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1 Introduction

Dynamical systems theory has been a rapidly growing area of research which has various
applications to physics, engineering, biology and economics. In this theory one of the
goals is to study the asymptotic behavior of the trajectories of a dynamical system. A
discrete-time dynamical system is described by a space of states and a transition operator
which can be set-valued. Usually in the dynamical systems theory a transition operator
is single-valued. In the present paper we study a class of dynamical systems introduced in
[3] and studied in [4, 5] with a compact metric space of states and a set-valued transition
operator. Such dynamical systems describe economical models [1, 2, 6].

Let (X, ρ) be a compact metric space and let a : X → 2X \ {∅} be a set-valued
mapping whose graph

graph(a) = {(x, y) ∈ X × X : y ∈ a(x)}

is a closed subset of X × X . For each nonempty subset E ⊂ X set

a(E) = ∪{a(x) : x ∈ E} and a0(E) = E.
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By induction we define an(E) for any natural number n and any nonempty subset E ⊂ X
as follows:

an(E) = a(an−1(E)).

In this paper we study convergence of trajectories of the dynamical system generated
by the set-valued mapping a. Following [3, 4] this system is called a discrete disperse
dynamical system.

First we define a trajectory of this system.
A sequence {xt}

∞
t=0 ⊂ X is called a trajectory of a (or just a trajectory if the mapping

a is understood) if xt+1 ∈ a(xt) for all integers t ≥ 0.
Put

Ω(a) = {z ∈ X : for each ǫ > 0 there is a trajectory {xt}
∞
t=0

such that lim inf
t→∞

ρ(z, xt) ≤ ǫ}.
(1.1)

Clearly, Ω(a) is closed subset of (X, ρ). In the present paper the set Ω(a) will be called
a global attractor of a. Note that in [3–5] Ω(a) was called a turnpike set of a. This
terminology was motivated by mathematical economics [1, 2, 6].

For each x ∈ X and each nonempty closed subset E ⊂ X put

ρ(x, E) = inf{ρ(x, y) : y ∈ E}.

It is clear that for each trajectory {xt}
∞
t=0 we have limt→∞ ρ(xt, Ω(a)) = 0.

It is not difficult to see that if for a nonempty closed set B ⊂ X

lim
t→∞

ρ(xt, B) = 0

for each trajectory {xt}
∞
t=0, then Ω(a) ⊂ B.

In the present paper we study uniform convergence of trajectories to the global at-
tractor Ω(a).

The following useful result will be proved in Section 2.

Proposition 1.1 Let ǫ > 0. Then there exists a natural number T (ǫ) such that for
each trajectory {xt}

∞
t=0

min{ρ(xt, Ω(a)) : t = 0, . . . , T (ǫ)} ≤ ǫ.

The following theorem provides necessary and sufficient conditions for uniform con-
vergence of trajectories to the global attractor.

Theorem 1.1 The following properties are equivalent:

(1) For each ǫ > 0 there exists a natural number T (ǫ) such that for each trajectory
{xt}

∞
t=0 and each integer t ≥ T (ǫ) we have ρ(xt, Ω(a)) ≤ ǫ.

(2) If a sequence {xt}
∞
t=−∞ ⊂ X satisfies xt+1 ∈ a(xt) for all integers t, then

{xt}
∞
t=−∞ ⊂ Ω(a).

(3) For each ǫ > 0 there exists δ > 0 such that for each trajectory {xt}
∞
t=0 satisfying

ρ(x0, Ω(a)) ≤ δ the inequality ρ(xt, Ω(a)) ≤ ǫ holds for all integers t ≥ 0.

Theorem 1.1 will be proved in Section 3.
The following two theorems show that convergence of trajectories to the global attrac-

tor holds even in the presence of computational errors. These theorems will be proved
in Section 5.
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Theorem 1.2 Let ǫ > 0. Then there exist δ > 0 and a natural number T (ǫ) such
that for each sequence {xt}

∞
t=0 ⊂ X satisfying ρ(xt+1, a(xt)) ≤ δ for each integer t ≥ 0

the following inequality holds:

min{ρ(xt, Ω(a)) : t = 0, . . . , T (ǫ)} ≤ ǫ.

Theorem 1.3 Assume that property (2) from Theorem 1.1 holds. Then for each
ǫ > 0 there exist δ > 0 and a natural number T (ǫ) such that for each sequence
{xt}

∞
t=0 ⊂ X satisfying

ρ(xt+1, a(xt)) ≤ δ for all integers t ≥ 0

the inequality ρ(xt, Ω(a)) ≤ ǫ holds for each integer t ≥ T (ǫ).

Some examples of set-valued mappings are considered in Section 6. In Section 7 we
obtain generic convergence results for certain classes of set-valued mappings.

2 Proof of Proposition 1.1

Let us assume the converse. Then for each natural number n there exists a trajectory

{x
(n)
t }∞t=0 such that

min{ρ(x
(n)
t , Ω(a)) : t = 0, . . . , n} ≥ ǫ. (2.1)

It is easy to see that there exists a strictly increasing sequence of natural numbers {nk}
∞
k=1

such that for each integer t ≥ 0 there exists

xt = lim
k→∞

x
(nk)
t . (2.2)

Since graph(a) is a closed subset of X × X equality (2.2) implies that {xt}
∞
t=0 is a

trajectory. It follows from (2.1) and (2.2) that for each integer t ≥ 0 the inequality
ρ(xt, Ω(a)) ≥ ǫ holds. This contradicts the definition of Ω(a). The contradiction we have
reached proves Proposition 1.1.

3 Proof of Theorem 1.1

We will show that property (1) implies property (2). Assume that property (1) holds.
Let a sequence {xt}

∞
t=−∞ ⊂ X satisfy xt+1 ∈ a(xt) for all integers t. Let τ be an integer,

ǫ be a positive number and let a natural number T (ǫ) be as guaranteed by property (1).
Define

yt = xt+τ−T (ǫ) for each integer t ≥ 0. (3.1)

It is clear that {yt}
∞
t=0 is a trajectory. By property (1), the choice of T (ǫ) and (3.1)

ρ(xτ , Ω(a)) = ρ(yT (ǫ), Ω(a)) ≤ ǫ.

Since ǫ is an arbitrary positive number we conclude that xτ ∈ Ω(a) for each integer τ .
Thus property (1) implies property (2).

Let us show that property (2) implies property (3). Assume that property (2) holds.
Let ǫ ∈ (0, 1). We show that there exists δ > 0 such that for each trajectory {xt}

∞
t=0

satisfying ρ(x0, Ω(a)) ≤ δ the inequality ρ(xt, Ω(a)) ≤ ǫ holds for all integers t ≥ 0.
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Let us assume the converse. Then for each integer n ≥ 1 there exists a trajectory

{x
(n)
t }∞t=0 such that

ρ(x
(n)
0 , Ω(a)) ≤ (2n)−1ǫ and sup{ρ(x

(n)
t , Ω(a)) : t ≥ 0 is an integer} > ǫ. (3.2)

In view of (3.2) for each natural number n there exists a natural number Tn such that

ρ(x
(n)
Tn

, Ω(a)) > ǫ. (3.3)

Assume that the sequence {Tn}
∞
n=1 is not bounded. Extracting a subsequence and re-

indexing if necessary we may assume without loss of generality that Tn → ∞ as n → ∞.
For each integer n ≥ 1 set

y
(n)
t = x

(n)
t+Tn

for all integers t ≥ −Tn. (3.4)

Evidently there exists a strictly increasing sequence of natural numbers {nk}
∞
k=1 such

that for each integer t there exists

yt = lim
k→∞

y
(nk)
t . (3.5)

Since the graph of a is closed it follows from (3.4) and (3.5) that yt+1 ∈ a(yt) for each
integer t. By property (2), {yt}

∞
t=−∞ ⊂ Ω(a). On the other hand by (3.3)-(3.5)

ρ(y0, Ω(a)) = lim
k→∞

ρ(y
(nk)
0 , Ω(a)) = lim

k→∞
ρ(x

(nk)
Tn

k

, Ω(a)) ≥ ǫ.

The contradiction we have reached proves that our assumption is wrong and the sequence
{Tn}

∞
n=1 is bounded. Extracting a subsequence and re-indexing we may assume without

loss of generality that
Tn = T1 for all integers n ≥ 1. (3.6)

Let n be a natural number. It follows from (3.2) that there is zn ∈ Ω(a) such that

ρ(x
(n)
0 , zn) ≤ (2n)−1ǫ. (3.7)

By the definition of Ω(a) there exists a trajectory {y
(n)
t }∞t=0 such that

lim inf
t→∞

ρ(y
(n)
t , zn) ≤ (8n)−1ǫ. (3.8)

In view of (3.8) there exists a natural number Sn > n such that

ρ(y
(n)
Sn

, zn) < (4n)−1ǫ. (3.9)

Relations (3.7) and (3.9) imply that

ρ(y
(n)
Sn

, x
(n)
0 ) ≤ ρ(y

(n)
Sn

, zn) + ρ(zn, x
(n)
0 ) <

ǫ

n
. (3.10)

Set
ξ
(n)
t = y

(n)
t+Sn

, t = −Sn, . . . ,−1, 0, ξ
(n)
t = x

(n)
t , t = 1, 2, . . . . (3.11)

Clearly, there exists a strictly increasing sequence of natural numbers {nk}
∞
k=1 such that

for each integer t there exists

ξt = lim
k→∞

ξ
(nk)
t (3.12)
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and also there exists
x0 = lim

k→∞
x

(nk)
0 . (3.13)

Since the graph of a is closed it follows from (3.11) and (3.12) that

ξt+1 ∈ a(ξt)

for each integer t ≥ 1 and for each integer t ≤ −1.
We will show that ξ1 ∈ a(ξ0). Since the graph of a is closed it follows from (3.11)–

(3.13) that ξ1 ∈ a(x0). By (3.10)–(3.13) and the inclusion above

ρ(x0, ξ0) = lim
k→∞

ρ(x
(nk)
0 , ξ

(nk)
0 ) = lim

k→∞
ρ(x

(nk)
0 , y

(nk)
Sn

k

) = 0,

x0 = ξ0 and ξ1 ∈ a(ξ0).

Thus we have shown that

ξt+1 ∈ a(ξt) for all integers t. (3.14)

In view of property (2) ξt ∈ Ω(a) for all integers t. On the other hand it follows from
(3.12), (3.11), (3.6) and (3.3) that

ρ(ξT1
, Ω(a)) = lim

k→∞
ρ(ξ

(nk)
T1

, Ω(a)) = lim
k→∞

ρ(x
(nk)
T1

, Ω(a)) ≥ ǫ.

The contradiction we have reached proves that there exists δ > 0 such that for each
trajectory {xt}

∞
t=0 satisfying ρ(x0, Ω(a)) ≤ δ the inequality ρ(xt, Ω(a)) ≤ ǫ holds for all

integers t ≥ 0. Thus property (2) implies property (3).
Let us show that property (3) implies property (1). Assume that property (3) holds.

Let ǫ > 0 and let δ > 0 be as guaranteed by property (3). By Proposition 1.1 there exists
a natural number T0 such that for each trajectory {xt}

∞
t=0

min{ρ(xt, Ω(a)) : t = 0, . . . , T0} ≤ δ. (3.15)

Let {xt}
∞
t=0 be a trajectory. By the choice of T0 there is an integer j ∈ [0, T0] such that

ρ(xj , Ω(a)) ≤ δ.

In view of this inequality and the choice of δ ρ(xt, Ω(a)) ≤ ǫ for all integers t ≥ j and
property (1) holds. Thus property (3) implies property (1). Theorem 1.1 is proved.

4 An auxiliary result

Lemma 4.1 Let T be a natural number and let ǫ > 0. Then there exists a number
δ > 0 such that for each sequence {xt}

T
t=0 ⊂ X satisfying

ρ(xt+1, a(xt)) ≤ δ, t = 0, . . . , T − 1

there is a sequence {yt}
T
t=0 ⊂ X such that

yt+1 ∈ a(yt), t = 0, . . . , T − 1, (4.1)

ρ(yt, xt) ≤ ǫ, t = 0, . . . , T. (4.2)
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Proof Let us assume the converse. Then for each natural number n there exists a

sequence {x
(n)
t }T

t=0 ⊂ X such that

ρ(x
(n)
t+1, a(x

(n)
t )) ≤ 1/n, t = 0, . . . , T − 1 (4.3)

and that for each sequence {yt}
T
t=0 ⊂ X satisfying (4.1)

sup{ρ(yt, x
(n)
t ) : t = 0, . . . , T} > ǫ. (4.4)

Extracting a subsequence and re-indexing if necessary we may assume without loss of
generality that for t = 0, . . . , T there exists

xt = lim
n→∞

x
(n)
t . (4.5)

By (4.3) for t = 0, . . . , T − 1 and each integer n ≥ 1 there is

z
(n)
t+1 ∈ a(x

(n)
t ) (4.6)

such that

ρ(x
(n)
t+1, z

(n)
t+1) ≤ 1/n. (4.7)

Extracting a subsequence and re-indexing if necessary we may assume without loss of
generality that for t = 0 . . . , T − 1 there is

zt+1 = lim
n→∞

z
(n)
t+1. (4.8)

Since the graph of a is closed it follows from (4.5) and (4.8) that for each t = 0, . . . , T −1

zt+1 ∈ a(xt). (4.9)

By (4.5), (4.7) and (4.8) for each t = 0, . . . , T − 1 we have xt+1 = zt+1. Together with
(4.9) this equality implies that xt+1 ∈ a(xt) for t = 0, . . . , T − 1. In view of (4.5) there
is a natural number n0 such that

ρ(xt, x
(n0)
t ) ≤ ǫ/4, t = 0, . . . , T.

This contradicts the choice of {x
(n0)
t }T

t=0 (see (4.4)). The contradiction we have reached
proves Lemma 4.1. 2

5 Proofs of Theorems 1.2 and 1.3

Proof of Theorem 1.2 By Proposition 1.1 there exists a natural number T (ǫ) such
that for each trajectory {xt}

∞
t=0 of a

min{ρ(xt, Ω(a)) : t = 0, . . . , T (ǫ)} ≤ ǫ/4. (5.1)

By Lemma 4.1 there exists a number δ > 0 such that for each sequence {xt}
T (ǫ)
t=0 ⊂ X

satisfying

ρ(xt+1, a(xt)) ≤ δ, t = 0, . . . , T (ǫ) − 1, (5.2)
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there exists a sequence {yt}
T (ǫ)
t=0 ⊂ X such that

yt+1 ∈ a(yt), t = 0, . . . , T (ǫ)− 1, (5.3)

ρ(yt, xt) ≤ ǫ/4, t = 0, . . . , T (ǫ). (5.4)

Assume that a sequence {xt}
∞
t=0 ⊂ X satisfies

ρ(xt+1, a(xt)) ≤ δ for all integers t ≥ 0. (5.5)

It follows from (5.5) and the choice of δ that there exists a sequence {yt}
T (ǫ)
t=0 ⊂ X

such that (5.3) and (5.4) hold. By (5.3) and the choice of T (ǫ) (see (5.1)) there is
j ∈ {0, . . . , T (ǫ)} such that ρ(yj , Ω(a)) ≤ ǫ/4. Combined with (5.4) this inequality
implies that

ρ(xj , Ω(a)) ≤ ρ(xj , yj) + ρ(yj , Ω(a)) ≤ ǫ/2.

Theorem 1.2 is proved. 2

Proof of Theorem 1.3 Let ǫ > 0. By Theorem 1.1, property (1) holds and
there exists a natural number T (ǫ) ≥ 4 such that for each trajectory {xt}

∞
t=0 of a and

each integer t ≥ T (ǫ)
ρ(xt, Ω(a)) ≤ ǫ/8. (5.6)

By Lemma 4.1 there exists a number δ > 0 such that for each sequence {yt}
4T (ǫ)
t=0 ⊂ X

satisfying
ρ(yt+1, a(yt)) ≤ δ, t = 0, . . . , 4T (ǫ)− 1 (5.7)

there is a sequence {zt}
4T (ǫ)
t=0 ⊂ X such that

zt+1 ∈ a(zt), t = 0, . . . , 4T (ǫ)− 1, (5.8)

ρ(yt, zt) ≤ ǫ/8, t = 0, . . . , 4T (ǫ). (5.9)

Assume that a sequence {xt}
∞
t=0 ⊂ X satisfies

ρ(xt+1, a(xt)) ≤ δ for each integer t ≥ 0. (5.10)

In view of (5.10) and the choice of δ (see (5.7)-(5.9)) there is a sequence {zt}
4T (ǫ)
t=0 ⊂ X

such that (5.8) is true and

ρ(xt, zt) ≤ ǫ/8, t = 0, . . . , 4T (ǫ). (5.11)

By (5.8) and the choice of T (ǫ) (see (5.6))

ρ(zt, Ω(a)) ≤ ǫ/8, t = T (ǫ), . . . , 4T (ǫ). (5.12)

Relations (5.11) and (5.12) imply that for t = T (ǫ), . . . , 4T (ǫ)

ρ(xt, Ω(a)) ≤ ρ(xt, zt) + ρ(zt, Ω(a)) ≤ ǫ/4. (5.13)

We show that ρ(xt, Ω(a)) ≤ ǫ for all integers t ≥ T (ǫ).
Let us assume the converse. Then there is an integer j ≥ T (ǫ) such that

ρ(xj , Ω(a)) > ǫ, (5.14)

if an integer t satisfies T (ǫ) ≤ t < j, then ρ(xt, Ω(a)) ≤ ǫ. (5.15)
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In view of (5.13)
j > 4T (ǫ). (5.16)

For t = 0, . . . , 4T (ǫ) set
yt = xt+j−2T (ǫ). (5.17)

By (5.10) and (5.17) for t = 0, . . . , 4T (ǫ) − 1

ρ(yt+1, a(yt)) = ρ(xt+j−2T (ǫ)+1, a(xt+j−2T (ǫ))) ≤ δ.

In view of this relation and the choice of δ (see (5.7)–(5.9)) there is a sequence {ξt}
4T (ǫ)
t=0 ⊂

X such that

ξt+1 ∈ a(ξt), t = 0, . . . , 4T (ǫ)− 1, (5.18)

ρ(ξt, yt) ≤ ǫ/8, t = 0, . . . , 4T (ǫ). (5.19)

It follows from (5.18) and the choice of T (ǫ) (see (5.6)) that

ρ(ξt, Ω(a)) ≤ ǫ/8, t = T (ǫ), . . . , 4T (ǫ).

Together with (5.19) this inequality implies that for t = T (ǫ), . . . , 4T (ǫ)

ρ(yt, Ω(a)) ≤ ρ(yt, ξt) + ρ(ξt, Ω(a)) ≤ ǫ/4.

Together with (5.17) this inequality implies that

ρ(xj , Ω(a)) = ρ(y2T (ǫ), Ω(a)) ≤ ǫ/4.

This relation contradicts (5.14). The contradiction we have reached proves that

ρ(xt, Ω(a)) ≤ ǫ for all integers t ≥ T (ǫ).

Theorem 1.3 is proved. 2

6 Examples

Denote by Π(X) the set of all nonempty closed subsets of (X, ρ). For each A, B ∈ Π(X)
set

H(A, B) = max{sup
x∈A

ρ(x, B), sup
y∈B

ρ(y, A)}.

Clearly the space (Π(X), H) is a complete metric space.

Example 6.1 Let a : X → X satisfy ρ(a(x), a(y)) ≤ ρ(x, y) for each x, y ∈ X . Since
the mapping a is single-valued it is not difficult to see that a(Ω(a)) ⊂ Ω(a) and property
(3) from Theorem 1.1 holds.

Example 6.2 Let a : X → X satisfy the following condition:
(C1) for each ǫ > 0 there exists δ ∈ (0, ǫ) such that for each x, y ∈ X satisfying

ρ(x, y) ≤ δ we have ρ(anx, any) ≤ ǫ for all natural numbers n.
Define

ρ1(x, y) = sup{ρ(anx, any) : n = 0, 1, . . .}, x, y ∈ X.
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Clearly, (X, ρ1) is a complete metric space and for each x, y ∈ X we have ρ(x, y) ≤
ρ1(x, y). Let ǫ > 0 and let δ ∈ (0, ǫ) be as guaranteed by (C1). It is clear that ρ1(x, y) ≤ ǫ
for each x, y ∈ X satisfying ρ(x, y) ≤ δ.

Thus the metrics ρ and ρ1 induce in X the same topology. It is clear that
ρ1(a(x), a(y)) ≤ ρ1(x, y) for each x, y ∈ X . Thus in view of Example 1, property (3)
from Theorem 1.1 holds.

Example 6.3 Let a : X → 2X \ ∅ have a closed graph. Assume that

H(a(x), a(y)) ≤ cρ(x, y) for all x, y ∈ X

with a constant c ∈ (0, 1). We will show that property (3) from Theorem 1.1 holds.
Clearly, it is sufficient to show that

a(Ω(a)) = ∪{a(z) : z ∈ Ω(a)} ⊂ Ω(a).

Let z ∈ a(E1) and let ǫ be a positive number. There exist x ∈ E1 such that z ∈ a(x)
and y ∈ E2 such that ρ(x, y) ≤ ρ(x, E2) + ǫ. It is not difficult to see that

ρ(z, a(E2)) ≤ ρ(z, a(y)) ≤ H(a(x), a(y)) ≤ cρ(x, y) ≤ cρ(x, E2) + cǫ ≤ cH(E1, E2) + cǫ.

Since ǫ is an arbitrary positive number we conclude that

ρ(z, a(E2)) ≤ cH(E1, E2) for all z ∈ a(E1).

Analogously we can show that

ρ(y, a(E1)) ≤ cH(E1, E2) for all y ∈ a(E2).

Hence
H(a(E1), a(E2)) ≤ cH(E1, E2) for all E1, E2 ∈ Π(X).

By this inequality and Banach fixed point theorem there is a unique Ω∗ ∈ Π(X) such
that a(Ω∗) = Ω∗ and that for each E ∈ Π(X)

an(E) → Ω∗ as n → ∞ in (Π(X), H). (6.1)

Clearly, Ω(a) ⊂ Ω∗. It is sufficient to show that Ω(a) = Ω∗.
Denote by Sa the set of all continuous functions s : X → R1 such that supy∈a(x) s(y) ≤

s(x) for all x ∈ X . For each s ∈ Sa put

Ws = {x ∈ X : sup
y∈a(x)

s(y) = s(x)}.

Set
Wa = ∩s∈Sa

Wa.

By Theorem 1 of [5]
Wa = Ω(a).

It is sufficient to show that Ω∗ ⊂ Wa.
Let s ∈ Sa. There x∗ ∈ X such that s(x∗) ≤ s(x) for all x ∈ X . It is clear that

s(y) = s(x∗) for each y ∈ ∪∞
n=1{a

n(x) : n = 1, 2, . . .}. Together with (6.1) this implies
that s(y) = s(x∗) for each y ∈ Ω∗ and that Ω∗ ⊂ Ws. Since this inclusion holds for any
s ∈ Sa we obtain that Ω∗ ⊂ Wa.

Example 6.4 Let X = [0, 1], a(x) = x2, x ∈ [0, 1]. It is clear that Ω(a) = {0, 1}
and that a(Ω(a)) = Ω(a). It is not difficult to see that for any z ∈ (0, 1) there exists
a sequence {xi}

∞
i=−∞ ⊂ (0, 1) such that x0 = z and xi+1 = a(xi) for all integers i.

Therefore property (2) of Theorem 1.1 does not hold.
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7 Spaces of set-valued mappings

In this section we consider classes of discrete disperse dynamical systems whose global
attractors are a singleton.

Denote by A the set of all mappings a : X → Π(X) with closed graphs. For each
a1, a2 ∈ A set

dA(a1, a2) = sup{H(a1(x), a2(x)) : x ∈ X}. (7.1)

It is clear that the metric space (A, dA) is complete.
Denote by Ac the set of all continuous mappings a : X → Π(X) which belong to

A, by Af the set of all a ∈ A such that a(x) is a singleton for each x ∈ X and set
Afc = Af ∩Ac. Clearly Af , Ac and Afc are closed subsets of (A, dA).

Let M be one of the following spaces: A; Ac; Af ; Afc. The space M is equipped
with the metric dA.

Denote by Mreg the set of all a ∈ M such that Ω(a) is a singleton and that properties
(1–3) from Theorem 1.1 hold.

Denote by M̄reg the closure of Mreg in (M, dA). In this section we will establish the
following result which shows that most elements of M̄reg (in the sense of Baire category)
belong to Mreg.

Theorem 7.1 The set Mreg contains a countable intersection of open everywhere
dense subsets of (M̄reg, dA).

Proof For each a ∈ Mreg there is xa ∈ X such that

Ω(a) = {xa}. (7.2)

Let a ∈ Mreg and let n be a natural number. Since the mapping a has property (2) from
Theorem 1.1 it follows from Theorem 1.3 that there exist a natural number T (a, n) and
δ(a, n) > 0 such that the following property holds:

(P1) for each sequence {xt}
∞
t=0 ⊂ X satisfying ρ(xt+1, a(xt)) ≤ δ(a, n), t = 0, 1, . . .

and each integer t ≥ T (a, n) we have

ρ(xt, xa) ≤ 1/n.

Let U(a, n) be an open neighborhood of a in (M̄reg, dA) such that

H(a(x), b(x)) ≤ δ(a, n)/2 for each x ∈ X and each b ∈ U(a, n). (7.3)

It follows from property (P1) and (7.3) that the following property holds:
(P2) for each b ∈ U(a, n) and each sequence {xt}

∞
t=0 ⊂ X satisfying xt+1 ∈ b(xt),

t = 0, 1, . . .
ρ(xt, xa) ≤ 1/n for all integers t ≥ T (a, n).

Define
F = ∩∞

n=1 ∪ {U(a, n) : a ∈ Mreg}.

Clearly F is a countable intersection of open everywhere dense subsets of (M̄reg, dA). In
order to complete the proof it is sufficient to show that F ⊂ Mreg.

Let b ∈ F and ǫ > 0. Choose a natural number n such that

n > 8(min{1, ǫ})−1. (7.4)
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By the definition of F there exists a ∈ Mreg such that

b ∈ U(a, n). (7.5)

Let {xt}
∞
t=0 be a trajectory of b. By (7.5) and property (P2)

ρ(xt, xa) ≤ 1/n < ǫ/8 for all integers t ≥ T (a, n). (7.6)

Since ǫ is an arbitrary positive number we conclude that {xt}
∞
t=0 is a Cauchy sequence.

Therefore there exists limt→∞ xt ∈ X . By (7.6),

ρ( lim
t→∞

xt, xa) ≤ ǫ/8. (7.7)

Since ǫ is an arbitrary positive number and {xt}
∞
t=1 is an arbitrary trajectory of b we

conclude that there exists xb ∈ X such that lim
t→∞

xt = xb for each trajectory {xt}
∞
t=0

of b. By (7.7)
ρ(xa, xb) ≤ ǫ/8. (7.8)

By (7.6) and (7.8) for each trajectory {xt}
∞
t=0 of b and all integers t ≥ T (a, n)

ρ(xt, xb) ≤ ρ(xt, xa) + ρ(xa, xb) ≤ ǫ/4.

Theorem 7.1 is proved. 2
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