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Abstract: The paper proposes a method for observer design for a class of
nonlinear systems. We decompose the system using a weaker concept than the
relative degree. We provide sufficient conditions for global asymptotic stability
of the error dynamics. The observer design is carried out by means of a change
of coordinates combined with a high gain technique. In particular, our approach
results in an observer gain vector field which is extraordinary easy to compute.
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1 Introduction

We consider the problem of observer design for nonlinear single-input single-output sys-
tems. A particularly interesting class of design methods use differential geometric con-
cepts. These design methods are based on various normal forms. In [19, 3], the observer
canonical form consisting of a linear output map and linear dynamics driven by a non-
linear output injection is used. The resulting observer has exactly linear error dynamics,
i.e., nonlinearities are compensated exactly. The approaches suggested in [13, 9, 10, 5]
rely on the observability canonical form, which has significantly weaker existence condi-
tions than the observer canonical form. In the observability canonical form, the observer
is designed by a high-gain technique with a constant observer gain, i.e., the nonlineari-
ties are not compensated but dominated by a linear part. For an implementation of the
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observer in the original coordinates one gets a Luenberger-like observer with a possibly
nonlinear gain vector field.

In the last decade, new approaches have been developed for nonlinear systems that
are not uniformly observable. Several approaches use Kalman-like decompositions, see [1,
17, 18, 26]. For example, the observer design method suggested in [17] uses the Byrnes-
Isidori normal form [6, 7] in almost the same way as the observability canonical form is
used in [13, 9, 10]. Similarly, the partial observer canonical form used in [18] generalizes
the design method given in [19].

For the observability canonical form, the change of coordinates is explicitly given in
terms of iterated Lie derivatives of the system’s output map. In contrast to that, the
transformation into the Byrnes-Isidori normal form is not unique. Although this non-
uniqueness offers some degrees of freedom that may be utilized by an experienced control
engineer, it makes a symbolic implementation by means of computer algebra systems less
straight forward.

In this work we use a weaker concept than the well-known relative degree [10]. The
observer design uses a normal form similar to the Byrnes-Isidori normal form. Our work
is strongly related to [17], but in contrast to [17] we exploit possible degrees of freedom in
the change of coordinates to obtain an explicit expression of the observer gain. Similar as
in [16], our approach may even be applicable for systems with ill-defined relative degree.
This paper extends preliminary results presented in [26].

The paper is structured as follows. In Section 2 we suggest a decomposition of the
system. Section 3 presents an observer and conditions for global asymptotic convergence
of the error dynamics. The main contribution of the paper is presented in Section 4,
where we suggest a new approach to compute the observer gain. The design method is
demonstrated on an example in Section 5.

2 Preliminaries

Consider a nonlinear single-input single-output system

ẋ = f(x) + g(x)u, y = h(x), (1)

with smooth maps f, g : Ω → R
n and h : Ω → R defined on an open and connected

subset Ω ⊆ R
n. We assume that Ω is positively invariant under the dynamics of (1).

The notation used in this paper is common in context of differential-geometric control
theory (see [14, 22]). In particular, the Lie derivative of h along f is given by Lfh(x) =
〈dh(x), f(x)〉, where dh = h′ denotes the gradient of h and 〈·, ·〉 is the inner product.
Iterated Lie derivatives are defined by Lk+1

f h(x) = Lf(Lk
fh(x)) with L0

fh(x) = h(x). The
Lie bracket of two vector fields f and g is given by [f, g](x) = g′(x)f(x)−f ′(x)g(x). The
Euclidean norm of a vector x is noted by ‖x‖.

The decomposition of system (1) is based on the following assumption [10]:

A1 System (1) has an observation relative degree r < n in Ω, i.e., LgL
k
fh(x) = 0 ∀x ∈ Ω

and for k = 0, . . . , r− 2, and ∃x ∈ Ω with LgL
r−1
f h(x) 6= 0. Moreover, the covector

fields dh, dLfh, . . . , dLr−1
f h are linearly independent in Ω.

The concept of an observation relative degree is weaker than the well-known rela-
tive degree. In particular, assumption A1 may hold for systems with ill-defined relative
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degree. Clearly, if system (1) has an uniform relative degree r it also has the obser-
vation relative degree r. In this case, the covector fields occurring in A1 are linearly
independent [14, Lemma 4.1.1].

Assumption A1 guarantees that for each x0 ∈ Ω there exists a neighborhood U ⊆ Ω
and smooth functions φr+1, . . . , φn : U → R such that the map (z, η) = Φ(x) defined by

zi = Li−1
f h(x) for i = 1, . . . , r;

ηj = φj+r(x) for j = 1, . . . , n − r
(2)

with z = (z1, . . . , zr)
T and η = (η1, . . . , ηn−r)

T is a local diffeomorphism. This diffeo-
morphism transforms system (1) into

ż = Az + b(α(z, η) + β(z, η)u), y= cT z, (3a)

η̇ = q(z, η) + p(z, η)u, (3b)

with possibly nonlinear maps

α(z, η) = Lr
fh(Φ−1(z, η)), β(z, η) = LgL

r−1
f h(Φ−1(z, η)),

qi(z, η) = Lfφr+i(Φ
−1(z, η)), pi(z, η) = Lgφr+i(Φ

−1(z, η))

for i = 1, . . . , n − r. The triple (A, b, c) is in Brunovsky form

A =













0 1 · · · 0

0 0
. . .

...
. . . 1

0 0 · · · 0













∈ R
r×r, b =











0
...
0
1











∈ R
r, c =











1
0
...
0











∈ R
r. (4)

The functions φr+1, . . . , φn are not uniquely determined. If system (1) has a well-
defined relative degree, these functions can be chosen such that

∀x ∈ U : Lgφi(x) = 0 for i = r + 1, . . . , n, (5)

where in the normal form (3b) we have pi ≡ 0 for i = 1, . . . , n − r. In this special case,
equation (3) becomes the Byrnes-Isidori normal form [7], because the second subsys-
tem (3b) of (3) does not explicitly depend on the input u. In general, the choice of the
functions φi in (5) is rather difficult (see [15]), and only in particular cases (e.g. textbook
examples) the choice is easy.

3 Observer Setup

We propose an observer for system (1) based on the form (3). The first subsystem (3a)
is observable since z1 = y, z2 = ẏ, . . . , zr = y(r−1). For this subsystem we design a
high-gain observer [13, 9, 10]. Similar as in [17] we suggest an observer of the structure

˙̂z = Aẑ + b(α(ẑ, η̂) + β(ẑ, η̂)u) + k(y − cT ẑ), (6a)

˙̂η = q(ẑ, η̂) + p(ẑ, η̂)u (6b)

with the constant gain vector k ∈ R
r. In the original coordinates the observer (6) has

the form
˙̂x = f(x̂) + g(x̂)u + l(x̂)(y − h(x̂)) (7)
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with the gain

l(x̂) = (Φ′(x̂))−1

(

k

0

)

. (8)

Because in (6) the observer gain interacts only with the first subsystem (6a), we augment
in (8) the gain vector k by an (n − r)-dimensional zero vector.

The convergence analysis for system (1) and observer (7) is carried out in the normal
form (3) and (6), respectively. The observation errors z̃ = z − ẑ and η̃ = η − η̂ are
governed by the error dynamics

˙̃z = (A − kcT )z̃ + b(α(z, η) + β(z, η)u − α(ẑ, η̂) − β(ẑ, η̂)u), (9a)

˙̃η = q(z, η) + p(z, η)u − q(ẑ, η̂) − p(ẑ, η̂)u. (9b)

The dynamics of subsystem (9a) can be influenced by the gain vector k = (k1, . . . , kr)
T .

The linear part of this subsystem has the characteristic polynomial

det(λI − (A − kcT )) = λr + k1λ
r−1 + · · · + kr−1λ + kr. (10)

We need the following assumptions:

A2 The map Φ given in (2) is defined on whole Ω and diffeomorphic onto its image
Φ(Ω), i.e., Φ is a global diffeomorphism.

A3 The maps α and β are globally Lipschitz, i.e., there exist constants γ1, γ2 > 0 such
that

|α(z, η) + β(z, η)u − α(ẑ, η̂) − β(ẑ, η̂)u| ≤ γ1‖z − ẑ‖ + γ2‖η − η̂‖ (11)

for all (z, η), (ẑ, η̂) ∈ Φ(Ω) and bounded u.

A4 There exist a positive definite matrix P2 ∈ R
(n−r)×(n−r) and constants γ3, γ4 > 0

such that for V2(η̃) = η̃T P2η̃ we have

∂V2(η̃)

∂η̃
(q(z, η) + p(z, η)u − q(ẑ, η̂) − p(ẑ, η̂)u) ≤ γ3‖z − ẑ‖2 − γ4‖η − η̂‖2 (12)

for all (z, η), (ẑ, η̂) ∈ Φ(Ω) and any bounded u.

From A1 we already concluded that Φ is a local diffeomorphism. Conditions for
Φ to be a global diffeomorphism as required in A2 are presented in [28, 4, 25]. A3
is a standard assumption in high gain design [24]. Assumption A4 means that the
subsystem (3b) possesses a global steady state solution property [1]. If one considers
the full state z of the observable subsystem (3a) as an output, the function V2 becomes
a global exponential-decay output-to-state stable (OSS) Lyapunov function [27]. This
is a cruicial difference to assumption H3 of [17], where a classical (not OSS) Lyapunov
function is required for the second subsystem. Note that the property A4 depends on
the coordinate transformation (2), especially on the choice of the functions φi for i =
r + 1, . . . , n. Similar as H3 in [17], this property is difficult to check.

Theorem 3.1 Consider system (1) with the observer (7). Assume that the input u

is bounded and conditions A1-A4 hold, where r denotes the observations relative degree.

Then, there exist a vector k ∈ R
r such that lim

t→∞

‖x(t)− x̂(t)‖ = 0 for all x(0), x̂(0) ∈ Ω.
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The proof of Theorem 3.1 is shown in the appendix. In [9, 10], the vector k is
chosen such that the roots λ1, . . . , λr of (10) are placed at λi = −θi for i = 1, . . . , r and
sufficiently large θ > 0. The technique suggested in [13] corresponds to the multiple root
λi = −θ for i = 1, . . . , r. A general discussion about the computation of the constant
observer gain for high-gain design can be found in [24].

4 Observer Gain Based on the Moore-Penrose Inverse

Up to now, one has to compute the n−r gradients dφr+1, . . . , dφn. To obtain the Byrnes-
Isidori normal form, these gradients must additionally satisfy (5). In the following, we
consider a special choice of the nonlinear observer gain vector field (8), which can be
computed directly, i.e., without an explicit knowledge of these gradients.

The Jacobian matrix of the transformation (2) is split up into two parts, where the
first r rows consisting of gradients of Lie derivatives form a reduced observability matrix

Q(x) =







dh(x)
...

dLr−1
f h(x)






. (13)

There remaining n − r rows are collected in a matrix

R(x) =







dφr+1(x)
...

dφn(x)






. (14)

Matrix Q results directly from system (1), whereas the matrix R is not uniquely deter-
mined. However, the observer gain in (7) depends also on R:

l(x) = (Φ′(x))
−1

(

k

0

)

=

(

Q(x)
R(x)

)−1 (

k

0

)

. (15)

In the following we suggest an observer gain, in which the matrix R does not occur. In
particular, if the rows of (13) and (14) are orthogonal to each other, that is

∀x ∈ Ω : R(x)QT (x) = 0, (16)

the observer gain (15) becomes

l(x) =

(

Q(x)
R(x)

)−1 (

k

0

)

=
(

Q+(x) |R+(x)
)

(

k

0

)

= Q+(x) k, (17)

which depends explicitly only on the reduced observability matrix Q, where Q+ denotes
the Moore-Penrose inverse of Q, see [21, 23].

Clearly, the gain (17) is a special case of (15). The cruicial question is whether the
functions φr+1, . . . , φn in (14) can be chosen such that condition (16) holds. To formulate
the existence conditions, we consider the matrix Q+(x). This matrix is well-defined and
smooth on Ω because of A1. The columns of Q+ are vector fields:

Q+(x) = (τ1(x), . . . , τr(x)) . (18)

We need the following assumptions:
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A5 The distribution
∆(x) = span{τ1(x), . . . , τr(x)} (19)

spanned by the columns of Q+(x) is involutive, i.e., for every two vector fields
τ1, τ2 ∈ ∆ there holds [τ1, τ2] ∈ ∆.

A6 The vector fields τ1, . . . , τr are complete.

Theorem 4.1 Suppose system (1) fulfills A1, A5 and A6. Then, there exists a global

diffeomorphism of the form (2), for which the observer gain (15) becomes (17).

Proof The rows of Q are linearly independent due to A1. Therefore, the distribu-
tion ∆ is regular with rank r. Then, the distribution ∆ is integrable by the Theorem
of Frobenius [14, p. 23], i.e., for any x0 ∈ Ω there exist a neighbourhood U and smooth
functions φr+1, . . . , φn such that

∀x ∈ U : 〈dφi(x), τj(x)〉 = 0 (20)

for j = 1, . . . , r and i = r + 1, . . . , n. In addition the covector fields dφr+1, . . . , dφn are
linearly independent. Equation (20) is equivalent to R(x)Q+(x) = 0 for all x ∈ U . From
Q+ = QT (QQT )−1 we get (16) on U . Therefore, the observer gain (15) becomes (17)
on U .

Now, we want to address global aspects. The proof of the Theorem of Frobenius is
constructive, see [14]. In particular, the construction of the maps φr+1, . . . , φn is based on
the flows of the vector fields τ1, . . . , τr. These vector fields are complete by A6. Moreover,
we can always augment ∆(x) to R

n using a basis of complete vector fields τr+1, . . . , τn.
The map Ψ(z, η) = ϕτ1

z1
◦ · · · ◦ϕτr

zr
◦ϕ

τr+1

η1 ◦ · · · ◦ϕτn

ηn−r
(x0) with arbitrary x0 ∈ Ω, in which

ϕτi

t denotes the flow of a vector field τi, is a global diffeomorphism onto Ω due to the
completeness of the vector fields τ1, . . . , τn, see [25]. This implies that Φ := Ψ−1 is also
a global diffeomorphism. The maps φr+1, . . . , φn are the last n − r components of Ψ−1.
Therefore, these maps are defined on whole Ω, and (20) holds globally.

Instead of (5), which can be written as 〈dφi, g〉 = 0, the additional functions
φr+1, . . . , φn now satisfy (20). However, to obtain the observer gain (17) we neither
have to compute the functions φi nor the gradients dφi for i = r + 1, . . . , n. If we also
have g ∈ ∆, the second subsystem does not directly depend on u, i.e., in this case the
observer design is carried out in the Byrnes-Isidori form as in [17], but without an ex-
plicit computation the zero dynamics. Condition A5 always holds for r ∈ {1, n}, where
for r = n we also have Q(x) = Φ′(x) and Q+(x) = (Φ′(x))−1, by which we obtain the
observer gain given in [13, 9, 10].

Note that one could in principle design an observer gain vector field like (17) with
an arbitrary generalized inverse [2, 8] of the reduced observability matrix (13) to project
the correction term k(y − h(x̂)) to observable dynamics of the first subsystem. However,
the crucial contribution of Theorem 4.1 is the insight, that the Moore-Penrose inverse
used in (17) is part of a change of coordinates (2). Our observer is similar to that in [20]
and [11], but derived by a different framework.

Combining Theorem 3.1 and 4.1 results in the following conclusion.

Corollary 4.1 Consider system (1) with the observer (7) and the observer gain (17).
Assume that the input u is bounded and conditions A1 and A3–A6 hold, where r denotes

the observation relative degree. Then, there exist a vector k ∈ R
r such that lim

t→∞

‖x(t) −

x̂(t)‖ = 0 for all x(0), x̂(0) ∈ Ω.
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5 Example

Consider the system

ẋ =









x1x2 − x3
1

x1

−x3

x2
1 + x2









+









0
2 + 2x3

1
0









u, y = x4, (21)

taken from [14, p. 146] on Ω = R
4. From Lgh(x) ≡ 0 and LgLfh(x) = 2(1 + x3) we

conclude that system (21) has the observation relative degree r = 2. System (21) also
has relative degree r = 2 if x3 6= −1. The first two components of the transformation (2)
are φ1(x) = h(x) = x4 and φ2(x) = Lfh(x) = x2 + x2

1. First, we design the observer
as in [17] based on the Byrnes-Isidori normal form. The components φ3 and φ4 must
satisfy (5), that is

Lgφi(x) = (2 + 2x3)
∂φi

∂x2
+

∂φi

∂x3
= 0 (22)

for i = 3, 4. Two independent choices are φ3(x) = x2 − 2x3 − x2
3 and φ4(x) = x4, from

which we obtain the Jacobian matrix

Φ′(x) =









0 0 0 1
2x1 1 0 0
0 1 −2 − 2x3 0
1 0 0 0









. (23)

This Jacobian is singular if x3 = −1. The singularity occurs on the same set where the
relative degree is not defined. As a consequence, the observer gain (15) given by

l(x) =











0
k2

k2

2 + 2x3
k1











(24)

has a pole for x3 = −1, i.e., the gain (24) is not defined for all x ∈ Ω.
Now, we consider the approach suggested in Sect. 4. We have

Q+(x) = (τ1(x), τ2(x)) =















0
2x1

4x2
1 + 1

0
1

4x2
1 + 1

0 0
1 0















, (25)

where the vector fields τ1 and τ2 are the first and second column of Q+, respectively.
Condition A5 is fulfilled since [τ1, τ2] ≡ 0. Note that these vector fields are complete.
The observer gain can be computed directly from (17). We get

l(x) =















2k2x1

4x2
1 + 1
k2

4x2
1 + 1
0
k1















. (26)
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In several simulation scenarios, the observers (7) with the gain vector fields (24) and (26)
behave similarly. However, in contrast to (24) the new observer gain (26) is well-defined
for all x ∈ Ω.

6 Conclusion

We addressed the problem of observer design for the special class of nonlinear systems.
Similar as in [1, 17, 18, 26], the approach is based on a decomposition of the system into
an observable and a possibly unobservable subsystem. In contrast to previous work, this
paper is dedicated to the actual computation of the observer gain vector field. We exploit
degrees of freedom to get an observer gain, whose symbolic computation is straight-
forward. In particular, the observer gain is an immediate generalization of the gain
vector used in [13, 9, 10].
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Appendix A. Proof of Theorem 3.1

The following lemma is a straight consequence of [10, Lemma 3.11]:

Lemma 1 Given A, b, c defined in (4) and arbitrary constants ν, ρ > 0. Then, there exist a

vector k ∈ R
r and a positive definite matrix P such that

(A − kcT )T P + P (A + kcT ) + νPbbT P + ρI < 0, (27)

i.e., the matrix on the left hand side of (27) is negative definite.

Now, we prove Theorem 3.1.

We consider system (1) and observer (7) in the transformed coordinates, namely (3) and (6).
We have to show that the equilibrium point (z̃, η̃) = (0, 0) of the error dynamics (9) is asymp-
totically stable. We choose the candidate Lyapunov function V (z̃, η̃) = z̃T P z̃ + η̃T P2η̃, where
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the positive definite matrix P will be specified later and the positive definite matrix P2 is taken
from A3. Then, we have

V̇ (z̃, η̃)
∣

∣

(9)
= z̃T

[

(A − kcT )T P + P (A + kcT )
]

z̃ + γ3‖z̃‖
2 − γ4‖η̃‖

2

+ 2 z̃T Pb [α(z, η) + β(z, η)u − α(ẑ, η̂) − β(ẑ, η̂)u]
(28)

for all (z, η), (ẑ, η̂) ∈ Φ(Ω) and bounded u. Using (11), the inequality

α(z, η) + β(z, η)u − α(ẑ, η̂) − β(ẑ, η̂)u ≤ 2γ1|z̃
T Pb| · ‖z̃‖ + 2γ2|z̃

T Pb| · ‖η̃‖

≤

(

γ2
1 +

γ2
2

µ

)

z̃P bbT P z̃ + z̃T z̃ + µ η̃T η̃

holds for arbitrary µ > 0, see [10, 24]. We set ν = γ2
1 + γ2

2/µ, ρ = γ3 + 1, where (28) becomes

V̇ (z̃, η̃)
∣

∣

(9)
≤ z̃T

[

(A − kcT )T P + P (A + kcT ) + νPbbT P + ρI
]

z̃ − (γ4 − µ) η̃T η̃.

This quadratic form is negative definite if we choose µ ∈ (0, γ4) and take P and k from Lemma 6.


