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1 Introduction

In applications of neural networks with or without delays to some practical problems,
such as optimization solvers [1], pattern recognition, image compression [2], and quadratic
programming problems [3, 4], the stability properties of system play an important role.
The stability analysis for the neural network has received considerable attention in re-
cent years. It is well known that the stability of neural network is prerequisite for the
applications either as pattern recognition or as optimization solvers. There have been
extensive results presented on the stability analysis of neural network and its applica-
tions. Moreover, parameter fluctuation in neural network implementation on very large
scale integration (VLSI) chips is also unavoidable. This fact implies that a good neural
network should have certain robustness which paves the way for introducing the theory
of interval matrices and interval dynamics to investigate the global stability of interval
neural networks. There exist several related results on robust stability, we refer to [5–9].
In recent years, the dynamics of neural network systems have been deeply investigated
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and many important results on the global asymptotic stability and global exponential
stability have been established(see for example [10–13, 19]).

In this paper, we shall investigate the problem of the robust stability analysis for
nonlinear uncertain neural networks with constant or time-varying delays. Some sufficient
conditions for the delay independent robust stability of the neural networks are developed.
All of the results are presented in terms of linear matrix inequalities (LMIs).

The paper is organized as follows. In Section 2, the problem to be investigated is
stated and some definitions and lemmas are listed. Based on the Lyapunov-Krasovskii
stability theory and the LMI approach, some criteria are obtained in Section 3. Two
cases of time delay, i.e. constant delays case and time-varying delays case are discussed.
Then, an exponential stability criterion for the considered neural networks is provided. A
numerical example is given in Section 4. Finally, some conclusions are drawn in Section 5.

2 System Description and Preliminaries

Consider a nonlinear uncertain neural network with time delay, which is described by a
set of functional differential equations as follows

ẋi(t) = −aixi(t) − adixi(t − τ) +

n
∑

j=1

bijfj [xj(t)]

+
n

∑

j=1

bdijfj [xj(t − τ)] + cigi(xi(t), xi(t − τ)), i = 1, 2, . . . , n,

(1)

or, the considered neural networks can be represented in vector state space form as follows

ẋ(t) = −Ax(t) − A1x(t − τ) + Bf [x(t)] + B1f [x(t − τ)] + Cg(x(t), x(t − τ)), (2)

with initial values
x(t) = φx(t), t ∈ [−τ, 0), (3)

where A = diag(a1, a2, . . . , an), A1 = diag(ad1, ad2, . . . , adn), B = (bij)n×n, B1 =
(bdij)n×n, C = diag(c1, c2, . . . , cn); x(t) = (x1(t), . . . , xn(t))T is the state vector of the
neural network; x(t − τ) = (x1(t − τ), . . . , xn(t − τ))T is the delayed state vector of the
neural networks; τ > 0 denotes the delay; g(x(t), x(t − τ)) is the uncertain perturbation
with the form of g(x(t), x(t − τ)) = [g1(x1(t), x1(t − τ)), . . . , gn(xn(t), xn(t − τ))]T ; the

activation function is f [x(t)] = {f1[x1(t)], . . . , fn[xn(t)]}
T
.

Though out this paper, we assume that the activation function fi[xi(t)] (i =
1, 2, . . . , n) and the nonlinear uncertain perturbation function g(x(t), x(t − τ)) satisfy
the following conditions:

(H1) If there exist positive constants ki, i = 1, . . . , n, such that

0 <
fi(ξ1) − fi(ξ2)

ξ1 − ξ2
≤ ki

for all ξ1, ξ2 ∈ R, ξ1 6= ξ2, i = 1, . . . , n.
(H2) There exist positive constant matrices M and M1, such that

‖g(x(t), x(t − τ))‖ ≤ ‖Mx(t)‖ + ‖M1x(t − τ)‖.

In order to obtain our results, we need the following definitions and lemmas.
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Definition 2.1 For any continuous function V : R → R, Dini’s time-derivative of
V (t) is defined as

D+V (t) = lim
h→0+

sup
V (t + h) − V (t)

h
. (4)

It is easy to see that if V (t) is locally Lipschitz, then |D+V (t)| < ∞.

Lemma 2.1 [14] (Lyapunov-Krasovskii stability theorem) Consider the following
functional-differential equation of the retarded type:

ẋ(t) = f(t, xt), t ≥ t0, xt0 = φ(θ), ∀ θ ∈ [−τ, 0], (5)

where xt(·), for given t ≥ t0, denotes the restriction of x(·) to the interval [t − τ, t]
translated to [−τ, 0], namely xt(θ) = x(t + θ), ∀ θ ∈ [−τ, 0].

Assume that there exists a continuous functional V (t, φ) such that

(i) V1(‖φ(0)‖) ≤ V (t, φ) ≤ V2(‖φ(θ)‖);

(ii) V̇ (t, xt) ≤ −V3(‖x(t)‖),

where V1, V2, V3 : R+ → R+ are continuous nondecreasing functions, V1(s), V2(s) are
positive for s > 0, and V1(0) − V2(0) = 0, V3(s) > 0 for s > 0, and V̇ (t, xt) is Dini’s
time-derivative of V (t, xt) along the solution of equation (5). Then, the trivial solution
of equation (5) is uniformly asymptotically stable.

Notice that condition (i) means that the function V (t, φ) is positive definite and has
an infinitesimal upper limit.

Lemma 2.2 [15] Given any real matrices A,B,C of appropriate dimensions and a
scalar ε > 0 such that 0 < C = CT . Then, the following inequality holds:

AT B + BT A ≤ εAT CA + ε−1BT C−1B, (6)

where the superscript T means the transpose of a matrix.

Lemma 2.3 [15] (Schur complement) Linear matrix inequality:
(

Q(x) S(x)
ST (x) R(x)

)

> 0, (7)

with Q(x) = QT (x), R(x) = RT (x) is the same as

R(x) > 0, Q(x) − S(x)R−1(x)ST (x) > 0.

3 Main Results

In this section, stability criteria for uncertain neural networks with time delay are given.

Theorem 3.1 Consider the delayed neural networks with nonlinear perturbation (1),
if there exist positive matrices X > 0, W > 0, positive diagonal matrices S > 0, S1 > 0,

and constants ξ1 > 0, ξ2 > 0, satisfying the LMI

Ω =













Ω11 XKT XAT
1 XMT

1 XMT

KX −S − S1 0 0 0
A1X 0 −W 0 0
M1X 0 0 −ξ2I 0
MX 0 0 0 −ξ1I













< 0, (8)
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where
Ω11 = −XAT − AX + W + B1S1B

T
1 + C(ξ1 + ξ2)C

T ,

then the system (1) is globally asymptotically stable. Here, K = diag{k1, . . . , kn}.

Proof Consider the Lyapunov functional

V (t) = xT (t)Px(t) +

∫ t

t−τ

fT [x(s)]S−1
1 f [x(s)] ds

+

∫ t

t−τ

xT (s)AT
1 W−1A1x(s) ds + ξ−1

2

∫ t

t−τ

xT (s)MT
1 M1x(s) ds.

(9)

It is easy to obtain

λm(P )‖x(t)‖2 ≤ V (t) ≤
{

λM (P ) + τ
[

λM (KT S−1
1 K)

+ λM (AT
1 W−1A1) + ξ−1

2 λM (MT
1 M1)

]}

‖x(t)‖2,

where λm(P ) and λM (P ) denote the minimum and maximum eigenvalues of P, respec-
tively.

Calculating the upper right derivative D+V of (9) along the solution of (2), we have
that

D+V (t) = ẋT (t)Px(t) + xT (t)P ẋ(t)

+ fT [x(t)]S−1
1 f [x(t)] − fT [x(t − τ)]S−1

1 f [x(t − τ)]

+ xT (t)AT
1 W−1A1x(t) − xT (t − τ)AT

1 W−1A1x(t − τ)

+ ξ−1
2 xT (t)MT

1 M1x(t) − ξ−1
2 xT (t − τ)MT

1 M1x(t − τ)

= {−Ax(t) − A1x(t − τ) + Bf [x(t)]

+ B1f [x(t − τ)] + Cg(x(t), x(t − τ))}
T

Px(t)

+ xT (t)P {−Ax(t) − A1x(t − τ) + Bf [x(t)]

+ B1f [x(t − τ)] + Cg(x(t), x(t − τ))}

+ fT [x(t)]S−1
1 f [x(t)] − fT [x(t − τ)]S−1

1 f [x(t − τ)]

+ xT (t)AT
1 W−1A1x(t) − xT (t − τ)AT

1 W−1A1x(t − τ)

+ ξ−1
2 xT (t)MT

1 M1x(t) − ξ−1
2 xT (t − τ)MT

1 M1x(t − τ).

(10)

From Lemma 2.2 and (10), we have that

D+V (t) ≤ [−xT (t)AT Px(t) − xT (t)PAx(t)]

+ xT (t − τ)AT
1 W−1A1x(t − τ) + xT (t)PWPx(t)

+ fT [x(t)]S−1f [x(t)] + xT (t)PBSBT Px(t)

+ fT [x(t − τ)]S−1
1 f [x(t − τ)] + xT (t)PB1S1B

T
1 Px(t)

+ xT (t)PC(ξ1 + ξ2)C
T Px(t)

+ ξ−1
1 xT (t)MT Mx(t) + ξ−1

2 xT (t − τ)MT
1 M1x(t − τ)

+ fT [x(t)]S−1
1 f [x(t)] − fT [x(t − τ)]S−1

1 f [x(t − τ)]

+ xT (t)AT
1 W−1A1x(t) − xT (t − τ)AT

1 W−1A1x(t − τ)
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+ ξ−1
2 xT (t)MT

1 M1x(t) − ξ−1
2 xT (t − τ)MT

1 M1x(t − τ)

≤ [−xT (t)AT Px(t) − xT (t)PAx(t)] + xT (t)PWPx(t)

+ fT [x(t)]S−1f [x(t)] + xT (t)PBSBT Px(t) + xT (t)PB1S1B
T
1 Px(t)

+ xT (t)PC(ξ1 + ξ2)C
T Px(t) + ξ−1

1 xT (t)MT Mx(t)

+ fT [x(t)]S−1
1 f [x(t)] + xT (t)AT

1 W−1A1x(t) + ξ−1
2 xT (t)MT

1 M1x(t)

≤ xT (t)Ξx(t),

where
Ξ =

[

−AT P − PA + PWP + KT S−1K + PBSBT P

+ PB1S1B
T
1 P + PC(ξ1 + ξ2)C

T P + ξ−1
1 MT M

+ KT S−1
1 K + AT

1 W−1A1 + ξ−1
2 MT

1 M1

]

.

(11)

Pre- and post-multiply (11) with X = P−1. By the Schur complement, Ξ < 0 if and only
if inequality (8) holds.

This completes the proof. 2

Remark 3.1 Noting that the conditions of Theorem 3.1 do not include any infor-
mation of the delay, that is, the theorem provides a delay-independent robust stability
criterion for time-delayed neural networks with nonlinear perturbations in terms of LMIs.
The results can be extended to time-varying delay case.

Consider the time-varying delay neural networks as follows

ẋ(t) = −Ax(t)−A1x(t− τ(t))+Bf [x(t)]+B1f [x(t− τ(t))]+Cg(x(t), x(t− τ(t))), (12)

where τ is a function, τ : [0,+∞) → [0,+∞]. Furthermore, we assume that τ is differ-
entiable and τ̇(t) ≤ τ∗ < 1.

We have the following result.

Theorem 3.2 Consider the delayed neural networks with nonlinear perturbation (1),
if there exist positive matrices X > 0, W > 0, positive diagonal matrices S > 0, S1 > 0
satisfying the LMI

Ω =













Ω11 XKT XAT
1 XMT

1 XMT

KX −S − S1 0 0 0
A1X 0 −W 0 0
M1X 0 0 −I 0
MX 0 0 0 −I













< 0, (13)

where

Ω11 = −XAT − AX +
1

1 − τ∗
W +

1

1 − τ∗
B1S1B

T
1 + C

(

1 +
1

1 − τ∗

)

CT .

Then the system (1) is globally asymptotically stable. Here, K = diag{k1, . . . , kn}.

Proof Consider the Lyapunov functional

V (t) = xT (t)Px(t) +

∫ t

t−τ(t)

fT [x(s)]S−1
1 f [x(s)] ds

+

∫ t

t−τ(t)

xT (s)AT
1 W−1A1x(s) ds +

∫ t

t−τ(t)

xT (s)MT
1 M1x(s) ds.

(14)
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It is easy to obtain

λm(P )‖x(t)‖2 ≤ V (t) ≤
{

λM (P ) + τ
[

λM (KT S−1
1 K)

+λM (AT
1 W−1A1) + λM (MT

1 M1)
]}

‖x(t)‖2,

where λm(P ) and λM (P ) denote the minimum and maximum eigenvalues of P, respec-
tively.

Calculating the upper right derivative D+V of (14) along the solution of (12), we
obtain that

D+V (t) = ẋT (t)Px(t) + xT (t)P ẋ(t)

+ fT [x(t)]S−1
1 f [x(t)] − (1 − τ∗)fT [x(t − τ(t))]S−1

1 f [x(t − τ(t))]

+ xT (t)AT
1 W−1A1x(t) − (1 − τ∗)xT (t − τ(t))AT

1 W−1A1x(t − τ(t))

+ xT (t)MT
1 M1x(t) − (1 − τ∗)xT (t − τ(t))MT

1 M1x(t − τ(t))

= {−Ax(t) − A1x(t − τ(t)) + Bf [x(t)]

+ B1f [x(t − τ(t))] + Cg(x(t), x(t − τ(t)))}
T

(t)Px(t)

+ xT (t)P {−Ax(t) − A1x(t − τ(t)) + Bf [x(t)]

+ B1f [x(t − τ(t))] + Cg(x(t), x(t − τ(t)))}

+ fT [x(t)]S−1
1 f [x(t)] − (1 − τ∗)fT [x(t − τ(t))]S−1

1 f [x(t − τ(t))]

+ xT (t)AT
1 W−1A1x(t) − (1 − τ∗)xT (t − τ(t))AT

1 W−1A1x(t − τ(t))

+ xT (t)MT
1 M1x(t) − (1 − τ∗)xT (t − τ(t))MT

1 M1x(t − τ(t)).

(15)

From Lemma 2.2 and (15), it follows that

D+V (t) ≤ [−xT (t)AT Px(t) − xT (t)PAx(t)]

+ (1 − τ∗)xT (t − τ(t))AT
1 W−1A1x(t − τ(t))

+ fT [x(t)]S−1f [x(t)] + xT (t)PBSBT Px(t)

+ (1 − τ∗)fT [x(t − τ(t))]S−1
1 f [x(t − τ(t))]

+
1

1 − τ∗
xT (t)PB1S1B

T
1 Px(t) +

1

1 − τ∗
xT (t)PWPx(t)

+ xT (t)PC

(

1 +
1

1 − τ∗

)

CT Px(t)

+ xT (t)MT Mx(t) + (1 − τ∗)xT (t − τ(t))MT
1 M1x(t − τ(t))

+ fT [x(t)]S−1
1 f [x(t)] − (1 − τ∗)fT [x(t − τ(t))]S−1

1 f [x(t − τ(t))]

+ xT (t)AT
1 W−1A1x(t) − (1 − τ∗)xT (t − τ(t))AT

1 W−1A1x(t − τ(t))

+ xT (t)MT
1 M1x(t) − (1 − τ∗)xT (t − τ(t))MT

1 M1x(t − τ(t))

≤ [−xT (t)AT Px(t) − xT (t)PAx(t)]

+ fT [x(t)]S−1f [x(t)] + xT (t)PBSBT Px(t)

+
1

1 − τ∗
xT (t)PB1S1B

T
1 Px(t) +

1

1 − τ∗
xT (t)PWPx(t)

+ xT (t)PC

(

1 +
1

1 − τ∗

)

CT Px(t) + xT (t)MT Mx(t)
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+ fT [x(t)]S−1
1 f [x(t)] + xT (t)AT

1 W−1A1x(t) + xT (t)MT
1 M1x(t)

≤ xT (t)Ξx(t),

where

Ξ =

[

−AT P − PA +
1

1 − τ∗
PWP + KT S−1K + PBSBT P

+
1

1 − τ∗
PB1S1B

T
1 P + PC

(

1 +
1

1 − τ∗

)

CT P + ξ−1
1 MT M

+ KT S−1
1 K + AT

1 W−1A1 + ξ−1
2 MT

1 M1

]

.

Pre- and post-multiply (16) with X = P−1. By the Schur complement, Ξ < 0 if and only
if inequality (13) holds.

This completes the proof. 2

Remark 3.2 In Theorem 3.1 and Theorem 3.2, the delay-independent stability crite-
ria are developed, however, no information on the state convergence degree of the neural
networks is given. Here, we investigate the problem of exponential stability analysis for
delayed neural networks.

Theorem 3.3 Consider the delayed neural networks with nonlinear perturbation (1),
if there exist positive matrices X > 0, W > 0, positive diagonal matrices S > 0, S1 > 0,

and constants ξ1 > 0, ξ2 > 0, α > 0 satisfying the LMI

Ω =













Ω11 eατXKT eατXAT
1 eατXMT

1 eατXMT

eατKX −S − S1 0 0 0
eατA1X 0 −W 0 0
eατM1X 0 0 −ξ2I 0
eατMX 0 0 0 −ξ1I













< 0, (17)

where

Ω11 = −XAT − AX + W + B1S1B
T
1 + 2αX + C(ξ1 + ξ2)C

T . (18)

Then the system (1) is exponential asymptotically stable. Here, K = diag{k1, . . . , kn}.

Proof Let’s introduce a transformation x(t) = e−αtη(t), and define the Lyapunov
functional as follows:

V (t) = ηT (t)Pη(t) +

∫ t

t−τ

fT [η(s)]S−1
1 f [η(s)] ds

+

∫ t

t−τ

ηT (s)AT
1 W−1A1η(s) ds + ξ−1

2

∫ t

t−τ

ηT (s)MT
1 M1η(s) ds.

(19)

Then follows the proof of Theorem 3.1, this theorem can be proved easily. 2

Remark 3.3 As we can see, if B ≡ 0 and the uncertain perturbation g(x(t), x(t −
τ)) ≡ 1 in (2), then the neural network (1) or (2) represents the Hopfield’s original neural
network model and cellular neural networks [6, 7, 9, 10, 16, 17, 18].
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4 An illustrative example

In this section, we present a numerical example to validate our results.

Example 4.1. We consider two-dimension nonlinear uncertain neural network (2)
with time delay. The associated data are:

A =

[

1.8 0
0 1.8

]

, A1 =

[

2 0
0 4

]

, B =

[

0.01 0.02
0.03 1.08

]

, B1 =

[

0.32 0.45
0.30 0.50

]

,

C =

[

1 0
0 1

]

, M =

[

0.1 0
0 0.2

]

, M1 =

[

0 0
0 0

]

.

Suppose the activation function is described by fi(x) = 1
2 (|x + 1| + |x − 1|), i = 1, 2.

Then we have K = diag(1, 1), and fi(x) satisfies (H1). Now using the MATLAB LMI
toolbox, we can obtain a feasible solution for LMI (8) as follows:

X =

[

56.5666 19.4526
19.4526 7.6137

]

> 0, W =

[

235.3002 178.2599
178.2599 146.4787

]

> 0,

S =

[

983.9634 0
0 983.9634

]

> 0, S1 =

[

802.8313 0
0 802.8313

]

> 0, ξ = 13.8307.

Then the conditions of Theorem 3.1 are satisfied. Therefore, the system (1) is globally
asymptotically stable. Moreover, we can see from the behavior (see Figure 1) of the state
variables, the solutions of system (1) converge upon the zero with the initial condition
φ(s) = [0.1,−0.1]T .

0 2 4 6 8 10

−0.1

−0.05

0

0.05

0.1

0.15

time

st
at

es

x
1

x
2

Figure 4.1: The time respond behavior of the system (1).
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5 Conclusions

In this paper, the problem of robust stability analysis for uncertain neural networks with
time delay is investigated. Based on Lyapunov stability theory, the robust stable criteria
are given in terms of linear matrix inequalities. The proposed approach is more flexible
in computation, and the results are more efficient then other existing results.
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