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Abstract: In this paper is developed Lyapunov based non-linear control to
ensure the flux-speed tracking regime of voltage fed induction machine. The
control law is determined in two steps, in the first the virtual control, based
on Lyapunov function, is obtained in view to impose the flux-speed tracking.
After this, is deduced the real control imposing the virtual control law. The
simulation results of flux-speed tracking of induction machine show the validity
of the proposed method in presence of strong parametric perturbations. Finally,
an extension of the proposed method to most voltage alternating current (AC)
machines is discussed. This allows to get a unified view for the control of
electric AC machines.
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1 Introduction

One of the fundamental deficiencies of non linear control theory is the lack of a systematic
design procedure for controllers synthesis. The earlier work of Lyapunov produced some
of most powerful tools for control design that are still used up to date. In this work,
the design problem is formulated in terms of finding a suitable state function (so called
Lyapunov function) having some properties that guarantee boundedness of trajectories
and convergence to an equilibrium point. Although this result is one of the most signifi-
cant ones in control theory, there is no general theory for constructing such a Lyapunov
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function for a given non linear systems. Meanwhile, the backstepping methodology devel-
oped in [1] allows to construct recursively the non linear feedback law and its associated
Lyapunov functions for a certain class of non linear systems. Beside this, a great effort
was devoted to developing other methods for the control design of a certain class of non
linear systems. Among these methods are found the following ones : a the diffeomorphic
transformation, non linear feedback linearization, the sliding mode approach, and the
dynamic linearization.

The analysis and control problem of cascaded non linear systems have been intensively
studied during the last decades (see[2]-[7] and reference there in). In [2], based on the
explicit construction of a Lyapunov function for a partially linear cascaded system, a
stabilizing controller is designed for a special class of non linear cascaded systems. Sontag
in [3] gave some sufficient conditions for asymptotic stabilization of two cascaded non
linear systems. A passivity interpretation of this latter result is given in [4]. In [5], a wide
class of time varying non linear systems is considered. The authors in [6] gave sufficient
conditions under which an interconnected non linear system with parametric uncertainty
is stabilizable. Singular H∞ suboptimal control of a class of two blocks interconnected
non linear systems is investigated [7].

Otherwise, the development of electrical machine drive growths more and more in
order to follow the increasing need for various fields such as industry, electric cars, ac-
tuators, etc. By means of electrical machine drive, we can get high level of productivity
in industry and product quality enhancement. Among, the most used electrical AC ma-
chine one can mention induction machine, permanent magnet synchronous machine, and
synchronous machine. However, the induction machine is the machine of choice in many
industrial applications due to its reliability, ruggedness and relatively low cost.

The control of electric machines has become an active domain of research over the last
few years. Different control methods such as field oriented control, exact linearization,
passivity approach and sliding mode control have been reported in literature. The field
orientation control, which gives high dynamic response, ensures torque/flux decoupling
of AC machines assuming exact knowledge of rotating field [8, 9, 10]. This assumption
is difficult to realise in practice and the high performance of such strategy is often dete-
riorated due to significant plant uncertainties. These later include, in general, magnetic
saturation or motor winding temperature change or motor internal parameters variance.

The control of AC machines can be decoupled and linear by means of non linear
feedback linearization [11, 12]. However this method have some disadvantages:

i) the necessary and sufficient condition for linearization can’t be held all the time,

ii) singular point exist,

iii) requires relatively complicated differential geometry to derive the control law.

Contrary, the passivity based control does not decoupling the system, but it has an
outstanding advantage-simplicity, because it does not cancel all the nonlinearities. As
the result it does not have any preliminary requirement or singular point. The passivity
theory based on the control of AC machines is developed in [13] and experimental results
for induction machines are given in [14, 15].

Due to its simplicity and attractive robustness properties, the sliding mode theory is
widely applied in electrical drives. In [16], the fundamental principles of sliding mode
control and its application to electrical machines are formulated. Example of real time
sliding mode application involving induction motors is reported in [17, 18]. The cascaded
structure is exploited in [19] to obtain a nonlinear predictive control of induction machine.
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The authors in [20, 21], use the backstepping to derive the control for the torque and the
field amplitude of induction motors in rotating (d, q) reference frame. As pointed out by
the authors the proposed control law is not robust in face to parameter variations and
necessitate the adaptive strategy for parameters involved in control law. Moreover, no
information is given about the generalization of this method for other AC machines.

In this paper is developed Lyapunov based non-linear control to ensure the flux-
speed tracking regime of voltage fed induction machine (see also [24]). The control law
is determined in two steps, in the first the virtual control, based on Lyapunov function,
is obtained in view to get the flux-speed tracking. After this, is deduced the real control
imposing the virtual control law. From the fact that most voltage fed AC machines
belongs to the same class of cascaded non linear systems, we show how to generalize the
proposed method to these AC machines. This generalization allows to get a unified view
for the control of most voltage fed AC machine.

This paper is organized as follows. The formulated problem is given in Section 2
where the induction motor model is seen in the cascaded system form and also for other
electric machines. Section 3 is devoted to the development of the real control law in
order to involve the flux-speed tracking objectives for the induction machines and some
remarks are pointed out in the end of this section. The stability analysis of the induction
motor under the proposed control law is discussed in Section 4. The application and
simulation results appears in Section 5.

2 Formulation problem

In order to control induction machine, we give in first its model. In the stator reference
frame, the state space model of voltage fed induction machine is obtained from Park’s
model. The state vector is composed of the stator current components (iα, iβ), the rotor
flux components (φα, φβ) and the rotor rotating pulsation ωr, whereas a vector control
is composed of the stator voltage components (vα, vβ) and the external disturbance is
represented by the load torque Γr. By introducing our notation, the state vector and the
control vector are respectively represented by :

(

ξ η
)t

=
(

ξ1 ξ2 η1 η2 η3
)t

=
(

iα iβ φα φβ ωr
)t

,

ut =
(

u1 u2

)t
=

(

vα vβ
)t

.

Using these notations, the dynamic of voltage fed induction machine takes the form:























ξ̇1 = f1 + d1u1, f1 = −a1ξ1 + b1η1 + c1η2η3,

ξ̇2 = f2 + d1u2, f2 = −a1ξ2 + b1η2 − c1η1η3,
η̇1 = F1, F1 = a3ξ1 − b3η1 − η2η3,
η̇2 = F2, F2 = a3ξ2 − b3η2 + η1η3,
η̇3 = F3, F3 = −a5η3 − c5Γr + b5(η1ξ2 − η2ξ1).

(1)

It is now well understood that flux reference can be used as an additional degree of
freedom to improve motor efficiency (minimizing looses) or to maximize the delivered
torque (minimum time). So, in this work, we are interested by the outputs represented
by the rotor magnitude flux φ = ϕ2

α + ϕ2
β and the rotor rotating pulsation ωr with

y = (y1 y2)
t = (φ ωr)

t it leads to :

{

y1 = h1(η), h1(η) = η2
1 + η2

2 ,
y2 = h2(η), h2(η) = η3,

(2)
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where the positive coefficients (a1, ..., c5) are given by

a1 = 1
σTs

+ 1−σ
σTr

, b1 = (1−σ)
σMTr

, c1 = (1−σ)
σM

, d1 = 1
σLs

, a3 = M
Tr

, b3 = 1
Tr

,

a5 =
kf

J
, b5 = p2M

JLr
, c5 = p

J
, σ = 1 − M

LsLr
< 1

and related to the following machine parameters :

Ts, Tr : the stator and rotor electric time constant;
σ: the leakage coefficient;
Ls, Lr: the cyclic stator inductance, the cyclic rotor inductance;
M : the cyclic mutual inductance between stator and rotor;
kf : the friction coefficient and Γr is a load torque;
J : the inertia and p is the pairs of poles.

The induction motor dynamic (1) with associated outputs (2) is square non linear
system where the input u and the output y are that u ∈ R2 and y ∈ R2 . The functions
f(.) = [f1, f2]

T and F (.) = [F1 F2 F3]
T are continuous, moreover h(.) = [h1 h2]

T are
continuous radially unbounded functions. Due to physical considerations, it is known
that machine parameters are always positive and they may be constant or they change
in continuous manner so, coefficients (a1...c5) are positive bounded. The state vector ξ
and the output y2 = η3 which represent respectively the stator current components and
the rotor speed are in practice easily measured. On the other hand, the output y1 which
is the magnitude flux is derived from flux components (η1,η2). These later are generally
observed and there exist enormous literature about this [9, 17].

We attach to the system (1), the outputs dynamic given by

{

ẏ1 = H1(ξ, η) = π1(η) + ψ1(ξ, η),
ẏ2 = H2(ξ, η) = π2(η) + ψ2(ξ, η),

(3)

with
{

π1(η) = −2b3(η
2
1 + η2

2),
π2(η) = −a5η3 − c5Γr,

(4)

and
{

ψ1(ξ, η) = 2a3(η1ξ1 + η2ξ2),
ψ2(ξ, η) = b5(η1ξ2 − η2ξ1).

(5)

Let us define the tracking errors e1 and e2 by

{

e1 = y1 − y1d,
e2 = y2 − y2d,

(6)

their dynamics are:
{

ė1 = π1(η) + ψ1(ξ, η) − ẏ1d,
ė2 = π2(η) + ψ2(ξ, η) − ẏ2d,

(7)

where y1d and y2d are desired trajectories.
The problem we are concerned with, consists of developing the control law u that

allows the output yi(i = 1, 2) to track the desired trajectories yid(i = 1, 2). From the
fact that the desired output trajectory may be defined by a signal external to the control
system so that yid and its time derivatives (ÿid, ẏid, for i = 1, 2) may be measured or
provided by a reference signal. Therefore, we assume that the reference signal yid and its
derivatives (ÿid, ẏid, for i = 1, 2) are bounded and measurable. Our procedure to tackle
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the control problem is similar in spirit to the backsteeping methodology developed in [1].
In fact, the control problem is constructed in two steps :

i) Step1: For the tracking errors (e1, e2), we determine, based on the Lyapunov method,
the desired values ψ1d and ψ2d, for respectively the functions ψ1(ξ, η) and ψ2(ξ, η), which
ensure the asymptotic convergence of the tracking errors e1 and e2 to zero. Therefore,
functions ψ1(ξ, η) and ψ2(ξ, η) are seen as a virtual control signals for the output dynamic
(7).

ii) Step 2: Based on the plant dynamic (1), we search for the real control signal u that
constrain the functions ψ1(ξ, η) and ψ2(ξ, η), to take respectively the desired values ψ1d

and ψ2d and to ensure asymptotic converge of the tracking errors e1 and e2.

Remark 2.1 In stator reference frame, the dynamic of two phase symmetric induc-
tion machine and voltage fed is similarly modelled by system (1), when the outputs are
chosen as rotor flux and rotor speed. For the case of permanent magnet synchronous
machine, the developments are given in Appendix. In general, the dynamic models of
most voltage fed machines can be put under a same general class of non linear system.
This class is a cascade non linear of the underlying form :







ξ̇ = f(ξ, η) + g(ξ, η).u,
η̇ = F (ξ, η),
y = h(η),

with the outputs dynamic given by:

ẏ = π(η) + ψ(ξ, η) = H(ξ, η).

The control input u and the measured output vector y are that u ∈ Rm and y ∈ Rm.
The state vectors ξ ∈ Rp, η ∈ Rq with p ≥ 1 and q ≥ 1 are available by measure or by
observation. Functions f(.), g(.), F (.), h(.) are known continuous and h(.) is continuous
radially unbounded functions.

3 Control Law Synthesis

Consider two continuous function Λ(x) and S(x) satisfying Λ(x) > 0, ∀x 6= 0 and
xS(x) > 0, ∀x 6= 0, the following result can be established.

Proposition 3.1 If the system (1) is in closed loop with the following real control
law

u = A−1(ξ, η) (B(ξ, η) − e− k.S(z)) with k1, k2 > 0, (8a)
(

u1

u2

)

= A−1(η, ξ)

[(

B1(η, ξ)
B2(η, ξ)

)

−

(

e1
e2

)

−

(

k1 0
0 k2

) (

S(z1)
S(z2)

)]

, (8b)

A(η, ξ) =

(

2a3d1η1
2a3d1η2

−b5d1η2 b5d1η1

)

, zi = ψi(ξ, η) − ψid with i = 1, 2, (8c)

ψid = −qieiΛ(ei) − πi(η) + ẏid with i = 1, 2, (8d)

B1(η, ξ) = −2a3(η1f1 + η2f2 + ξ1F1 + ξ2F2) + ψ̇1d, (8e)

B2(η, ξ) = −b5(ξ2F1 + η1f2 − η2f1 − ξ1F2) + ψ̇2d, (8f)

then the outputs error (ei, i = 1, 2) are bounded and converge at least asymptotically to
the origin.
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Proof The proof is based on the two steps discussed in Section 2.
Step 1. Based on the dynamic (7), it is possible to search the desired values ψ1d and

ψ2d that must take the functions ψ1(ξ, η) and ψ2(ξ, η) in order to force the asymptotic
converge of the errors (e1, e2). ψ1(ξ, η) and ψ2(ξ, η) constitute the virtual control laws
for the tracking errors e1 and e2 so, they does not form the real control for the induction
motor. To this end, let us consider the following Lyapunov function related to the system
(7) :

Vi(ei) =
1

2
(ei)

2 for i = 1, 2 (9)

its time derivative is then

V̇i(ei) = eiėi for i = 1, 2 (10)

if the virtual control law ψi(ξ, η) with i = 1, 2 are equal to the desired value ψid the
dynamic tracking error, given by expression (7), can be rewrite under the form :

ėi = πi(η) + ψid − ẏ1d with i = 1, 2. (11)

By replacing ψid by its expression (8d), the tracking error dynamic (11) is reduced to:

ėi = −qieiΛ(ei) (12)

= πi(η) + ψid − ẏ1d. (13)

With relation (12), the time derivative of Lyapunov function (10) becomes:

V̇i = −qi(ei)
2Λ(ei) with i = 1, 2. (14)

To have V̇i < 0 ∀ ei 6= 0 it is sufficient that qi > 0 and Λ(ei) > 0, ∀ei 6= 0 . Hence, ei
tend to zero at least asymptotically.

Step 2. Now, we must determine the real control input u, which, in same time,
constrain the functions ψ1(ξ, η) and ψ2(ξ, η) to follow respectively the desired values ψ1d

and ψ2d and the tracking errors (e1, e2) converge asymptotically to zero.
Indeed, adding and subtracting the desired values ψ1d and ψ2d in the equation (7),

this latter becomes :
{

ė1 = π1(η) + ψ1(ξ, η) − ψ1d + ψ1d − ẏ1d,
ė2 = π2(η) + ψ2(ξ, η) − ψ2d + ψ2d − ẏ2d,

(15)

and we define the error variables as:
{

z1 = ψ1(ξ, η) − ψ1d,
z2 = ψ2(ξ, η) − ψ2d.

(16)

By introducing these two variables z1 and z2 in the system (15) it leads to :

{

ė1 = π1(η) + ψ1d − ẏ1d + z1,
ė2 = π2(η) + ψ2d − ẏ2d + z2,

(17)

and replacing ψ1d and ψ2d by their expression (8d), the precedent relation becomes

{

ė1 = −q1e1Λ(e1) + z1,
ė2 = −q2e2Λ(e2) + z2.

(18)
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Besides, the time derivative of the variables z1 and z2 are obtained from relation (16) :






ż1 = 2a3

(

η̇1ξ1 + η1ξ̇1 + η̇2ξ2 + η2ξ̇2

)

− ψ̇1d,

ż1 = b5

(

η̇1ξ2 + η1ξ̇2 − η̇2ξ1 − η2ξ̇1

)

− ψ̇2d.
(19)

By replacing the dynamics ( η̇1, η̇2, ξ̇1, ξ̇2 ) by their respective expressions from (1), it
leads to :

{

ż1 = 2a3(F1.ξ1 + η1.f1 + F2.ξ2 + η2f2) − ψ̇1d + 2a3d1η1u1 + η2d1u2,

ż2 = b5(F1ξ2 + η1f2 − F2ξ1 − η2f1) − ψ̇2d − b5d1η2u1 + b5d1η1u2,
(20)

or in compact form :
(

ż1
ż2

)

= −

(

B1(ξ, η)
B2(ξ, η)

)

+A(ξ, η)

(

u1

u2

)

. (21)

Let be the Lyapunov functions candidate V1a and V2a related to the systems (18) and
(21) which are defined by :

{

V1a = 1
2e

2
1 + 1

2z
2
1 ,

V2a = 1
2e

2
2 + 1

2z
2
2 ,

(22)

exploiting relation (18), the time derivative of expression (22) is then:
(

V̇a,1(e1, z1)

V̇a,2(e2, z2)

)

= −

(

q1e
2
1Λ(e1)

q2e
2
2Λ(e2)

)

+

(

z1 0
0 z2

) [(

e1
e2

)

+

(

ż1
ż2

)]

(23)

introducing (21) in (23) induces
(

V̇a,1(e1, z1)

V̇a,2(e2, z2)

)

= −

(

q1e
2
1Λ(e1)

q2e
2
2Λ(e2)

)

(24)

+

(

z1 0
0 z2

) [(

e1
e2

)

−

(

B1

B2

)

+A(ξ, η)

(

u1

u2

)]

.

By using the control law (8a) in (24) it leads to :
(

V̇a,1(e1, z1)

V̇a,2(e2, z2)

)

= −

(

q1e
2
1Λ(e1)

q2e
2
2Λ(e2)

)

−

(

k1z1S(z1)
k2z2S(z2)

)

. (25)

The relation (25) allows to conclude that the variables (e1, z1, e2, z2) are bounded and
they converge at least asymptotically to zero. So, the functions ψ1(ξ, η) and ψ2(ξ, η)
follow respectively the desired value ψ1d and ψ2d and the outputs y1 and y2 track respec-
tively their reference y1d and y2d.

Remark 3.1 Λ(ei) must be continuous satisfying Λ1(ei) > 0, ∀ei is realized by the
function Λ(ei) = eni for n even natural number or Λ(ei) = cosh(ei). The function S(zi)
is continuous satisfying ziS(zi) > 0, ∀zi 6= 0 can be implemented by any continuous
function like a sign function by example smooth function defined by S(zi) = zi

|zi|+ǫi
with

i > 0 and i = i, 2 or by S(zi) = tanh(zi).

Remark 3.2 The determination of the input vector u is possible only if the matrix
A(η, ξ) has an inverse. Its determinant given by d1a3b5(η

2
1 + η2

2) is always positive if the
rotor flux magnitude η2

1 + η2
2 is different from zero. This latter condition is verified since

the machine is connected to the supply.
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Remark 3.3 In the case where, the time derivative relating to the outputs y1 and
y2 and the states η are used in place of their expressions from (1), for the determination
of the control law, the vector B(η, ξ) takes the form :

B1(η, ξ) = −2a3(η1f1 + η2f2 + ξ1η̇1 + ξ2η̇2) + ψ̇1d,

B2(η, ξ) = −b5(ξ2η̇1 + η1f2 − η2f1 − ξ1η̇2) + ψ̇2d,

with

ψ̇1d = −q1(ẏ1 − ẏ1d) + 2b3ẏ1 + ÿ1d, ψ̇2d = −q2(ẏ2 − ẏ1d) + a5ẏ2 + c5Γ̇r + ÿ2d,

if function Λ(x) is taken in its simplest form: Λ(x) = 1. Meanwhile in practice, the time
derivative of signals included in control law are generally not used due to the unavoidable
noise affecting the measured signals and may produce important spikes on the time
derivative signals.

Remark 3.4 The global Lyapunov function and the global augmented Lyapunov
function for the original system are :

V (e) =

2
∑

i=1

Vi(ei) and Va(e, z) =

2
∑

i=1

Vai(ei, zi) = V (e) +
1

2

2
∑

i=1

z2
i .

Remark 3.5 In the general case of the cascade non linear system introduced in
Remark 2.1, the control input can be derived in the following form :

u = A−1(η, ξ). (B(η, ξ) − k.S(z)) ,

where

k.S(z) =







k1.S(z1)
...

km.S(zm)






, zi = ψi(ξ, η) − ψid with i = 1, . . . ,m,

B(ξ, η) =







ψ̇1d
...

ψ̇md






−









δψ1

δη
F (ξ, η, )

...
δψm

δη
F (ξ, η)









−









δψ1

δξ
f(ξ, η)
...

δψm

δξ
f(ξ, η)









−









∂V1(e1)
∂e1
...

∂Vm(em)
∂em









.

4 Stability analysis

The convergence of ei to zero does not implies that the state vector (ξ, η) remains
bounded. As imposed by the control law the output yi(t) with i = (1, 2) follows asymp-
totically its bounded reference yid(t) and from the fact that hi(η) is continuous function
radially unbounded (see the expression form (2)) it induce to that the variable ηi(t) takes
a bounded values.

On the one hand, the functions ψ1d and ψ2d given by expression (8d) are bounded since
the functions π1(η) and π2(η) are continuous radially unbounded, the desired trajectories
(yid, ẏid, ÿid) and states are bounded. And in addition, the control input makes that
the variables z1 and z2 bounded and they converge asymptotically to zero. So, according
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to the expression (16) it induces that the continuous functions ψ1(η, ξ) and ψ2(η, ξ) take
bounded values.

From (5), the states ξ are forced to be the solution of the following system :

(

2a3η1 2a3η2
−b5η2 b5η1

) (

ξ1
ξ2

)

=

(

ψ1

ψ2

)

. (26)

Since ψ1 and ψ2 are bounded values and the determinant of (26), given by 2a3b5(η
2
1d+η

2
2d),

is bounded positive scalar (see remark 3.2), then the states ξ are always bounded.
According to the control input expression (8a) and from the fact that the matrix

A(η, ξ) is non singular, the functions fi(η), Fi(η, ξ) and ψ̇id are bounded moreover the
desired trajectories (yid, ẏid, ÿid) and the state variable (η, ξ) are bounded it follows
that the control input is bounded.

5 Application and simulations

For the application, we must in first choice the function Λ(x) and its simplest form is:

Λ(x) = 1 (27)

and applying relation (8d), therefore the desired values ψ1d and ψ2d are then given by:

{

ψ1d = −q1 (y1 − y1d) + 2b3(η
2
1 + η2

2) + ẏ1d,
ψ2d = −q2 (y2 − y2d) + a5η3 + c5Γr + ẏ2d,

(28)

where y1d and y2d are respectively the desired flux and the desired speed.
Differentiating expression (28) gives:

{

ψ̇1d(t) = −q1 (H1 − ẏ1d) + 2b3H1 + ÿ1d,

ψ̇2d(t) = −q2 (H2 − ẏ2d) + a5F3 + c5Γ̇r + ÿ2d.
(29)

Therefore, the terms B1(ξ, η) and B2(ξ, η) given in (8e) and (8f) take the final ex-
pression :

B1(η, ξ) = −2a3(η1f1 + η2f2 + ξ1F1 + ξ2F2) − q1(H1 − ẏ1d) + 2b3H1 + ÿ1d, (30)

B2(η, ξ) = −b5(ξ2F1 + η1f2 − η2f1 − ξ1F2) − q2(H2 − ẏ2d) + a5F3 + c5Γ̇r + ÿ2d. (31)

The simulations are performed for three phase induction machine characterised by :
Pn = 3.7Kw, 220/380, 8.54/14.8A,
M = 0.048H , Ls = 0.17H , Lr = 0.015H , σ = 0.0964,
Ts = 0.151s, Tr = 0.136s, J = 0.135mN/rdS−2, Kf = 0.0018mN/rdS−1.
The function S(zi) for i = (1, 2) is implemented by S(zi) = zi

|zi|+ǫi
where the threshold

values ε1 and ε2 are fixed to unity. The desired flux and speed tracking are involved with
the regulator coefficients tuned to :

k1 = 8000; k2 = 2000; q1 = 1000; q2 = 2000.
Figures 5.1 and 5.2 give the machine responses in tracking regime (for both ωref > 0

and ωref < 0). It appears clearly that the flux and speed track their references with
a good accuracy. More over, the initial stator peak current are attenuated by reducing
the control inputs only in the beginning of the transient stage (for time t <= 0.175s).
This reduction affects the tracking during this interval of time. In order to maintain
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Figure 5.1: Induction machine responses in tracking regime for positive reference speed with
the disturbances applied during only 0.1s respectively at time t=0.6, 0.95s and t=1.75s.
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Figure 5.2: Induction machine responses in tracking regime for negative reference speed with
the disturbances applied during only 0.1s at time t=0.6, 0.95s and t=1.75s.
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the voltage in admissible range when the speed reference ωref grows up to nominal
value ωn = 300rd/s, the reference flux φref is reduced down to the nominal flux φn
(φn = 0.33Wb) as φref = φnωn/ωref .

Further, it is noted that the speed and flux tracking reveal a good robustness against
disturbances represented by parametric variations and nominal load torque occurring at
the same time. These disturbances are applied during 0.1s respectively at the time t =
0.6, 0.95s and t = 1.75s. The robustness tests are performed for the parameter variations
around nominal values as that the stator and rotor resistors increase respectively by an
amount of 50% and 100%, the stator and rotor inductors decrease respectively by an
amount of 25% and 50%. Meanwhile, these variations affect only the machine model
coefficients and who that appearing in the control (u1, u2), desired values (ψ1d, ψ2d) and
variables (z1, z2), are maintained constant. The maximal absolute values of tracking
errors (see Table 5.1) reveals that this control law is highly robust in face parameters
variation when the state vector is completely known. Despite this highly disturbances,
the stator voltage remains in admissible range.

Maximal Tracking error |φref − φ| |ωref − ω| |z1| |z2|
Positive reference 2.10−3Wb 0.92rd/s 12.1 2
Negative reference 2.10−3Wb 0.92rd/s 11.3 2

Table 5.1: Maximal tracking error and maximal (z1, z2) values.

6 Conclusion

This paper develops a control design procedure for flux-speed tracking of voltage fed
induction motor. This design procedure is based on the Lyapunov theory and is similar
in spirit to the backsteeping methodology. So, in the first step, the virtual control law
is derived as that flux and speed follow at last asymptotically their desired trajectory.
Then, in second step, is deduced the real control, by imposing this virtual control law.
Noticing that the proposed control law does not include the derivatives of states and
outputs hence, it avoids the presence of spikes which often affect the derivative signals.
The simulation results involving the flux-speed tracking are given a good results and
highlight usability of the suggested approach. Moreover, the control law reveals a strong
robustness in face to disturbances generated at the same moment by application of the
nominal load torque and large parametric variations. The immediate interest of the
proposed procedure comes from the fact that it can be easily extended to the most of
voltage fed machines.

6.1 Appendix

In the field reference frame (i. e. the rotor), the state model of the permanent magnets syn-
chronous machine (PMSM) and voltage fed is obtained from the Park equations [22, 23]. This
model is derived using the state vector constituted by stator current components (ids, iqs) and
the rotor rotating pulsation ωr, whereas a vector control is composed of the stator voltage com-
ponents (vds, vqs). It is known that the PMSM produce optimal electromagnetic torque when
the stator current component ids takes a determined value idref . This latter must be zero (
idref = 0) when the magnets are mounted on the rotor surface. So, the control objective is to
constrain the component ids to take the value idref and to control the pulsation rotor rotation
ωr. So, the PMSM dynamic is separated into two interconnected systems : the first one concerns
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the control for the output ids and the second, which form cascaded non linear system, is related
to the control output ωr. Using the precedent notation for the state vector, the control input
vector and the output vector :

(

η1 η2 ξ1

)

=
(

ids ωr iqs

)

, uT =
(

u1 u2

)T
=

(

uds uqs

)T
,

yT =
(

y1 y2

)T
= (ids ωr)

T

and the PMSM dynamic takes the form :
{

η̇1 = −a1η1 + b1η2ξ1 + c1u1,
y1 = η1,

(32)







ξ̇1 = −a2ξ1 − b2η1η2 − c2η2 + d2u2,
η̇2 = −c3η2 − d3Γr + (a3η1 + b3)ξ1,
y2 = η2.

(33)

It is obviously that the second subsystem has the same form as the studied one. Another way to
control the PMSM is to regulate only the speed. In this case, the state vector, the input vector
and the output are then respectively represented by :

(

ξ1 ξ2 η1

)

=
(

ids iqs wr

)

, uT =
(

u1 u2

)T
=

(

vds vqs

)T
, y1 = ωr

and the PMSM state model takes the form :















ξ̇1 = −a1ξ1 + b1ξ2η1 + c1u1,

ξ̇2 = −a2ξ2 − b2ξ1η1 − c2η1 + d2u2,
η̇1 = (a3ξ1 + b3)ξ2 − c3η1 − d3Γr,
y1 = η1.

(34)

It appears that the precedent dynamic is the same class as indicated in 1. Meanwhile, the
action on the speed is carried out by the two inputs (u1 et u2) so, this degree of freedom can
be exploited in order to introduce another constraint.

The coefficients (a1, ..., c4) are related to the machine parameters by :

a1 = Rs

Ld
, a2 =

Lq

Ld
, a3 = 1

Ld
, b1 = Rs

Lq
, b2 = Ld

Lq
, b3 =

φf

Lq
, b4 = 1

Lq
,

c1 = 3.(p)2

2.J
(Ld − Lq) , c2 =

3.(p)2.φf

2.J
, c3 =

kf

J
, c4 = p

J

and the physical parameters represent :
Rs : stator phase resistor,
Ld/Lq : cyclic stator/roto inductance related to (d, q) axe,
f : flux produced by rotor magnets,
J : inertia and p is the pairs of poles,
kf : friction coefficient and Γr is a load torque.
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