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1 Introduction

We are concerned with non-oscillation of solutions of third-order nonlinear differential
equations of the form

(r(t)y′′(t))
′
+ q(t)y′(t) + p(t)yα(g(t)) = f(t), t ≥ t0 (1)

and
(r(t)y′′(t))

′
+ q(t) (y′ (g1(t)))

β
+ p(t)yα(g(t)) = f(t), t ≥ t0, (2)

where t0 ≥ 0 is a fixed real number, f, p, q, r, g and g1 ∈ C ([0, ∞) , ℜ) such that
r(t) > 0 and f(t) ≥ 0 for all t ∈ [0, ∞). Throughout the paper, it is assumed, for all
g(t) , g1(t) , α and β appeared in (1) or (2), that g(t) ≤ t and g1(t) ≤ t for all t ≥ t0;
lim

t→∞
g(t) = ∞ and lim

t→∞
g1(t) = ∞; both α > 0 and β > 0 are quotients of odd integers.

In the relevant literature, till now, oscillation and non-oscillation behaviors of solu-
tions of linear and non-linear second order, third order etc. differential equations have
been the subject of intensive investigations for many authors. For instance, one can
refer to [1–36] as some related papers or books on the subject. Now, to the best of our
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knowledge, some results obtained in the literature on the topic of this paper can be sum-
marized, briefly, as follows: First, in 1974, Kusano and Onose [12] studied the oscillatory
and asymptotic behavior of solutions of the differential equation

x(n)(t) + p(t)f (x(g(t))) = g(t),

and they established two theorems on the topic. In the same year, Kartsatos and
Manougian [10] provided some sets of criteria sufficient for oscillation of either all so-
lutions of equation

x(n)(t) + P (t)f (x(g(t))) = Q(t), n ≥ 2,

or all bounded solutions of the same equation. Later, in 1979, Singh [30] discussed the
asymptotic oscillatory behavior of the solutions of the differential equations

(r(t)y′(t))
(n−1)

+ F (h (y(g(t))) , t) = 0, n ≥ 2,

(r(t)y′(t))
′
+ a(t)h (y(g(t))) = f(t)

and
(r(t)y′(t))

′
+ p(t)y(t) + a(t)h (y(g(t))) = f(t).

Afterward, in 1985, Grace and Lalli [7] established some oscillation and non-oscillation
criteria for the n–order nonlinear differential equation

x(n)(t) + f (t, x(t), x[g(t)]) = h(t).

In 1981, N. Parhi [16] and in 1983, 1985, 1986 and 1987, N. Parhi and S. Parhi
[26–29] discussed the qualitative behavior, oscillation and non-oscillation of solutions of
a third order differential equation of the form

(r(t)y′′)
′
+ q(t) (y′)

β
+ p(t)yα = f(t).

Similarly, in 1993, Parhi [18] established some sufficient conditions for oscillation of
all solutions of the second order forced differential equation of the form

(r(t)y′(t))
′
+ p(t)yα(g(t)) = f(t)

and non-oscillation of all bounded solutions of the equations

(r(t)y′(t))
′
+ q(t) (y′(t))

β
+ p(t)yα(g(t)) = f(t)

and
(r(t)y′(t))

′
+ q(t) (y′ (g1(t)))

β
+ p(t)yα(g(t)) = f(t),

where the real-valued functions f, p, q, r, g and g1 are continuous on [0,∞) with r(t) > 0
and f(t) ≥ 0; g(t) ≤ t, g1(t) ≤ t for t ≥ t0; lim

t→∞
g(t) = ∞, lim

t→∞
g1(t) = ∞, and both

α > 0 and β > 0 are quotients of odd integers. In addition, in 1994, Parhi and Das [22]
considered nonlinear third-order differential equations of the form

y′′′(t) + a(t)y′′(t) + b(t)y′(t) + c(t)F (y(g(t))) = 0,

and they study the oscillatory and asymptotic behavior of solutions of this equation. In
the same year, the same authors, Parhi and Das [22], also established some results for
non-oscillation of solutions of equation

(r(t)y′′(t))
′
+ q(t)y′ + p(t)y = f(t)
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and its associated homogeneous equation

(r(t)y′′(t))
′
+ q(t)y′ + p(t)y = 0.

In 1996, Nayak and Choudhury [13] considered the differential equation

(r(t)y′′(t))
′
− q(t) (y′(t))

β
− p(t)yα(g(t)) = f(t)

and they gave certain sufficient conditions on the functions involved for all bounded
solutions of the above equation to be non-oscillatory.

Later, in 2001, Adamets and Lomtatidze [1] investigated oscillatory properties of
solutions of the third order linear differential equation

u′′′ + p(t)u = 0,

where p is a locally integrable function on [0,∞) which is eventually of one sign.

In the same year, Parhi and Padhi [24] also gave sufficient conditions ensuring that
all nontrivial solutions of the third-order linear differential equation

y′′′ + a(t)y′′ + b(t)y′ + c(t)y = 0

are oscillatory.

After that, in 2002, the same authors, Parhi and Padhi [24] proved several theorems
provided sufficient conditions for the above equation to have oscillatory solutions, and
they also studied the nature of nonoscillatory solutions of the same equation. Namely,
sufficient conditions were given for the set of nonoscillatory solutions of the above equa-
tion to form a one-dimensional subspace of the solution space.

In 2003, Candan and Dahiya [5] investigated oscillatory and asymptotic properties of
solutions of the third order forced differential equation

((

b(t) (a(t)x′)
α )′)′

+ q(t)f(x(g(t))) = r(t).

Finally, more recently, in 2005, Agarwal et al. [3] established some new criteria for the
bounded oscillation of a fourth order functional differential equation. Besides, in the same
year, Zhong et al. [35] considered a third order linear neutral delay difference equation
with positive and negative coefficients. By using the Banach contraction principle the
authors established some sufficient conditions which ensure that the equation considered
has a nonoscillatory solution.

In this paper, we restrict our considerations to the real solutions of equations (1) and
(2) which exist on the half-line [T, ∞), where T (≥ 0) depends on the particular solution,
are non-trivial in any neighborhood of infinity. It is well-known that a solution y(t) of (1)
or (2) is said to be non-oscillatory on [T, ∞) if there exists a t1 ≥ T such that y(t) 6= 0
for t ≥ t1; it is said to be oscillatory if for any t1 ≥ T there exist t2 and t3 satisfying
t1 < t2 < t3 such that y(t2) > 0 and y(t3) < 0; y(t) is said to be a Z–type solution if it
has arbitrarily large zeros but is ultimately non-negative or non-positive.

Now, it is reasonable to ask why the equations (1) and (2) have been investigated here.
When one considers the papers and equations mentioned above, we think the importance
of the investigation of behaviors of equations (1) and (2) may be acceptable.
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2 Non-Oscillation Behaviors of Solutions of (1)

In this section, some sufficient conditions have been established for non-oscillation of all
bounded solutions of (1). In order to reach our main results, first, we dispose of the
following lemma.

Lemma 2.1 Consider second order linear differential equation

(r(t)z′)
′
+ q(t)z = 0, (3)

where r and q are the same as in (1). If z(t) is a non-oscillatory solution of equation
(3) such that z(t) > 0 or z(t) < 0 for t ∈ [a,∞), a > 0, and if u is once continuously
differentiable function on [a,∞), such that u(b) = u(c) = 0, a < b < c and u(t) 6= 0 on
[b, c], then

∫ c

b

[

r(t) (u′(t))
2
− q(t) (u(t))

2
]

dt > 0.

Proof See [28]. 2

Next, in this section, we give the following four theorems.

Theorem 2.1 Let us consider the equation (1), and let f(t)− |p(t)| > 0. If equation
(3) is non-oscillatory, then all solution of equation (1), which are bounded above by 1,
are non-oscillatory.

Proof Let y(t) be a bounded solution of (1) on [Ty, ∞) , Ty > 0, such that |y(t)| ≤ 1.
Since lim

t→∞
g(t) = ∞, then there exists a t1 > t0 such that g(t) ≥ Ty for t ≥ t1. Now,

if possible, let y(t) be of non-negative Z–type solution with consecutive double zeros at
a and b (Ty ≤ a < b) such that y(t) > 0 for t ∈ (a, b). So, there exists c ∈ (a, b) such
that y′(c) = 0 and y′(t) > 0 for t ∈ (a, c). Multiplying equation (1) through by y′(t) , we
obtain

(r(t)y′(t)y′′(t))
′
= r(t) (y′′(t))

2
− q(t) (y′(t))

2
− p(t)yα(g(t))y′(t) + f(t)y′(t). (4)

Integrating (4) from a to c, we get

0 =

∫ c

a

[

r(t) (y′′(t))
2
− q(t) (y′(t))

2
]

dt +

∫ c

a

[f(t) − p(t)yα(g(t))] y′(t) dt

≥

∫ c

a

[f(t) − |p(t)| |yα(g(t))| ] y′(t) dt ≥

∫ c

a

[f(t) − |p(t)| ] y′(t) dt > 0,

a contradiction.
Next, let y(t) be of non-positive Z–type solution with consecutive double zeros at a

and b (Ty ≤ a < b). Then, there exists c ∈ (a, b) such that y′(c) = 0 and y′(t) > 0 for
t ∈ (c, b). Integrating (4) from c to b, we have

0 =

∫ b

c

[

r(t) (y′′(t))
2
− q(t) (y′(t))

2
]

dt +

∫ b

c

[f(t) − p(t)yα(g(t))] y′(t) dt

≥

∫ b

c

[f(t) − |p(t)| |yα(g(t))| ] y′(t) dt ≥

∫ b

c

[f(t) − |p(t)| ] y′(t) dt > 0,

a contradiction.
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Now, if possible let y(t) be oscillatory with consecutive double zeros at a, b and a′

(Ty < a < b < a′) such that y′(a) ≤ 0, y′(b) ≥ 0, y′(a′) ≤ 0, y(t) < 0 for t ∈ (a, b)
and y(t) > 0 for t ∈ (b, a′). Therefore, there exist c ∈ (a, b) and c′ ∈ (b, a′) such that
y′(c) = y′(c′) = 0 and y′(t) > 0 for t ∈ (c, b) and t ∈ (b, c′). Integrating (3) from c to c′ ,
we obtain

0 =

∫ c′

c

[

r(t) (y′′(t))
2
− q(t) (y′(t))

2
]

dt +

∫ b

c

[f(t) − p(t)yα(g(t))] y′(t) dt

+

∫ c′

b

[f(t) − p(t)yα(g(t))] y′(t) dt

≥

∫ b

c

[f(t) − |p(t)| |yα(g(t))| ] y′(t) dt +

∫ c′

b

[f(t) − |p(t)| |yα(g(t))| ] y′(t) dt

≥

∫ b

c

[f(t) − |p(t)| ] y′(t) dt +

∫ c′

b

[f(t) − |p(t)| ] y′(t) dt > 0,

a contradiction. This completes the proof of Theorem 2.1. 2

Remark 2.1 It should be noted that there is no sign restriction on p(t) and q(t),
which appear in equation (1), in Theorem 2.1. Our result, Theorem 2.1, improves the
results established in N. Parhi [17; Theorem 2.4, Theorem 2.5] and N. Parhi and S. Parhi
[28; Theorem 1.1].

Theorem 2.2 If equation (3) admits a non-oscillatory solution and lim
t→∞

f(t)
|p(t)| = ∞,

then all bounded solution of (1) are non-oscillatory.

Proof Because of the fact that lim
t→∞

f(t)
|p(t)| = ∞, there exists a t2 ≥ t1 such that

f(t) ≥ Mα|p(t)| for all t ≥ t2, where M is a positive constant and α is defined as in (1).
The remaining of the proof of Theorem 2.2 follows a similar way as shown in proof of
Theorem 2.1, except some minor modifications; hence we omit the detailed proof. 2

Remark 2.2 It is interesting to note that there is no sign restriction on p(t) and
q(t), which appear in equation (1), in Theorem 2.2. The author in [33], Tunç, proved
a different result, when g(t) = t in (1), under the conditions whenever equation (3) is

non-oscillatory, p(t) ≤ 0 and lim
t→∞

f(t)
−p(t) = ∞.

Theorem 2.3 Consider the equation (1). If equation (3) admits a non-oscillatory
solution and f(t) ≥ Kα|p(t)| for large t, where K is a positive constant, then all y(t)
solutions of (1), which satisfy the inequality y(g(t)) ≤ K in any interval where y(t) > 0,
are non-oscillatory.

Proof The proof of this theorem, Theorem 2.3, is similar to the proof of Theorem
2.1 and hence is omitted. 2

Remark 2.3 The motivation for Theorem 2.3 has been inspired basically by N. Parhi
and S. Parhi [26; Theorem 2.4], in which g(t) = t, p(t) ≥ 0 and q(t) ≥ 0. Next, there
is no sign restriction on p(t) and q(t) in Theorem 2.3 proved here, and the inequality

f(t) ≥ Kα|p(t)| does not implies f(t)
|p(t)| → ∞ as t → ∞. Therefore, our conditions far less

restrictive than those established in N. Parhi and S. Parhi [26; Theorem 2.4].
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Theorem 2.4 Consider the equation (1) with α ≥ 1. Suppose that p(t) ≥ 0 and

q(t) ≤ 0, q(t) once continuously differentiable such that q′(t) ≥ 0. If lim
t→∞

q′(t)
p(t) = ∞, then

all bounded solutions of (1) are non-oscillatory.

Proof Let y(t) be a bounded solution of equation (1) on [Ty, ∞), Ty ≥ 0, such that
|y(t)| ≤ M for all t ≥ Ty, where M is a positive constant. Since lim

t→∞
g(t) = ∞, then there

exists a t1 > t0 such that g(t) ≥ Ty for t ≥ t1. In view of the assumption lim
t→∞

q′(t)
p(t) = ∞,

it follows that there exists a t2 ≥ t1 such that q′(t) ≥ Mα−1p(t) for t ≥ t2. Now, if
possible, let y(t) be of non-negative Z–type solution with consecutive double zeros at a

and b (t2 < a < b) such that y(t) > 0 for t ∈ (a, b). Thus, there exists c ∈ (a, b) such
that y′(c) = 0 and y′(t) > 0 for t ∈ (a, c). Clearly, y′′(a) ≥ 0 and y′′(c) ≤ 0 . Thereby,
integrating (1) from a to c, we obtain

0 > −

∫ c

a

q(t)y′(t) dt −

∫ c

a

p(t)yα(g(t)) dt

≥ −q(c)y(c) +

∫ c

a

q′(t)y(t) dt −

∫ c

a

p(t)yα(g(t)) dt

≥

∫ c

a

q′(t)y(t) dt −

∫ c

a

Mα−1p(t)y(g(t)) dt

≥

∫ c

a

[

q′(t) − Mα−1p(t)
]

y(g(t)) dt > 0

or

≥

∫ c

a

[

q′(t) − Mα−1p(t)
]

y(t) dt > 0

a contradiction.
Similarly, it can be shown that y(t) can not be of non-positive Z–type solution and

oscillatory. Hence this completes the proof of the theorem. 2

Remark 2.4 N. Parhi and S. Parhi [28; Theorem 6] proved a result, when g(t) = t

in (1), under the conditions p(t) ≥ 0, q(t) ≤ 0, q′(t) ≥ 0 and lim
t→∞

q′(t)
p(t) = ∞. Our

conditions and equation (1) are different from the equation considered and the conditions
established by N. Parhi and S. Parhi [28; Theorem 6].

3 Non-Oscillation Behaviors of Solutions of (2)

In this section, some results have been proved for non-oscillation of all bounded solutions
of (2). The first one is the following.

Theorem 3.1 Let q(t) ≤ 0. If lim
t→∞

f(t)
|p(t)| = ∞, the all bounded solutions of (2) are

non-oscillatory.

Proof Let y(t) be a bounded solution of equation (2) on [Ty, ∞), Ty > 0, such that
|y(t)| ≤ M . Because of lim

t→∞
g(t) = ∞, there exists a t1 > t0 such that g(t) ≥ Ty for

t ≥ t1. Next, since lim
t→∞

f(t)
|p(t)| = ∞, then it follows that there exists a t2 ≥ t1 such that

f(t) > Mα|p(t)| for t ≥ t2, where M is a positive constant and α is defined as the same in
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(2). Now, if possible let y(t) be of non-negative Z -type solution with consecutive double
zeros at a and b (t2 < a < b) such that y(t) > 0 for t ∈ (a, b). So, there exists c ∈ (a, b)
such that y′(c) = 0 and y′(t) > 0 for t ∈ (a, c). Multiplying equation (2) through by
y′(t), we get

(r(t)y′(t)y′′(t))
′
= r(t) (y′′(t))

2
−q(t) (y′(g1(t)))

β
y′(t)−p(t)yα(g(t))y′(t)+f(t)y′(t). (5)

Integrating (5) from a to c , we get

0 =

∫ c

a

[

r(t) (y′′(t))
2
− q(t) (y′(g1(t))) βy′(t)

]

dt +

∫ c

a

[f(t) − p(t)yα(g(t))] y′(t) dt

≥

∫ c

a

[f(t) − p(t)yα(g(t))] y′(t) dt

≥

∫ c

a

[f(t) − Mα|p(t)| ] y′(t) dt > 0,

a contradiction.
Let y(t) be of non-positive Z–type solution with consecutive double zeros at a and b

(t2 < a < b). Then, there exists c ∈ (a, b) such that y′(c) = 0 and y′(t) > 0 for t ∈ (c, b).
Integrating (5) from c to b, we have

0 =

∫ b

c

[

r(t) (y′′(t))
2
− q(t) (y′(g1(t)))

β
y′(t)

]

dt +

∫ b

c

[f(t) − p(t)yα(g(t))] y′(t) dt

≥

∫ b

c

[f(t) − |p(t)| |yα(g(t))| ] y′(t) dt ≥

∫ b

c

[f(t) − Mα|p(t)| ] y′(t) dt > 0,

a contradiction.
Now, if possible let y(t) be oscillatory with consecutive double zeros at a, b and a′

(t2 < a < b < a′) such that y′(a) ≤ 0, y′(b) ≥ 0, y′(a′) ≤ 0, y(t) < 0 for t ∈ (a, b)
and y(t) > 0 for t ∈ (b, a′). Therefore, there exist c ∈ (a, b) and c′ ∈ (b, a′) such that
y′(c) = y′(c′) = 0 and y′(t) > 0 for t ∈ (c, b) and t ∈ (b, c′). Now, integrating (5) from c

to c′, we obtain

0 =

∫ c′

c

[

r(t) (y′′(t))
2
− q(t) (y′(g1(t)))

β
y′(t)

]

dt +

∫ c′

c

[f(t) − p(t)yα(g(t))] y′(t) dt

≥

∫ b

c

[f(t) − p(t)yα(g(t))] y′(t) dt +

∫ c′

b

[f(t) − p(t)yα(g(t))] y′(t) dt

≥

∫ b

c

[f(t) − |p(t)| |yα(g(t))| ] y′(t) dt +

∫ c′

b

[f(t) − |p(t)| |yα(g(t))| ] y′(t) dt

≥

∫ b

c

[f(t) − Mα|p(t)| ] y′(t) dt +

∫ c′

b

[f(t) − Mα|p(t)| ] y′(t) dt > 0,

a contradiction. Hence y(t) is non-oscillatory. 2

Remark 3.1 For the special case g(t) = g1(t) = 0 in (2), under the acceptations

p(t) ≥ 0, q(t) ≤ 0 and lim
t→∞

f(t)
p(t) = ∞, Theorem 3.1 has been proved by N. Parhi and

S. Parhi [26]. Our result improves the result established in N. Parhi and S. Parhi [26].
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Theorem 3.2 If lim
t→∞

f(t)

|p(t)| + |q(t)|
= ∞, the all solutions of equation (2), which

are bounded together with their first derivatives, are non-oscillatory.

Proof Let y(t) be a solution of (2) on [Ty, ∞), Ty > 0, such that y(t) and y′(t)
are bounded. Hence, there exists positive constants M1 and M2 such that |y(t)| ≤ M1

and |y′(t)| ≤ M2 for all t ≥ Ty. Further, in view of lim
t→∞

g(t) = ∞ and lim
t→∞

g1(t) = ∞,

it follows that there exists a t0 > 0 such that g(t) ≥ Ty and g1(t) ≥ Ty for t ≥ t0.

Next, owing to the fact lim
t→∞

f(t)

|p(t)| + |q(t)|
= ∞, clearly, there exists a t1 > t0 such that

f(t) > L(|p(t)|+ |q(t)|) for all t ≥ t1. Now, if possible let y(t) be of non-negative Z–type
solution with consecutive double zeros at a and b (t1 < a < b) such that y(t) > 0 for
t ∈ (a, b). Thus, there exists c ∈ (a, b) such that y′(c) = 0 and y′(t) > 0 for t ∈ (a, c).
Integrating (5) from a to c, we obtain

0 =

∫ c

a

r(t) (y′′(t))
2

dt +

∫ c

a

[

f(t) −
{

q(t) (y′(g1(t)))
β

+ p(t)yα(g(t))
}]

y′(t) dt

≥

∫ c

a

[

f(t) −
{

M
β
2 |q(t)| + Mα

1 |p(t)|
}]

y′(t) dt

≥

∫ c

a

[f(t) − L {|q(t)| + |p(t)|}] y′(t) dt > 0,

a contradiction, where L = max
{

Mα
1 , M

β
2

}

.

Now, if possible, let y(t) be of non-positive Z–type solution with consecutive double
zeros at a and b (t1 < a < b). Then, there exists c ∈ (a, b) such that y′(c) = 0 and
y′(t) > 0 for t ∈ (c, b).

Integrating (5) from c to b, we have

0 =

∫ b

c

[

r(t) (y′′(t))
2
− q(t) (y′(g1(t)))

β
y′(t) − p(t)yα(g(t))y′(t) + f(t)y′(t)

]

dt

≥

∫ b

c

[

f(t) −
{

M
β
2 |q(t)| + Mα

1 |p(t)|
}]

y′(t) dt

≥

∫ c

a

[f(t) − L {|q(t)| + |p(t)|}] y′(t) dt > 0,

a contradiction, where L = max
{

Mα
1 , M

β
2

}

.

Finally, if possible, let y(t) be oscillatory with consecutive double zeros at a, b and
a′ (t1 < a < b < a′) such that y′(a) ≤ 0, y′(b) ≥ 0, y′(a′) ≤ 0, y(t) < 0 for t ∈ (a, b) and
y(t) > 0 for t ∈ (b, a′). So, there exist c ∈ (a, b) and c′ ∈ (b, a′) such that y′(c) = y′(c′) = 0
and y′(t) > 0 for t ∈ (c, b) and t ∈ (b, c′). Integrating (5) from c to c′, we have

0 =

∫ c′

c

r(t) (y′′(t))
2

dt +

∫ c′

c

[

f(t) − q(t) (y′(g1(t)))
β
− p(t)yα(g(t))

]

y′(t) dt

≥

∫ c′

c

[

f(t) −
{

M
β
2 |q(t)| + Mα

1 |p(t)|
}]

y′(t) dt

≥

∫ c′

c

[f(t) − L {|q(t)| + |p(t)|}] y′(t) dt > 0,
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a contradiction, where L = max
{

Mα
1 , M

β
2

}

. Therefore, we conclude that y(t) is non-

oscillatory. Thus the theorem is proved. 2

Remark 3.2 For the special case g(t) = g1(t) = t and α = β in (2), subject to the

assumptions p(t) ≥ 0, q(t) ≥ 0 and lim
t→∞

f(t)

p(t) + q(t)
= ∞, Theorem 3.2 has been proved

by Tunç [34]. Our result improves the result established in Tunç [34].

Theorem 3.3 Consider equation (2) with α = β and g(t) = g1(t). Let p(t) ≥ 0. If

lim
t→∞

f(t)

|q(t)| + p(t)(g(t))α
= ∞, then all bounded solutions of equation (2), for which their

first derivatives, y′(t), are also bounded for large t, are non-oscillatory.

Proof Let y(t) be a solution of equation (2) on [Ty, ∞), Ty > 0, such that y(t) and
y′(t) are bounded. So, there exists positive constants M1 and M2 such that |y(t)| ≤ M1

and |y′(t)| ≤ M2 for all t ≥ Ty. Next, from the fact lim
t→∞

g(t) = ∞, it follows that there

exists a t0 > 0 such that g(t) ≥ Ty for t ≥ t0. By virtue of lim
t→∞

f(t)

|q(t)| + p(t)(g(t))α
= ∞,

evidently, there exists a t1 > t0 such that f(t) > L[|q(t)| + p(t)(g(t))α] for all t ≥ t1,
where L = max {Mα

1 , Mα
2 }. Now, if possible, let y(t) be of non-negative Z–type solution

with consecutive double zeros at a and b (t1 < a < b) such that y(t) > 0 for t ∈ (a, b).
So, there exists c ∈ (a, b) such that y′(c) = 0 and y′(t) > 0 for t ∈ (a, c). Consequently,
there exists d ∈ (a, c) such that y′′(d) = 0 and y′′(t) > 0 for t ∈ (a, d). Next, clearly,

y′(t) ≥ y(t)
t

for large t1 and t ∈ [a, d]. Hence, y′(g(t)) ≥
y(g(t))

g(t)
for large t1 and t ∈ [a, d].

Now, integrating equality (5) from a to d, we obtain

0 >

∫ d

a

r(t) (y′′(t))
2

dt +

∫ d

a

[

f(t) −
{

q(t) (y′(g1(t)))
α

+ p(t)yα(g(t))
}]

y′(t) dt

>

∫ d

a

[

f(t) − {|q(t)| + p(t)(g(t))α} (y′(g(t))
α]

y′(t) dt

>

∫ d

a

[f(t) − Mα
2 {|q(t)| + p(t)(g(t))α}] y′(t) dt > 0,

a contradiction.
If possible, let y(t) be of non-positive Z–type solution with consecutive double zeros

at a and b (t1 < a < b) . Then, there exists c ∈ (a, b) such that y′(c) = 0 and y′(t) > 0
for t ∈ (c, b).

Integrating (5) from c to b yields

0 =

∫ b

c

[

r(t) (y′′(t))
2
− q(t) (y′(g1(t)))

α
y′(t) − p(t)yα(g(t))y′(t) + f(t)y′(t)

]

dt

≥

∫ b

c

[

f(t) − q(t) (y′(g1(t)))
α]

y′(t) dt ≥

∫ b

c

[

f(t) − |q(t)| (y′(g1(t)))
α]

y′(t) dt

≥

∫ b

c

[f(t) − Mα
2 |q(t)|] y′(t) dt > 0,

a contradiction.
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Now, if possible let y(t) be oscillatory with consecutive double zeros at a, b and a′

(t1 < a < b < a′) such that y′(a) ≤ 0, y′(b) ≥ 0, y′(a′) ≤ 0, y(t) < 0 for t ∈ (a, b)
and y(t) > 0 for t ∈ (b, a′). Thus, there exist c ∈ (a, b) and c′ ∈ (b, a′) such that
y′(c) = y′(c′) = 0 and y′(t) > 0 for t ∈ (c, b) and t ∈ (b, c′). Integrating (5) from c to b,
we have

0 ≥ r(b)y′(b)y′′(b)

=

∫ b

c

[

r(t) (y′′(t))
2
− q(t) (y′(g1(t)))

α
y′(t) − p(t)yα(g(t))y′(t) + f(t)y′(t)

]

dt

≥

∫ b

c

[

f(t) − q(t) (y′(g(t)))
α]

y′(t) dt ≥

∫ b

c

[

f(t) − |q(t)| (y′(g(t)))
α]

y′(t) dt

≥

∫ b

c

[f(t) − Mα
2 |q(t)|] y′(t) dt > 0,

a contradiction. In conclusion, y′′(b) > 0. Besides, since y′′(c′) < 0, there exists d ∈ (b, c′)

such that y′′(d) = 0 and y′′(t) > 0 for t ∈ [b, d). For that reason, y′(t) ≥ y(t)
t

for t ∈ [b, d]
and for sufficiently large t1. Again, integrating equality in (5) from b to d, we get

0 ≥ −r(b)y′(b)y′′(b)

=

∫ d

b

r(t) (y′′(t))
2

dt +

∫ d

b

[

f(t) − q(t) (y′(g1(t)))
α
− p(t)yα(g(t))

]

y′(t)dt

>

∫ d

b

[

f(t) − { |q(t)| + p(t)(g(t))α} (y′(g(t)))
α]

y′(t) dt

>

∫ d

b

[f(t) − Mα
2 { |q(t)| + p(t)(g(t))α}] y′(t) dt,

a contradiction. This completes the proof of the theorem. 2

Remark 3.3 Theorem 3.3 includes, respectively, the results obtained by Tunç [33,
Theorem 7] and improves the result established by of S. Parhi and N. Parhi [27, Theorem
2.5, Theorem 2.6].

Theorem 3.4 Let q(t) ≤ 0. If f(t) ≥ Kα|p(t)| for large t, where K is a positive
constant and α is defined as the same in equation (2). Then all solutions y(t) of (2), which
satisfy the inequality y(g(t)) ≤ K in any interval where y(t) > 0, are non-oscillatory.

Proof The proof of the theorem is straightforward and hence is omitted. 2

Remark 3.4 It should be noted that Theorem 3.4 is different than Theorem 2.3 just
proved above because of β 6= 1 and g1(t) 6= t.

References

[1] Adamets, L. and Lomtatidze, A. Oscillation conditions for a third-order linear equation.
Differ. Uravn. 37(6) (2001) 723–729, 861. [Russian]. Translation in Differ. Equ. 37(6) (2001)
755–762.

[2] Agarwal, R.P., Grace, S.R. and O’Regan, D. Non-oscillatory solutions for higher order
dynamic equations. J. London Math. Soc. (2) 67 (2003)(1) 165–179.



NONLINEAR DYNAMICS AND SYSTEMS THEORY, 7(4) (2007) 419–430 429

[3] Agarwal, R.P., Grace, S.R. and Wong, P.J.Y. On the bounded oscillation of certain fourth
order functional differential equations. Nonlinear Dyn. Syst. Theory 5 (2005) 215–227.

[4] Agarwal, R.P., Grace, S.R. and Smith, T. Oscillation of certain third order functional
differential equations. Adv. Math. Sci. Appl. 16(1) (2006) 69–94.

[5] Candan, T. and Dahiya, R.S. Oscillation of third order nonlinear differential equations with
and without delay. Int. J. Differ. Equ. Appl. 4(2) (2002) 125–139.

[6] Dub, S.G. and Mingarelli, A.B. A non-oscillation theorem for differential matrix systems.
J. Math. Anal. Appl. 306(1) (2005) 349–363.

[7] Grace, S.R. and Lalli, B.S. On oscillation and nonoscillation of general functional-
differential equations. J. Math. Anal. Appl. 109(2) (1985) 522–533.

[8] Graef, J.R. and Gregus, M. Oscillatory properties of solutions of certain nonlinear third
order differential equations. Nonlinear Stud. 7(1) (2000) 43–50.

[9] Hartman, P. Ordinary Differential Equations. (Corrected reprint of the second (1982) edi-
tion), Classics in Society for Industrial and Applied Mathematics (SIAM), Philadelphia,
PA, 2002.

[10] Kartsatos, A.G. and Manougian, M.N. Perturbations causing oscillations of functional-
differential equations. Proc. Amer. Math. Soc. 43 (1974) 111–117.

[11] Kusano, T. and Onose, H. Nonlinear oscillation of a sublinear delay equation of arbitrary
order. Proc. Amer. Math. Soc. 40 (1973) 219–224.

[12] Kusano, T. and Onose, H. Oscillations of functional differential equations with retarded
argument. J. Differential Equations 15 (1974) 269–277.

[13] Nayak, P.C. and Choudhury, R. Oscillation and nonoscillation theorems for third order
functional-differential equation. J. Indian Math. Soc. ( N. S.) 62(1–4) (1996) 89–96.

[14] Padhi, S. On oscillatory solutions of third order differential equations. Mem. Differential
Equations Math. Phys. 31 (2004) 109–111.

[15] Padhi, S. On oscillatory linear third order forced differential equations. Differential Equa-
tions Dynam. Systems 13(3–4) (2005) 343–358.

[16] Parhi, N. Nonoscillatory behaviour of solutions of nonhomogeneous third order differential
equations. Applicable Anal. 12(4) (1981) 273–285.

[17] Parhi, N. Nonoscillation of solutions of a class of third order differential equations. Acta
Math. Hungar. 54(1–2) (1989) 79–88.

[18] Parhi, N. Sufficient conditions for oscillation and nonoscillation of solutions of a class of
second order functional-differential equations. Analysis 13(1–2) (1993) 19–28.

[19] Parhi, N. On non-homogeneous canonical third-order linear differential equations. J. Aus-
tral. Math. Soc. Ser. A 57(2) (1994) 138–148.

[20] Parhi, N. and Das, P. Oscillation criteria for a class of nonlinear differential equations of
third order. Ann. Polon. Math. 57(3) (1992) 219–229.

[21] Parhi, N. and Das, P. On asymptotic property of solutions of linear homogeneous third
order differential equations. Boll. Un. Mat. Ital. B (7) 7(4) (1993) 775–786.

[22] Parhi, N. and Das, P. Oscillatory and asymptotic behaviour of a class of nonlinear
functional-differential equations of third order. Bull. Calcutta Math. Soc. 86(3) (1994) 253–
266.

[23] Parhi, N. and Das, P. On nonoscillation of third order differential equations. Bull. Inst.
Math. Acad. Sinica 22(3) (1994) 267–274.

[24] Parhi, N. and Padhi, S. On oscillatory linear differential equations of third order. Arch.
Math. (Brno) 37(1) (2001) 33–38.



430 CEMIL TUNÇ
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