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Abstract: New results concerned with the Liapunov stability of composite or
interconnected systems, described by linear difference equations are established.
These results involve a matrix-valued Liapunov function. Furthemore, using
a new approach for constructing Liapunov functions we obtain some results
related to uniform asymptotic stability and compare our results with some
know results which were obtained via vector Liapunov functions. The examples
illustrating the efficiency of the proposed approach are given.
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1 Introduction and Main Results

The aim of this paper is to study stability in the sense of Liapunov of a linear large-scale
system of difference equations in the form

xi(τ + 1) = Aiixi(τ) +

m∑

j=1, j 6=i

Aij(τ)xj(τ), i = 1, 2, . . . , m, (1)

where x = (xT
1 , . . . , xT

m)T, τ ∈ N+
τ = {τ0 + k, k = 0, 1, . . . , } τ0 > 0, xi ∈ Rni , x ∈ Rn,

n =
m∑

i=1

ni, Aii, i = 1, . . . , m, are constant matrices of appropriate dimensions, Aij(τ),

i, j = 1, . . . , m, i 6= j, are determined on the set N+
τ .
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The transformation of initial systems to the form (1) is made by means of mathemat-
ical decomposition for the preassigned order of independent subsystems or in terms of
some physical speculations formed in the description of real physical system by a system
of difference equations.

For system (1) we construct the matrix-valued function U(τ, x) (for the details see
[5]). The diagonal elements vii(xi) are taken as the quadratic forms

vii(xi) = xT
i Piixi, i = 1, 2, . . . , m, (2)

where Pii are symmetric positive definite matrices. We assume that at least one of the
matrices Aij or Aji is not equal to constant and takes the corresponding non-diagonal
elements vij(τ, xi, xj) as the bilinear form

vij(τ, xi, xj) = vji(τ, xi, xj) = xT
i Pij(τ)xj , i, j = 1, 2, . . . , m, i 6= j, (3)

where the matrix Pij(τ) satisfies difference equation

Pij(τ + 1) − Pij(τ) + AT
iiPij(τ + 1)Ajj − Pij(τ + 1)

= −
ηi

ηj

AiiPiiAij(τ) −
ηj

ηi

AT
ji(τ)PjjAjj .

(4)

Equation (4) can be solved in the explicit form. Consider two cases.
Case 1. Assume that the matrices Aii and Ajj are such that

q = max
k,l

|λk(Aii)λl(Ajj)| < 1.

We consider the linear operators

Fij Rni×nj → Rni×nj , FijX = AT
iiXAjj .

and present equation (4) as

Pij(τ) = −FijPij(τ + 1) +
ηi

ηj

AiiPiiAij(τ) +
ηj

ηi

AT
ji(τ)PjjAjj . (5)

Using the method of mathematical induction it is easy to show that

Pij(τ) = F ν
ijPij(τ + ν) +

ν∑

k=0

F k
ij

ηi

ηj

AiiPiiAij(τ + k)

+
ηj

ηi

AT
ji(τ + k)PjjAjj .

(6)

for any positive integer ν. It is shown (see [1]) that the eigenvalues of the operators Fij

are λk(Aii)λl(Ajj), therefore the norm of the operator F ν
ij admits the estimate

‖F ν
ij‖ =

∥∥∥∥∥
1

2πi

∫

|z|= 1+q

2

zνRz(Fij) dz

∥∥∥∥∥ ≤
c

2π

∫

|z|= 1+q

2

|z|ν dl = c
(1 + q

2

)ν

,

where c = max
|z|= 1+q

2

‖Rz(Fij)‖, Rz(Fij) is a resolvent of the operator Fij . Taking into

account 1+q

2 < 1, we get ‖F ν
ij‖ → 0 as ν → ∞.
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Further we are interested only in bounded solutions of equation (4). Passing to the
limit in (6) as ν → ∞, we get

Pij(τ) =

∞∑

k=τ

F−τ+k
ij

{
ηi

ηj

AiiPiiAij(k) +
ηj

ηi

AT
ji(k)PjjAjj

}
. (7)

Further it is assumed that the series in the right-side part of (7) converges.

Case 2. Assume that

q = max
k,l

|λk(Aii)λl(Ajj)| ≥ 1.

It is easy to notice that the operator Fij is non-degenerated. We present equation (4) as

Pij(τ + 1) = F−1
ij Pij(τ) − F−1

ij

{
ηi

ηj

AiiPiiAij(τ) +
ηj

ηi

AT
ji(τ)PjjAjj

}
. (8)

Using the method of mathematical induction it is easy to show that

Pij(τ) = F−τ+τ0

ij Pij(τ0)

−

τ−τ0−1∑

k=0

F−τ+τ0+k
ij

[
ηi

ηj

AiiPiiAij(τ0 + k) +
ηj

ηi

AT
ji(τ0 + k)PjjAjj

]
.

Setting Pij(τ0) = 0 we find partial solution of equation (4) in the form

Pij(τ) = −

τ−τ0−1∑

k=0

F−τ+τ0+k
ij

[
ηi

ηj

AiiPiiAij(τ0 + k) +
ηj

ηi

AT
ji(τ0 + k)PjjAjj

]
. (9)

Assuming that the matrices Pij(τ) are bounded for all τ ≥ τ∗ we introduce designa-
tions

c̄ii = λM (Pii), c̄ij = sup
τ≥τ∗

‖Pij(τ)‖,

c ii = λm(Pii), c ij = − sup
τ≥τ∗

‖Pij(τ)‖.

In view of the results from [2, 4] the estimates for the elements matrix-valued function
U(τ, x) are

c ii‖xi‖
2 ≤ vii(xi) ≤ c̄ii‖xi‖

2, i = 1, 2, . . . , m,

c ij‖xi‖ ‖xj‖ ≤ vij(τ, xi, xj) ≤ c̄ij‖xi‖ ‖xj‖, i, j = 1, 2, . . . , m, i 6= j.

Therefore for scalar function v(τ, x, η) = ηTU(τ, x)η, η ∈ Rm
+ , η > 0, the bilateral

inequality

wTHTCHw ≤ v(τ, x, η) ≤ wTHTCHw, (10)

is satisfied, where

C = [c̄ij ]
m
i,j=1, C = [cij ]

m
i,j=1,

H = diag (η1, . . . , ηm), w = (‖x1‖, . . . , ‖xm‖)T.
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For the first difference of function v(τ, x, η) along solutions of system (1) in view of (4)
one can get the estimate

∆v(τ, x, η)
∣∣∣
(1)

≤ wTS(τ)w, (11)

where w = (‖x1‖, . . . , ‖xm‖)T, S(τ) = [σij(τ)]mi,j=1. The elements of matrix S(τ) have
the following structure

σii(τ) = − λm(Gii)η
2
i +

m∑

j=1, j 6=i

Aji‖
2‖Pjj‖η

2
j

+

m∑

k,j=1, k 6=j

λM (AT
kiPkjAji + AT

jiP
T
jkAki)ηkηj ,

σij(τ) =

m∑

k=1, k 6=j, k 6=i

η2
i ‖Akj‖ ‖Pkk‖ ‖Aki‖

+

m∑

k,l=1, k 6=i, k 6=j, l 6=j

‖Aki‖ ‖Pkl‖ ‖Alj‖ηjηl, i 6= j,

where Gii = −(AT
iiPiiAii−Pii), ‖·‖ is a spectral norm of the corresponding matrix. Using

the function U(τ, x), estimate (10) of the scalar function v(τ, x, η) and estimate (11) of
the first difference of this function along solutions of system (1) we formulate sufficient
conditions of stability and uniform asymptotic stability of the equilibrium state x = 0
of system (1).

Theorem 1.1 Let system of equations (1) be such that

(1) matrices C and C in estimate (10) are positive definite;

(2) there exist negative semidefinite (negative definite) matrix S such that

1

2

[
S(τ) + ST(τ)

]
≤ S for all τ ≥ τ0.

Then the equilibrium state x = 0 of system (1) is uniformly stable (uniformly asympto-
tically stable).

Proof Condition (2) of Theorem 1.1 ensures the existence of τ1 ∈ N+
τ0

such that
for all τ ≥ τ1 for matrix S(τ) the generalized Silvester conditions are satisfied. So, for
function v(τ, x, η) = ηTU(τ, x)η for all τ ≥ τ̃ = max{τ1, τ

∗} all conditions of Theorem
16.3 from Hahn [3] are satisfied. Thus, the equilibrium state x = 0 is stable (uniformly
asymptotically stable) with respect to N+

τ̃ . Taking into account continuity of solutions
x(τ, τ0, x0) of system (1) in x0 and discreteness of the set N+

τ0
one can conclude on

stability (uniform asymptotic stability) of the equilibrium state of system (1).

2 Examples

Consider the system
x(τ + 1) = ρ1x(τ) + αA(ω, τ)y(τ),

y(τ + 1) = ρ2y(τ) + βAT(ω, τ)x(τ),
(12)
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where x, y ∈ R2, and α, β, ρ1, ρ2 ∈ R, ω ∈ [0, 2π),

A(ω, τ) =

(
cosωτ sin ωτ

− sinωτ cosωτ

)
, τ ∈ N+

0 .

Moreover, we designate q = ρ1ρ2. Applying the approach proposed in Section 1 for
system (12) we construct an auxiliary function

v(τ, x, y) = xTx + yTy + 2xTP (τ)y, (13)

where

P (τ) =






αρ1 + βρ2

1 − 2q cosω + q2
A(ω, τ − 1)(A(ω, 1) − qI), if |q| ≤ 1;

−
αρ1 + βρ2

1 − 2q cosω + q2

[
qA(ω, τ − 1) − A(ω, τ) −

q−τ+1AT(1) + q−τI
]
, if |q| > 1,

and I is an identify matrix of dimension 2. Theorem 1.1 allows us to establish sufficient
stability conditions of system (12) in the form of a system of inequalities

|αρ1 + βρ2| <
√

1 − 2q cosω + q2;

σ11 < 0, σ11σ22 − σ2
12 > 0,

(14)

where

σ11 = ρ2
1 − 1 −

2ρ1β(αρ1 + βρ2)(q − cosω)

1 − 2q cosω + q2
+ β2,

σ22 = ρ2
2 − 1 −

2ρ2α(αρ1 + βρ2)(q − cosω)

1 − 2q cosω + q2
+ α2,

and

σ21 = σ12 = |αβ|
|αρ1 + βρ2|√

1 − 2q cosω + q2
.

It this case the equilibrium state x = y = 0 of system (12) is uniformly asymptotically
stable, and the constructed function (13) is the Liapunov function.

In order to compare the obtained stability conditions with the conditions obtained in
terms of vector Liapunov function we employ the results from [6]. Construct the vector
function V (x, y) = (v1(x), v2(y))T with the components v1(x) = xTx and v2(y) = yTy.
Applying Theorem 3.3.14 from [6] we present sufficient conditions of uniform asymptotic
stability of system (12) in the form of the system of inequalities

ρ2
1 + β2 − 1 < 0,

(ρ2
1 + β2 − 1)(ρ2

2 + α2 − 1) − 4|αβ||ρ1ρ2| > 0.
(15)

To compare conditions (15) and (14) obtained in terms of Theorem 1.1 we consider a
system of difference equations

x(τ + 1) = 0.95 x + αA

(
π

3
, τ

)
y,

y(τ + 1) = −0.95 y + βAT

(
π

3
, τ

)
x

(16)
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and construct in the space of parameters (α, β) the domains of stability of the equilibrium
space x = y = 0 of system (16). Figures 2.1 and 2.2 show that the domain constructed in
terms of conditions (14) is wider than the domain constructed in terms of conditions (15).

Figure 2.1: The domain of stability of (16) in the parameter space via Liapunov’s vector
function.

Figure 2.2: The domain of stability of (16) in the parameter space via Liapunov’s matrix-
valued function.

Note that for the system

x(τ + 1) = 1.2 x + αA

(
π

3
, τ

)
y,

y(τ + 1) = −0.8 y + βAT

(
π

3
, τ

)
x

(17)
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it is impossible to apply the vector function, because subsystem x(τ + 1) = 1.2 x is not
exponentially stable. Nevertheless conditions (14) allow us to construct for system (16)
in the space (α, β) a domain of stability shown in Figure 2.3.

Figure 2.3: The domain of stability of (17) in the parameter space.

Figure 2.4: The domain of stability of (18) with exponentially unstable subsystem.

The system

x(τ + 1) = 1.05 x + αA

(
π

3
, τ

)
y,

y(τ + 1) = −1.05 y + βAT

(
π

3
, τ

)
x

(18)

has exponentially unstable subsystems. However in this case as well conditions (14) allow
us to construct for system (18) a domain of stability in the space of parameters shown
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in Figure 2.4.

3 Concluding Remarks

Generalized Liapunov function method for a class of large-scale difference systems (1)
were developed. In particular, stability and uniform asymptotic stability theorems were
presented. The efficiency of the proposed approach was demonstrated by two examples.
An important aspect of the new results is that they account an estimation stability
domain of parameters of the systems. In connection with the developed theory, there
remain many open problems. Some of these include the following: to established guides
for choosing “best” vector η in the scalar function v(τ, x, η); to apply the developed
theory to specific problems of uncertain systems. Because in general, one is not only
interested in stability of systems (1), but also in trajectory bounds, it is desirable to
investigate the behavior of systems (1) with respect to sub-sets of the state space.
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