time equation, for positive initial speed and for the
spatial coordinate s, is

t(s) =
1

h∗

∫ s

s0

√
u2 + d2

u
du. (42)

The integral in (42) is elementary:

t(s) =
1

h∗
[C0(s) − C0(s0)], (43)

where

C0(y) =
√

y2 + d2 − d ln
2

(

d +
√

y2 + d2
)

d2y
.

6 Conclusions

We summarize five points, without degeneracy, c 6= 0, i.e. with θ̇0 6= 0.

(i) s-motions under elastic force

The s-motions we examined in the presence of the elastic force (λ 6= 0) are five, as grasped
by the table

Conditions p(s) behavior s-motion case

(10) & (12) 2 real roots symmetric oscillation 1
(10) & (14) 4 real roots asymmetric oscillation 2
(10) & (18) double root s = 0 asymptotic behavior 3
(19) & (12) 2 real roots symmetric oscillation 4
(20) & (21) 2 real roots symmetric oscillation 5

which is self-explanatory.
Almost all of the s-motions with λ 6= 0 are oscillatory, except the case 3, which is

asymptotic, and whose time law is depending upon elementary functions.
In the cases 1, 2, 4 and 5, time is linked to the coordinate s by means of the I and

III kind elliptic integrals, whose upper bound is algebraically tied to s. Each oscillatory
motion, according to its initial conditions, can have a double nature: either symmetric
or not symmetric, namely centered or not around the origin O of the reference.
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(ii) s-motions with no forces

An alternative situation is that of the spring cut-off (λ = 0): further nonlinear (but in no
way oscillatory) s-motions have been so found (whose nature is decided by (h∗)2d2 R c2)
and ruled by different elliptic functions.

(iii) The angle θ

The time equation concerning the angle θ is given by (4), a formula which needs to know
s as a function of the time, and then the 5+3 analytical solutions linking t to s. Even
if for each case we gave the relevant plots of s versus the time, it should be clear that
nobody can invert formally the relevant functions3 t = t(s); and then the θ-integral (4)
requiring s = s(t) cannot be in any way evaluated in closed form.

However our explicit formulae for t = t(s) allow an easy tabulation of s = s(t), and
therefore one might implement some numerical integration algorithm for getting θ as a
(tabular) function of the time.

The θ time-behavior will be always growing: rotations cannot in fact extinguish ever,
because neither friction nor drag are consuming the initial pulse.

(iv) Trajectory

The planar trajectory of P, see Figure 1.1, might be obtained in a polar reference, 0 being
the pole, assuming θ as anomaly, and the absolute value of s as radius. For the purpose,
one should try to eliminate the time between s = s(t) and θ = θ(t). No hope this could
be accomplished in closed form.
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