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1 Introduction

During the past decades, stochastic modeling has come to play an important role in many
branches of science such as biology, economics and engineering applications. Therefore,
much attention has been drawn to systems with stochastic perturbations from researchers
working in related areas. By stochastic systems, we generally refer to systems whose
parameter uncertainties are modeled as white noise processes. These parameter uncer-
tainties are usually due to some stochastic environment, and thus it is a natural way
to represent them in the model by stochastic parameters fluctuating around some de-
terministic nominal values. This kind of systems has been called systems with random
parametric excitation [2], stochastic bilinear systems [18] and linear stochastic systems
with multiplicative noise [15, 31]. Analysis and synthesis of stochastic systems have been
investigated extensively and many fundamental results for deterministic systems have
been extended to stochastic cases. To mention a few, the analysis of asymptotic behav-
ior can be found in [19, 21, 24]; the optimal control problems were reported in [15, 31];
and recently with the development of H∞ control theory, the robust control and filtering
results have also been extended to stochastic systems through Riccati-like approaches as
well as by means of linear matrix inequality (LMI) [3, 4, 9, 16, 29, 33].

On the other hand, for the purpose of analysis and synthesis, estimating the state
variables of a dynamic model is important in helping to improve our knowledge about
the system concerned [1]. Hence, state estimation has long been an important and inter-
esting problem in the control and signal processing area. Among the existing approaches
for estimating the state variables of a linear system described by a state-space equation,
arguably, the most popular and useful one is the celebrated Kalman filter [6, 7, 17] which
has been applied to a wide range of problems (biology, economics, aerospace, and even
population analysis etc. [23, 26]). Usually, it is supposed that a precisely known sys-
tem model is available and that the dynamic and measurement equations are additively
affected by white noise processes satisfying standard assumptions. In many practical sit-
uations, however, the availability of the a priori information about the external noise is
unrealistic. In this case, the filtering problem is more involved and many researchers have
made great efforts in proposing useful algorithms in different contexts (see, for instance,
[11, 13, 27, 34, 35] and the references therein). Among these available filtering results, the
H∞ filtering approach provides both a guaranteed noise attenuation level and robustness
against unmodeled dynamics. In the presence of both unknown statistics of the external
noises and uncertain parameters in the system model, a common approach is to design
robust H∞ filters. The problem of robust H∞ filtering consists on designing a linear
stationary asymptotically stable filter that assures a prescribed H∞ performance for the
filtering error system, irrespective of modeling uncertainties. In general, two popular ap-
proaches used to solve the aforementioned filtering problem are Riccati equation approach
[30] and linear matrix inequality (LMI) approach [22, 32, 33], and two kinds of parame-
ter uncertainty have been widely used in the literature: norm-bounded uncertainty and
polytopic uncertainty. In solving the robust H∞ filtering problem, most of the reported
results are based on quadratic Lyapunov functions, which have been largely used for ro-
bust analysis and synthesis in the past decades. Although being able to ensure stability
for systems with arbitrarily fast time-varying parameters, methods based on quadratic
stability can produce conservative results since the same parameter-independent Lya-
punov function must be used for the entire uncertainty domain. One recognized way
to overcome this conservativeness is to consider a parameter-dependent Lyapunov func-
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tion. An example of a less conservative stability condition based on parameter-dependent
Lyapunov functions can be found in [8].

Recently, the problem of robust H∞ filtering for uncertain stochastic systems has
been investigated in [14] by using LMI technique. It is worth mentioning that the filter
designs are based on the quadratic stability notion, which requires a common Lyapunov
function for the entire uncertainty domain, and thus much overdesign has been introduced
in the derivation process. In this paper, we revisit the problem solved in [14], and present
two approaches to solve the H∞ filtering problem for continuous-time stochastic systems
with parameter uncertainties residing in a polytope. One approach is concerned with
the robust stochastic H∞ filter design, where stationary constant filters are designed to
ensure the filtering error system to be asymptotically stable and has a guaranteed H∞

performance for the entire uncertainty domain. The other approach designs parameter-
dependent filters whose system matrices are dependent on the available information of the
uncertain parameters. Both approaches solve the filtering problems based on a modified
(improved) bounded real lemma for continuous-time stochastic systems, which decouples
the product terms between the Lyapunov matrix and systems matrices and enables us
to exploit parameter-dependent stability idea in the filter designs. Sufficient conditions
for the existence of admissible robust stochastic H∞ filters and parameter-dependent
stochastic H∞ filters are obtained in terms of LMIs, upon which the filter designs are
cast into convex optimization problems. Since the filter designs make full use of the
parameter-dependent stability idea, the obtained results are less conservative than the
existing one in the quadratic framework. A numerical example is provided to illustrate
the effectiveness and advantage of the filter design methods proposed in this paper.

The remainder of this paper is organized as follows. The problem of H∞ filtering for
uncertain continuous-time stochastic systems is formulated in Section 2. Sections 3 and
4 present results for parameter-dependent and robust stochastic H∞ filtering problems
respectively. An illustrative example is provided to show the effectiveness and advantages
of the proposed filter designs in Section 5. Finally, some concluding remarks are given
in Section 6.

Notations: The notations used throughout the paper are fairly standard. The su-
perscript “T ” stands for matrix transposition; R

n denotes the n-dimensional Euclidean
space, R

m×n is the set of all real matrices of dimension m × n and the notation P > 0
means that P is real symmetric and positive definite. L2[0,∞) is the space of square-
integrable vector functions over [0,∞); the notation | · | refers to the Euclidean vector
norm and ‖ · ‖2 stands for the usual L2[0,∞) norm. In symmetric block matrices or long
matrix expressions, we use an asterisk (∗) to represent a term that is induced by symme-
try and diag{. . .} stands for a block-diagonal matrix. Matrices, if their dimensions are
not explicitly stated, are assumed to be compatible for algebraic operations. In addition,
let (Ω,F , {Ft}t≥0,P) be a complete probability space with a filtration {Ft}t≥0 satisfying
the usual conditions (i.e. the filtration contains all P-null sets and is right continuous)
and E{·} denotes the expectation operator with respect to the probability measure P .

2 Problem Description

Consider a mean-square stable system S with state-dependent noise:

S : dx(t) = [A(λ)x(t) + B(λ)w(t)] dt + E(λ)x(t)dβ(t),

dy(t) = [C(λ)x(t) + D(λ)w(t)] dt + F (λ)x(t)dζ(t),

z(t) = L(λ)x(t),

(1)
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where x(t) ∈ R
n is the state vector; y(t) ∈ R

m is the measured output; z(t) ∈ R
p is the

signal to be estimated; w(t) ∈ R
q is the disturbance input which belongs to L2 [0,∞).

The variables β(t) and ζ(t) are zero-mean real scalar Wiener processes that satisfy

E {dβ(t)} = 0, E
{
dβ(t)2

}
= dt,

E {dζ(t)} = 0, E
{
dζ(t)2

}
= dt,

E {dβ(t)dζ(t)} = αdt, |α| < 1,

A(λ), B(λ), E(λ), C(λ), D(λ), F (λ) and L(λ) are appropriately dimensioned matrices.
It is assumed that

Ω(λ) , (A(λ), B(λ), E(λ), C(λ), D(λ), F (λ), L(λ)) ∈ R,

where R is a given convex bounded polyhedral domain described by s vertices:

R ,

{
Ω(λ) : Ω(λ) =

s∑

i=1

λiΩi;

s∑

i=1

λi = 1, λi ≥ 0

}

and Ωi , (Ai, Bi, Ei, Ci, Di, Fi, Li) denotes the vertex of the polytope.
Since the signal z(t) cannot be measured directly, our purpose in this paper is to

estimate z(t) via the available measurement y(t), such that the estimation error is small
in the H∞ sense with respect to the energy bounded noise w(t).

According to practical situations, we make two different assumptions on the uncertain
parameter λ.

Assumption 1 The uncertain parameter λ is unknown, and cannot be measured
online.

Assumption 2 The uncertain parameter λ does not depend explicitly on the time
variable but can be measured online. The uncertain parameter λ can vary slowly due to
changes in temperature, wind, pressure, humidity, atmosphere, or operating points [20].

For Assumption 1, since the uncertain parameter λ cannot be measured online, a
natural way to deal with the filtering problem is to consider a robust filter of the following
form (whose filter matrices are not dependent on the parameter λ):

FR : dxF (t) = AF xF (t)dt + BF dy(t), xF (0) = 0,

zF (t) = CF xF (t).
(2)

In some situations, however, the uncertain parameter λ does not depend explicitly on
the time variable but can be measured online. In such cases (Assumption 2), it may be
desirable to utilize the available information on parameter λ to reduce the conservatism of
the robust filter designs. That is, to design a parameter-dependent filter of the following
form (whose filter matrices are explicitly dependent on the parameter λ):

FP : dxF (t) = AF (λ)xF (t)dt + BF (λ)dy(t), xF (0) = 0,

zF (t) = CF (λ)xF (t).
(3)

Throughout the paper, the estimation error is denoted by e(t) , z(t) − zF (t). We
define, for a given scalar γ > 0, the following performance index:

J , ‖e‖2

E − γ2 ‖w‖2

2
,
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where

‖e‖2

E , E

{∫ ∞

0

|e(t)|2 dt

}
.

In the following sections, we will present LMI-based approaches to solve the above
two stochastic filtering problems. We first present results on the parameter-dependent
stochastic H∞ filtering problem, and then solve the robust stochastic H∞ filtering prob-
lem.

3 Parameter-Dependent Stochastic H∞ Filtering

In the parameter-dependent stochastic H∞ filtering problem, by augmenting the model
of S to include the states of the filter FP , we obtain the filtering error system EP :

EP : dξ(t) =
[
Ā(λ)ξ (t) + B̄(λ)w(t)

]
dt + Ē(λ)ξ (t) dβ(t) + F̄ (λ)ξ (t) dζ(t),

e(t) = C̄(λ)ξ(t),
(4)

where ξ(t) =
[
xT(t), xT

F (t)
]T

and

Ā(λ) =

[
A(λ) 0

BF (λ)C(λ) AF (λ)

]
, B̄(λ) =

[
B(λ)

BF (λ)D(λ)

]
,

Ē(λ) =

[
E(λ) 0

0 0

]
, F̄ (λ) =

[
0 0

BF (λ)F (λ) 0

]
,

C̄(λ) = [L(λ), −CF (λ)] .

(5)

Then, the parameter-dependent stochastic H∞ filtering problem to be addressed in
this section can be expressed as follows.

Problem PDSHinfF (Parameter-dependent Stochastic H∞ Filtering): Given
system S in (1), determine the parameter-dependent matrices (AF (λ), BF (λ), CF (λ))
of the filter FP in (3), such that the filtering error system EP in (4) is mean-square
asymptotically stable and J < 0 for all nonzero w(t) ∈ L2 [0,∞). Filters satisfying the
above conditions are called parameter-dependent stochastic H∞ filters.

3.1 Preliminaries

To solve Problem PDSHinfF, we need the following lemma (see, for instance, Lemma 1
in [14]).

Lemma 3.1 Suppose system S in (1) and filter FP in (3) are given, the filtering
error system EP in (4) is mean-square asymptotically stable with J < 0 for all nonzero
w(t) ∈ L2 [0,∞) under zero initial conditions if and only if there exists a matrix function
Q(λ) > 0 satisfying

ĀT(λ)Q(λ) + Q(λ)Ā(λ) + C̄T(λ)C̄(λ) + γ−2Q(λ)B̄(λ)B̄T(λ)Q(λ) + ĒT(λ)Q(λ)Ē(λ)

+ F̄T(λ)Q(λ)F̄ (λ) + αĒT(λ)Q(λ)F̄ (λ) + αF̄T(λ)Q(λ)Ē(λ) < 0
(6)
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The above lemma characterizes the H∞ performance for continuous-time stochastic
systems by using matrix inequality. Denoting ᾱ ,

√
1 − α2, by Schur complement [5],

condition (6) in Lemma 3.1 can be transformed into




−Q(λ) 0 ᾱQ(λ)Ē(λ) 0 0
∗ −Q(λ) Q(λ)

(
αĒ(λ) + F̄ (λ)

)
0 0

∗ ∗ ĀT(λ)Q(λ) + Q(λ)Ā(λ) Q(λ)B̄(λ) C̄T(λ)
∗ ∗ ∗ −γ2I 0
∗ ∗ ∗ ∗ −I




< 0. (7)

(7) is an LMI formulation of the H∞ performance presented in Lemma 3.1 for continuous-
time stochastic systems. A robust stochastic H∞ filtering result has been presented in
[14] based on the performance condition (7). Due to the existence of product terms
between the Lyapunov matrix Q(λ) and system matrices, the robust filtering result in
[14] is obtained by imposing Q(λ) ≡ Q, which leads to a filtering result within the
quadratic framework. In the following, we will present an improved version of (7) by
decoupling the product terms between the Lyapunov matrix Q(λ) and system matrices,
which will be used in our filter designs.

Proposition 3.1 Suppose system S in (1) and filter FP in (3) are given, the filtering
error system EP in (4) is mean-square asymptotically stable with J < 0 for all nonzero
w(t) ∈ L2 [0,∞) under zero initial conditions if and only if for a sufficiently small scalar
ǫ > 0, there exist matrix functions Q(λ) > 0 and W (λ) satisfying




Υ 0 0
√

ǫᾱWT(λ)Ē(λ) 0 0
∗ Υ 0

√
ǫWT(λ)

(
αĒ(λ) + F̄ (λ)

)
0 0

∗ ∗ Υ WT(λ)
(
I + ǫĀ(λ)

) √
ǫWT(λ)B̄(λ) 0

∗ ∗ ∗ −Q(λ) 0
√

ǫC̄T(λ)
∗ ∗ ∗ ∗ −γ2I 0
∗ ∗ ∗ ∗ ∗ −I




< 0, (8)

where

Υ , Q(λ) − WT(λ) − W (λ).

Proof We first show that (8) is equivalent to




−Q(λ) 0 0
√

ǫᾱQ(λ)Ē(λ) 0 0
∗ −Q(λ) 0

√
ǫQ(λ)

(
αĒ(λ) + F̄ (λ)

)
0 0

∗ ∗ −Q(λ) Q(λ)
(
I + ǫĀ(λ)

) √
ǫQ(λ)B̄(λ) 0

∗ ∗ ∗ −Q(λ) 0
√

ǫC̄T(λ)
∗ ∗ ∗ ∗ −γ2I 0
∗ ∗ ∗ ∗ ∗ −I




< 0.

(9)
The equivalence between (8) and (9) can be proved as follows. On one hand, if there
exists a matrix function Q(λ) > 0 satisfying (9), (8) is readily established by choos-
ing WT(λ) = W (λ) = Q(λ). On the other hand, if there exist matrix functions
Q(λ) > 0 and W (λ) satisfying (8), we can easily see that W (λ) is nonsingular. In

addition, we have (Q(λ) − W (λ))
T

Q−1(λ) (Q(λ) − W (λ)) ≥ 0, which implies that
Γ , −WT(λ)Q−1(λ)W (λ) ≤ Q(λ) − WT(λ) − W (λ). Therefore we can conclude from
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(8) that




Γ 0 0
√

ǫᾱWT(λ)Ē(λ) 0 0
∗ Γ 0

√
ǫWT(λ)

(
αĒ(λ) + F̄ (λ)

)
0 0

∗ ∗ Γ WT(λ)
(
I + ǫĀ(λ)

) √
ǫWT(λ)B̄(λ) 0

∗ ∗ ∗ −Q(λ) 0
√

ǫC̄T(λ)
∗ ∗ ∗ ∗ −γ2I 0
∗ ∗ ∗ ∗ ∗ −I




< 0. (10)

Performing a congruence transformation to (10) by diag {W−1(λ)Q(λ), W−1(λ)Q(λ),
W−1(λ)Q(λ), I, I, I} yields (9).

Now, performing a congruence transformation to (9) by diag
{
I, I, I, ǫ−1/2I, I, I

}
, we

obtain



−Q(λ) 0 0 ᾱQ(λ)Ē(λ) 0 0
∗ −Q(λ) 0 Q(λ)

(
αĒ(λ) + F̄ (λ)

)
0 0

∗ ∗ −Q(λ) Q(λ)
(
ǫ−1/2I +

√
ǫĀ(λ)

) √
ǫQ(λ)B̄(λ) 0

∗ ∗ ∗ −ǫ−1Q(λ) 0 C̄T(λ)
∗ ∗ ∗ ∗ −γ2I 0
∗ ∗ ∗ ∗ ∗ −I




< 0

(11)
by Schur complement, (11) is equivalent to




−Q(λ) 0 ᾱQ(λ)Ē(λ) 0 0
∗ −Q(λ) Q(λ)(αĒ(λ) + F̄ (λ)) 0 0

∗ ∗ Q(λ)Ā(λ) + ĀT(λ)Q(λ)+
ǫĀT(λ)Q(λ)Ā(λ)

Q(λ)B̄(λ)+
ǫĀT(λ)Q(λ)B̄(λ)

C̄T(λ)

∗ ∗ ∗ −γ2I + ǫB̄T(λ)Q(λ)B̄(λ) 0
∗ ∗ ∗ ∗ −I




< 0

(12)
which is further equivalent to

[
Υ̃ Q(λ)B̄(λ)
∗ −γ2I

]
+ ǫ

[
ĀT(λ)
B̄T(λ)

]
Q(λ)

[
Ā(λ) B̄(λ)

]
< 0, (13)

where
Υ̃ , Q(λ)Ā(λ) + ĀT(λ)Q(λ) + C̄T(λ)C̄(λ) + ᾱ2ĒT(λ)Q(λ)Ē(λ)

+
(
αĒ(λ) + F̄ (λ)

)T
Q(λ)

(
αĒ(λ) + F̄ (λ)

)
.

Since Q(λ) > 0 and ǫ is sufficiently small positive, (13) is in fact equivalent to (6), and
the proof is completed. 2

The advantage of Proposition 3.1 lies in the fact that by introducing the slack (in the
sense that no structural restriction is imposed) matrix function W (λ) and a sufficient
small positive constant ǫ, (8) does not contain product terms between the Lyapunov
matrix Q(λ) and system matrices. This decoupling property has been proved to be an
advantage for polytopic uncertain systems concerning reducing conservativeness [25]. In
the following (sub)sections, we will develop parameter-dependent and robust stochastic
H∞ filters based on Proposition 3.1.

It is noted that if the filter matrices (AF (λ), BF (λ), CF (λ)) are given, (8) is a linear
matrix inequality over the matrix variables Q(λ) and W (λ) for fixed λ. However, since
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our purpose is to determine the filter matrices (AF (λ), BF (λ), CF (λ)), condition (8)
is actually a nonlinear matrix inequality. In addition, to test the feasibility of these
conditions is an infinite-dimensional problem in terms of the uncertain parameter λ. Our
main objective hereafter is to transform (8) into finite-dimensional LMI condition.

3.2 Main Results

Our result depends on the following proposition.

Proposition 3.2 Given system S in (1). For a sufficiently small scalar ǫ > 0, there
exist matrix functions Q(λ) > 0 and W (λ) satisfying (8) if and only if there exist matrices

Q̄(λ) ,

[
Q̄1(λ) Q̄2(λ)

∗ Q̄3(λ)

]
> 0, R(λ), S(λ), T (λ), ĀF (λ), B̄F (λ), and C̄F (λ) satisfying

Ψ(λ) ,




Π1 Π2 0 0 0 0
√

ǫᾱRT(λ)E(λ) 0 0 0
∗ Π3 0 0 0 0

√
ǫᾱST(λ)E(λ) 0 0 0

∗ ∗ Π1 Π2 0 0 Π4 0 0 0
∗ ∗ ∗ Π3 0 0 Π5 0 0 0
∗ ∗ ∗ ∗ Π1 Π2 Π6 T (λ) + ǫĀF (λ) Π8 0
∗ ∗ ∗ ∗ ∗ Π3 Π7 T (λ) + ǫĀF (λ) Π9 0
∗ ∗ ∗ ∗ ∗ ∗ −Q̄1(λ) −Q̄2(λ) 0

√
ǫLT(λ)

∗ ∗ ∗ ∗ ∗ ∗ ∗ −Q̄3(λ) 0 −√
ǫC̄T

F (λ)
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −γ2I 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −I




< 0,

(14)
where

Π1 = Q̄1(λ) − RT(λ) − R(λ), Π2 = Q̄2(λ) − T (λ) − S(λ),

Π3 = Q̄3(λ) − T (λ) − T T(λ), Π4 =
√

ǫαRT(λ)E(λ) + B̄F (λ)F (λ),

Π5 =
√

ǫαST(λ)E(λ) + B̄F (λ)F (λ), Π6 = RT(λ) + ǫRT(λ)A(λ) + ǫB̄F (λ)C(λ),

Π7 = ST(λ) + ǫST(λ)A(λ) + ǫB̄F (λ)C(λ), Π8 =
√

ǫRT(λ)B(λ) +
√

ǫB̄F (λ)D(λ),

Π9 =
√

ǫST(λ)B(λ) +
√

ǫB̄F (λ)D(λ).

Moreover, under the above condition, the matrix functions for an admissible parameter-
dependent stochastic H∞ filter FP in the form of (3) are given by

[
AF (λ) BF (λ)
CF (λ) 0

]
=

[
T−1(λ) 0

0 I

] [
ĀF (λ) B̄F (λ)
C̄F (λ) 0

]
. (15)

Proof Necessity. Given a sufficiently small scalar ǫ > 0, suppose there exist filter
matrices (AF (λ), BF (λ), CF (λ)) and matrices Q(λ) > 0 and W (λ) satisfying (8). Let
the matrix functions Q(λ) and W (λ) be partitioned as

Q(λ) =

[
Q1(λ) Q2(λ)
QT

2 (λ) Q3(λ)

]
, W (λ) =

[
W1(λ) W2(λ)
W4(λ) W3(λ)

]
. (16)

By invoking a small perturbation if necessary, we can assume that W4(λ) and W3(λ) are
nonsingular. Define the following invertible matrix functions

J(λ) =

[
I 0
0 W−1

3 (λ)W4(λ)

]
, K(λ) = diag {J(λ), J(λ), J(λ), J(λ), I, I} (17)
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and define

Q̄(λ) =

[
Q̄1(λ) Q̄2(λ)

∗ Q̄3(λ)

]
= JT(λ)Q(λ)J(λ). (18)

Then, performing a congruence transformation to (8) by K(λ) together with the
consideration of (5) yields




Q̄(λ) − Ψ1 − ΨT
1 0 0

√
ǫᾱΨ5 0 0

∗ Q̄(λ) − Ψ1 − ΨT
1 0

√
ǫ(αΨ5 + Ψ6) 0 0

∗ ∗ Q̄(λ) − Ψ1 − ΨT
1 ΨT

1 + ǫΨ3

√
ǫΨ2 0

∗ ∗ ∗ −Q̄(λ) 0
√

ǫΨ4

∗ ∗ ∗ ∗ −γ2I 0
∗ ∗ ∗ ∗ ∗ −I




< 0,

(19)
where

Ψ1 =

[
W1(λ) W2(λ)W−1

3 (λ)W4(λ)

WT
4 (λ)W−T

3 (λ)W4(λ) WT
4 (λ)W−T

3 (λ)W4(λ)

]
,

Ψ2 =

[
WT

1 (λ)B(λ) + WT
4 (λ)BF (λ)D(λ)

WT
4 (λ)W−T

3 (λ)WT
2 (λ)B(λ) + WT

4 (λ)BF (λ)D(λ)

]
,

Ψ3 =




WT

1 (λ)A(λ) + WT
4 (λ)BF (λ)C(λ) WT

4 (λ)AF (λ)W−1

3 (λ)W4(λ)

WT
4 (λ)W−T

3 (λ)WT
2 (λ)A(λ)+

WT
4 (λ)BF (λ)C(λ)

WT
4 (λ)AF (λ)W−1

3 (λ)W4(λ)



 ,

Ψ4 =

[
LT(λ)

−WT
4 (λ)W−T

3 (λ)CT
F (λ)

]
,

Ψ5 =

[
WT

1 (λ)E(λ) 0

WT
4 (λ)W−T

3 (λ)WT
2 (λ)E(λ) 0

]
,

Ψ6 =

[
WT

4 (λ)BF (λ)F (λ) 0
WT

4 (λ)BF (λ)F (λ) 0

]
.

By defining

R(λ) = W1(λ), (20)

S(λ) = W2(λ)W−1
3 (λ)W4(λ), (21)

T (λ) = WT
4 (λ)W−1

3 (λ)W4(λ), (22)
[

ĀF (λ) B̄F (λ)
C̄F (λ) 0

]
=

[
WT

4 (λ) 0
0 I

] [
AF (λ) BF (λ)
CF (λ) 0

] [
W−1

3 (λ)W4(λ) 0
0 I

]
,

(23)

(19) is equivalent to (14), and the necessity is proved.
Sufficiency. Suppose for a sufficiently small scalar ǫ > 0, there exist matrix functions

Q̄(λ) > 0, R(λ), S(λ), T (λ), ĀF (λ), B̄F (λ) , and C̄F (λ) satisfying (14), we will prove
that there must exist filter matrices (AF (λ), BF (λ), CF (λ)) and matrices Q(λ) > 0 and
W (λ) satisfying ( 8).

First (14) implies T (λ) + T T(λ)− Q̄3(λ) > 0, then we know that T (λ) is nonsingular
due to Q̄3(λ) > 0. Thus one can always find square and nonsingular matrix functions
W3(λ) and W4(λ) satisfying (22). Now introduce the matrix functions J(λ), K(λ) as
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defined in (17) and

W (λ) =

[
R(λ) S(λ)W−1

4 (λ)W3(λ)
W3(λ) W4(λ)

]
,

Q(λ) = J−T (λ)Q̄(λ)J−1(λ),
[

AF (λ) BF (λ)
CF (λ) 0

]
=

[
W−T

4 (λ) 0
0 I

] [
ĀF (λ) B̄F (λ)
C̄F (λ) 0

] [
W−1

4 (λ)W3(λ) 0
0 I

]
.

(24)
Then, we have Q(λ) > 0. Now, by some algebraic matrix manipulations, it can be
established that (14) is equivalent to



Φ̃ 0 0
√

ǫᾱJT(λ)WT(λ)Ē(λ)J(λ) 0 0

∗ Φ̃ 0

√
ǫJT(λ)WT(λ)×

(αĒ(λ) + F̄ (λ))J(λ)
0 0

∗ ∗ Φ̃
JT(λ)WT(λ)×
(I + ǫĀ(λ))J(λ)

√
ǫJT(λ)WT(λ)B̄(λ) 0

∗ ∗ ∗ −JT(λ)Q(λ)J(λ) 0
√

ǫJT(λ)C̄T(λ)
∗ ∗ ∗ ∗ −γ2I 0
∗ ∗ ∗ ∗ ∗ −I




< 0,

(25)

where Φ̃ = JT(λ)ΥJ(λ). Now, performing a congruence transformation to (25) by
K−1(λ) yields (8), and the sufficiency proof is completed.

Proof of Second Part. If the condition in Proposition 3.2 has a set of feasible solutions
{Q̄(λ), R(λ), S(λ), T (λ), ĀF (λ), B̄F (λ), C̄F (λ)}, from the above proof we know that
the filter with a state-space realization

(
Ā(λ), B̄(λ), C̄(λ)

)
defined in (24) guarantees the

filtering error system EP in (4) to be mean-square asymptotically stable with J < 0 for
all nonzero w(t) ∈ L2 [0,∞). Now denote the operator from y(t) to zF (t) by TzF y(λ) =
(AF (λ), BF (λ), CF (λ)), then we have TzF y(λ) is equivalent to GzF y(λ) under a similarity
transformation, where

GzF y(λ)

=
(
W−1

4 (λ)W3(λ)AF (λ)W−1
3 (λ)W4(λ), W−1

4 (λ)W3(λ)BF (λ), CF (λ)W−1
3 (λ)W4(λ)

)
.

By substituting the matrices with (24) and by considering the relationship (22), we have

GzF y(λ) =
(
T−1(λ)ĀF (λ), T−1(λ)B̄F (λ), C̄F (λ)

)
.

Therefore, an admissible filter can be given by (15), and the proof is completed. 2

Proposition 3.2 is a preliminary result for solving the parameter-dependent H∞ filter-
ing problem. It casts the nonlinear matrix inequality in Lemma 3.1 into an LMI condition
by using linearization procedures, upon which desired filters can be constructed by using
the obtained matrix functions Q̄(λ), R(λ), S(λ), T (λ), ĀF (λ), B̄F (λ) , and C̄F (λ). How-
ever, this LMI condition still cannot be implemented due to it infinite-dimensional nature
in the parameter λ. Our purpose hereafter is to transform the infinite-dimensional condi-
tion in Proposition 3.2 into finite-dimensional condition that depends only on the vertex
matrices of the polytope R. Then, we have the main filtering result in the following
theorem.

Theorem 3.1 (Parameter-Dependent Stochastic H∞ Filtering) Given sys-
tem S in (1), an admissible parameter-dependent stochastic H∞ filter in the form of FP



NONLINEAR DYNAMICS AND SYSTEMS THEORY, 7(2) (2007) 151–168 161

in (3) exists if for a sufficiently small scalar ǫ > 0, there exist matrices Ri, Si, Ti, ĀFi,

B̄Fi, C̄Fi and Q̄i =

[
Q̄1i Q̄2i

∗ Q̄3i

]
> 0, satisfying

Ψii < 0, i = 1, . . . , s, (26)

Ψij + Ψji ≤ 0, 1 ≤ i < j ≤ s, (27)

where

Ψij =




Φ1 Φ2 0 0 0 0
√

ǫᾱRT
i Ej 0 0 0

∗ Φ3 0 0 0 0
√

ǫᾱST
i Ej 0 0 0

∗ ∗ Φ1 Φ2 0 0

√
ǫαRT

i Ej+
B̄FiFj

0 0 0

∗ ∗ ∗ Φ3 0 0

√
ǫαST

i Ej+
B̄FiFj

0 0 0

∗ ∗ ∗ ∗ Φ1 Φ2 Φ4 Ti + ǫĀFi

√
ǫRT

i Bj+√
ǫB̄FiDj

0

∗ ∗ ∗ ∗ ∗ Φ3 Φ5 Ti + ǫĀFi

√
ǫST

i Bj+√
ǫB̄FiDj

0

∗ ∗ ∗ ∗ ∗ ∗ −Q̄1i −Q̄2i 0
√

ǫLT
j

∗ ∗ ∗ ∗ ∗ ∗ ∗ −Q̄3i 0 −√
ǫC̄T

Fi

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −γ2I 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −I




,

Φ1 = Q̄1i − RT
i − Ri, Φ2 = Q̄2i − Ti − Si, Φ3 = Q̄3i − Ti − T T

i ,

Φ4 = RT
i + ǫRT

i Aj + ǫB̄FiCj , Φ5 = ST
i + ǫST

i Aj + ǫB̄FiCj .

(28)

Moreover, under the above conditions, the matrix functions for an admissible
parameter-dependent stochastic H∞ filter FP in the form of (3) are given by

[
AF (λ) BF (λ)
CF (λ) 0

]
=




(
s∑

i=1

λiTi

)−1

0

0 I







s∑
i=1

λiĀFi

s∑
i=1

λiB̄Fi

s∑
i=1

λiC̄Fi 0


 . (29)

Proof From Propositions 3.1 and 3.2, an admissible parameter-dependent
stochastic H∞ filter FP in the form of (3) exists if there exist matrix functions Q̄(λ) > 0,
R(λ), S(λ), T (λ), ĀF (λ), B̄F (λ), and C̄F (λ) satisfying (14). Now assume the above
matrix functions to be of the following form

Q̄(λ) =

s∑

i=1

λiQ̄i =

s∑

i=1

λi

[
Q̄1i Q̄2i

∗ Q̄3i

]
,

R(λ) =

s∑

i=1

λiRi, S(λ) =

s∑

i=1

λiSi, T (λ) =

s∑

i=1

λiTi, (30)

ĀF (λ) =

s∑

i=1

λiĀFi, B̄F (λ) =

s∑

i=1

λiB̄Fi, C̄F (λ) =

s∑

i=1

λiC̄Fi.
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With (30) it is not difficult to rewrite Ψ(λ) in (14) as

Ψ(λ) =

s∑

j=1

s∑

i=1

λiλjΨij =

s∑

i=1

λ2
i Ψii +

s−1∑

i=1

s∑

j=i+1

λiλj (Ψij + Ψji) , (31)

where Ψij is defined in (28). Then, (26) and (27) guarantee Ψ(λ) < 0, and the first part
of the proof is completed.

By substituting the matrices defined in (30) into (15), we readily obtain (29) and the
proof is completed. 2

Remark 3.1 The idea behind Theorem 3.1 is to use convex combinations of vertex
matrices in the form of (30) to substitute the matrix functions in Proposition 3.2. With
the introduction of these matrices, the infinite-dimensional nonlinear matrix inequality
condition in Proposition 3.2 is cast into finite-dimensional LMI condition, which depends
only on the vertex matrices of the polytope R, and therefore can be readily checked by
using standard numerical software [10].

Remark 3.2 Note that the condition in Theorem 3.1 is an LMI not only over the
matrix variables, but also over the scalar γ. This implies that the scalar γ can be included
as an optimization variable to obtain a reduction of the attenuation level bound. Then
the minimum (in terms of the feasibility of Theorem 3.1) attenuation level of H∞ filters
can be readily found by solving the following convex optimization problem:

Minimize γ subject to (26) and (27) for sufficiently small ǫ > 0.

4 Robust Stochastic H∞ Filtering

In the robust stochastic H∞ filtering problem, by augmenting the model of S to include
the states of the filter FR, we obtain the filtering error system ER:

ER : dξ(t) =
[
Ā(λ)ξ (t) + B̄(λ)w(t)

]
dt + Ē(λ)ξ (t) dβ(t) + F̄ (λ)ξ (t) dζ(t),

e(t) = C̄(λ)ξ(t),
(32)

where

Ā(λ) =

[
A(λ) 0

BF C(λ) AF

]
, B̄(λ) =

[
B(λ)

BF D(λ)

]
, Ē(λ) =

[
E(λ) 0

0 0

]
,

F̄ (λ) =

[
0 0

BF F (λ) 0

]
, C̄(λ) =

[
L(λ) −CF

]
.

(33)

Then, the robust stochastic H∞ filtering problem to be addressed in this section can
be expressed as follows:

Problem RSHinfF (Robust Stochastic H∞ Filtering): Given system S in (1),
determine the matrices (AF , BF , CF ) of the filter FR in (2), such that the filtering error
system ER in (32) is mean-square asymptotically stable and J < 0 for all nonzero w(t) ∈
L2 [0,∞) under zero initial conditions . Filters satisfying the above conditions are called
robust stochastic H∞ filters.

In the following, we will solve the robust stochastic H∞ filtering problem. First
according to Proposition 3.1, when system S in (1) and filter FR in (2) are given, the
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filtering error system ER in (32) is mean-square asymptotically stable with J < 0 for
all nonzero w(t) ∈ L2 [0,∞) under zero initial conditions if and only if for a sufficiently
small scalar ǫ > 0, there exist matrix functions Q(λ) > 0 and W (λ) satisfying (8). It is
worth noting that if we solve the robust filter design problem by following the idea in
previous references [12, 28], we need to set the general-structured matrix W (λ) ≡ W for
the entire uncertainty domain. To reduce the conservativeness while keeping the filter
synthesis problem tractable simultaneously, here we assume W (λ) takes the following
structure:

W (λ) =

[
W1(λ) W2(λ)

W4 W3

]
.

Then, by following similar lines as in the proof of Proposition 3.2, we have the following
proposition.

Proposition 4.1 Given system S in (1), an admissible robust stochastic H∞ filter
in the form of FR in (2) exists if for a sufficiently small scalar ǫ > 0, there exist matrices

Q̄(λ) ,

[
Q̄1(λ) Q̄2(λ)

∗ Q̄3(λ)

]
> 0, R(λ), S(λ), T , ĀF , B̄F , and C̄F satisfying

∆(λ) ,




Π̄1 Π̄2 0 0 0 0
√

ǫᾱRT(λ)E(λ) 0 0 0
∗ Π̄3 0 0 0 0

√
ǫᾱST(λ)E(λ) 0 0 0

∗ ∗ Π̄1 Π̄2 0 0 Π̄4 0 0 0
∗ ∗ ∗ Π̄3 0 0 Π̄5 0 0 0
∗ ∗ ∗ ∗ Π̄1 Π̄2 Π̄6 T (λ) + ǫĀF Π̄8 0
∗ ∗ ∗ ∗ ∗ Π̄3 Π̄7 T (λ) + ǫĀF Π̄9 0
∗ ∗ ∗ ∗ ∗ ∗ −Q̄1(λ) −Q̄2(λ) 0

√
ǫLT(λ)

∗ ∗ ∗ ∗ ∗ ∗ ∗ −Q̄3(λ) 0 −√
ǫC̄T

F

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −γ2I 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −I




< 0,

(34)
where

Π̄1 = Q̄1(λ) − RT(λ) − R(λ), Π̄2 = Q̄2(λ) − T − S(λ), Π̄3 = Q̄3(λ) − T − T T,

Π̄4 =
√

ǫαRT(λ)E(λ) + B̄F F (λ), Π̄5 =
√

ǫαST(λ)E(λ) + B̄F F (λ),

Π̄6 = RT(λ) + ǫRT(λ)A(λ) + ǫB̄F C(λ), Π̄7 = ST(λ) + ǫST(λ)A(λ) + ǫB̄F C(λ),

Π̄8 =
√

ǫRT(λ)B(λ) +
√

ǫB̄F D(λ), Π̄9 =
√

ǫST(λ)B(λ) +
√

ǫB̄F D(λ).

Moreover, under the above condition, the matrices for an admissible robust stochastic
H∞ filter are given by

[
AF BF

CF 0

]
=

[
T−1 0
0 I

] [
ĀF B̄F

C̄F 0

]
. (35)

Based on Proposition 4.1, we readily have the main robust filtering result.

Theorem 4.1 (Robust Stochastic H∞ Filtering) Given system S in (1), an ad-
missible robust stochastic H∞ filter in the form of FR in (2) exists if for a sufficiently

small scalar ǫ > 0, there exist matrices Q̄i ,

[
Q̄1i Q̄2i

∗ Q̄3i

]
> 0, Ri, Si, T , ĀF , B̄F ,
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C̄F satisfying

∆ii < 0, i = 1, . . . , s, (36)

∆ij + ∆ji ≤ 0, 1 ≤ i < j ≤ s, (37)

where

∆ij =




Λ1 Λ2 0 0 0 0
√

ǫᾱRT
i Ej 0 0 0

∗ Λ3 0 0 0 0
√

ǫᾱST
i Ej 0 0 0

∗ ∗ Λ1 Λ2 0 0
√

ǫαRT
i Ej + B̄F Fj 0 0 0

∗ ∗ ∗ Λ3 0 0
√

ǫαST
i Ej + B̄F Fj 0 0 0

∗ ∗ ∗ ∗ Λ1 Λ2 Λ4 T + ǫĀF

√
ǫRT

i Bj+√
ǫB̄F Dj

0

∗ ∗ ∗ ∗ ∗ Λ3 Λ5 T + ǫĀF

√
ǫST

i Bj+√
ǫB̄F Dj

0

∗ ∗ ∗ ∗ ∗ ∗ −Q̄1i −Q̄2i 0
√

ǫLT
j

∗ ∗ ∗ ∗ ∗ ∗ ∗ −Q̄3i 0 −√
ǫC̄T

F

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −γ2I 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −I




,

Λ1 = Q̄1i − RT
i − Ri, Λ2 = Q̄2i − T − Si, Λ3 = Q̄3i − T − T T,

Λ4 = RT
i + ǫRT

i Aj + ǫB̄F Cj , Λ5 = ST
i + ǫST

i Aj + ǫB̄F Cj .

(38)

Moreover, under the above conditions, the matrices for an admissible robust stochastic
H∞ filter in the form of (2) are given by (35).

The theorem can be proved by following similar lines as in the proof of Theorem 3.1
and thus omitted.

With Theorem 4.1, the minimum (in terms of the feasibility of Theorem 4.1) attenu-
ation level of robust stochastic H∞ filters can be readily found by solving the following
convex optimization problem:

Minimize γ subject to (36) and (37) for sufficiently small ǫ > 0.

5 Illustrative Example

Consider the following numerical example:

dx(t) =

{[
−0.6 4 + a

−4 −0.6

]
x(t) +

[
0 0

1.5 0

]
w(t)

}
dt +

[
−0.4 0.2
0.3 0.5

]
x(t)dβ(t),

y(t) =
{[

0 −1.2
]
x(t) +

[
0 1

]
w(t)

}
+

[
0.3 0.4 + 0.1a

]
x(t)dβ(t),

z(t) =
[

0 1
]
x(t),

(39)
where a represents an uncertain parameter satisfying |a| ≤ ā. This uncertain system can
be modeled with a two-vertex polytope.

First assume ā = 0.5, we solve the filtering problem for this system by several ap-
proaches described as follows:
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1. By Theorem 4.1, the obtained minimum H∞ performance of robust stochastic
filters is γ = 1.6988 for (ǫ = 0.001), and the associated matrices for filter FR in
(2) are given by

AF =

[
−7.2213 6.8684
−5.4021 −0.1494

]
, BF =

[
0.0024

−0.0066

]
, CF =

[
0.0000 −1.0000

]
.

The actual calculated H∞ performance of the filtering error system for different
a by connecting the above filter to the original system is depicted in Figure 5.1.
From this figures, we can see that the H∞ performances for the entire uncertainty
domain are below the prescribed value γ = 1.6988.

Figure 5.1: H∞ performance of robust stochastic filter for entire uncertainty domain.

Figure 5.2: H∞ performance of parameter-dependent stochastic filter for entire uncertainty
domain.
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2. By Theorem 3.1, the obtained minimum H∞ performance of parameter-dependent
stochastic filters is γ = 1.6900 for (ǫ = 0.001), and the associated matrices needed
for the calculation of (29) are given by

T1 =

[
0.6035 −0.1113
−0.1113 0.5390

]
, T2 =

[
0.6251 −0.1128
−0.1129 0.7156

]
,

ĀF1 =

[
−0.1019 2.1424
−2.0922 −0.7071

]
, ĀF2 =

[
−0.0988 2.8630
−2.7663 −0.7701

]
,

B̄F1 =

[
0.0009

−0.00331

]
, B̄F2 =

[
0.0031
−0.0054

]
,

C̄F1 =
[

0.0001 −1.0000
]
, C̄F2 =

[
0.0001 −1.0003

]
.

The actual calculated H∞ performance of the filtering error system for different a

by connecting the above filter to the original system is depicted in Figure 5.2. It
can be seen that the H∞ performances for the entire uncertainty domain are below
the prescribed value γ = 1.6900.

3. By Corollary 1 of [14], the obtained minimum H∞ performance of robust stochastic
filters is γ = 2.0472, and the associated matrices for filter FR in (2) are given

AF =

[
−0.1735 4.0691
−4.0141 −1.9794

]
, BF =

[
0.0874

−1.4642

]
, CF =

[
0.0000 1.0000

]
.

The above calculated results show that for this example, the robust filtering result
in the quadratic framework [14] is conservative than the approaches presented in this
paper. In addition, since the parameter-dependent stochastic filter design makes use of
information of the uncertain parameter, it is reasonable to obtain less conservative filter
designs than the robust filtering approach.

Finally, Table 5.1 presents a comparison of minimum H∞ performance obtained by
using Theorem 4.1, Theorem 3.1 and Corollary 1 of [14] for different cases. This table
shows again the reduced conservativeness of the filtering approaches proposed in this
paper. Notably for 1.0 ≤ ā ≤ 4 where Corollary 1 of [14] fails to find feasible solutions,
the parameter-dependent and robust approach presented here are still able to provide
desired filters.

ā = 0.5 ā = 0.8 ā = 1.0 ā = 3 ā = 4
Minumum γ by Theorem 4.1 1.6900 1.7102 1.7280 2.5071 21.5990
Minumum γ by Theorem 3.1 1.6988 1.7189 1.7399 2.5293 22.5724

Minumum γ by [14] 2.0472 6.0166 infeasible infeasible infeasible

Table 5.1: Minimum H∞ performance for different cases.

6 Conclusions

The problem of H∞ filtering for continuous-time stochastic systems with parameter un-
certainties residing in a polytope has been investigated in this paper. Two approaches,
namely robust stochastic H∞ filtering and parameter-dependent stochastic H∞ filtering,
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have been proposed according to the online availability of the information on the uncer-
tain parameters. Sufficient conditions are derived based on an improved bounded real
lemma for stochastic systems and formulated in terms of linear matrix inequalities, upon
which desired filters can be obtained by solving convex optimization problems. Since
the filter designs make full use of the parameter-dependent stability idea, the obtained
results are less conservative than the existing one in the quadratic framework, which has
been illustrated via a numerical example.
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