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Abstract: In this paper, the observation problem for the descriptor systems
with disturbances is studied. It is assumed that the disturbances and their first
order derivatives are bounded, where the upper and lower bounds are unknown.
First, the formulated descriptor system is decomposed into a dynamical sys-
tem and an algebraic equation. The dynamical system is the relation among
a part of the descriptor state, the input-output and the disturbance. The al-
gebraic equation is the relation between the descriptor state variable and the
disturbance. Second, the disturbances and one part of the descriptor state are
estimated based on the obtained dynamical system. Finally, the other part
of the descriptor state is estimated based on the obtained algebraic equation.
Examples are presented to illustrate the proposed method.
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1 Introduction

In the last years, considerable attention has been focused on the control synthesis prob-
lems of linear descriptor systems. Structures of such control systems were first studied
in the frequency domain by Rosenbrock using matrix pencil theory [13]. Later, con-
trollability, observability and feedback control problems have been investigated by many
researchers [2, 5, 7, 8, 9, 15, 16, 19, 20]. However, little effort has been made to develop
a theory of observers for descriptor systems. Based on singular-value decomposition,
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El-Tohami et al. have proposed the reduced-order observer for a class of descriptor sys-
tems satisfying a simple rank condition [9]. By using the concept of a matrix generalized
inverse, a new method is given for constructing a minimal reduced-order observer under
a certain observability condition on the constructed observer [14]. Then, a Luenberger-
type observer is formulated by using the descriptor standard form [12]. It should be
noted that these results are restricted to linear time-invariant descriptor systems with
known parameters and without any additional uncertainties.

Recently, the problem of constructing a state observer for the input unknown systems
has received some attention. Construction of a state variable observer is a very difficult
task for the dynamical system with disturbances, not to say descriptor system with
disturbances. For the dynamical systems with disturbances, one typical method is the
disturbance decoupled observer by using an elegant geometric approach [3, 18]. Then, this
method is applied to disturbance decoupling problems for descriptor systems [11, 10, 1].
However, the results are very complicated and far from complete. The index and stability
of the resulting combined systems and the numerical computation of the desired observer
have not been considered. As a matter of fact, these geometric solution methods are not
suited for numerical computations. The need for reliable numerical method was pointed
out in [18]. Later, the computation of the desired disturbance decoupling observer is
effectively considered in [6] by using the orthogonal matrix transformation, where the
descriptor systems under consideration must be regular and of index at most one.

For the input unknown dynamical systems, another typical effective method about
the construction of the state observer is the VSS-type one [17]. However, this approach
can only cope with the minimum phase dynamical systems with relative degree one, and
the upper and lower bounds of the disturbances are required. It should be noted that this
method cannot be applied to the state observation problem for input unknown descriptor
systems.

In this paper, the observation problem for the descriptor systems with disturbances
is studied by using a totally different approach, where both the descriptor state and
the disturbances are estimated. The requirement that the descriptor system must be
of index at most one is not needed. It is assumed that the disturbances and their first
order derivatives are bounded in the open loop. However, the upper and lower bounds
are unknown. The formulated descriptor system is decomposed into a dynamical system
and an algebraic equation. The dynamical system is the relation among a part of the
descriptor state, the input-output and the disturbance. The algebraic equation is the
relation between the descriptor state variable and the disturbance. Based on the obtained
dynamical system, the disturbances are first estimated, where the nonlinear method
proposed by the authors in [4] for single disturbance single output (SDSO) systems is
applied; then, one part of the descriptor state is estimated. Finally, the other part of the
descriptor state is calculated based on the obtained algebraic equation.

This paper is organized as follows. Section 2 gives the problem formulation. In Section
3, the disturbance and the state variable are estimated for a special case, the dynamical
system case, of the formulated descriptor system. In Section 4, the observation for the
general descriptor system with disturbances is studied. In Section 5, design examples and
computer simulation results are presented to illustrate the proposed method. Section 6
concludes this paper.
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2 Problem formulation

Let us consider the following uncertain system

{

Eẋ(t) = Fx(t) +Gu(t) +Kv(t),

y(t) = Hx(t) +Bu(t) +Dv(t),
(2.1)

where u(t) ∈ Rq, y(t) ∈ Rr and x(t) ∈ Rn are the input, output and the unknown
descriptor state variable, respectively; v(t) ∈ Rp represents the disturbance, which may
include modeling errors, noise, higher order terms in linearization or just an unknown
input to the system; E ∈ Rn×n is a known matrix which may not be nonsingular;
F ∈ Rn×n, G ∈ Rn×q, K ∈ Rn×p, H ∈ Rr×n, B ∈ Rr×q and D ∈ Rr×p are known
matrices.

About the system (2.1), the following assumptions are made.

Assumption 1 rank

[

E

H

]

= n, rank

[

F − cE

H

]

= n for all c ∈ C , where C denotes the

complex plane.

Assumption 2 For any c ∈ C satisfying Re(c) ≥ 0 ,

[

F − cE K

H D

]

is of full rank,

i.e. the system (2.1) is in “minimum phase” with respect to the relation between the
disturbance and the output.

Assumption 3 The signals u(t), y(t) and v(t) are bounded. However, the upper bound
of ‖v(t)‖2 is unknown.

Assumption 4 The disturbance v(t) is continuous and piecewise differentiable. Fur-
thermore, the derivative (at the undifferentiable points, we mean the right- and left-hand
derivatives) is bounded.

Assumption 5 r ≥ p , i.e. the number of the outputs is not smaller than that of the
disturbances.

Remark 2.1 When the disturbance v(t) is absent, Assumption 1 means that the
system (2.1) is observable [12].

The purpose of this paper is to estimate the uncertain signal v(t) and the descriptor
state variable x(t) by using the input-output information even though the matrix E may
not be nonsingular.

In the following, we assume B = 0. Otherwise, we regard the signal y(t) − Bu(t) as
y(t).

First, the observation problem is discussed for the case that E is nonsingular. Then,
the observation problem is studied for the general descriptor system.

3 Observation for the system when E is nonsingular

Without loss of generality, we assume E = I. Otherwise, we pre-multiply the first
equation of (2.1) with E−1.
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3.1 Observation for the system when D is of full rank

If D is of full rank, then the difference between the observed state x̂(t) and the genuine
state x(t) can be designed to decay to zero exponentially, and the disturbance can be
asymptotically observed, where Assumption 4 about the disturbance v(t) is not needed.

Theorem 3.1 If D is of full rank, then the state observer of the system (2.1) with
E = I can be constructed as
{

˙̂x(t) =
(

F −KD−1
1 Ω1H

)

x̂(t) +Gu(t) +KD−1
1 Ω1y(t) + L̄

(

Ω2y(t) − ŷ(t)
)

, x̂(t0) = 0,

ŷ(t) = Ω2Hx̂(t),

(3.1)

where x̂(t) is the estimated state, L̄ is chosen such that F − KD−1
1 Ω1H − L̄Ω2H is a

stable matrix, Ω =

[

Ω1

Ω2

]

is a r × r nonsingular matrix such that

ΩD =

[

Ω1

Ω2

]

D =

[

D1

0

]

, (3.2)

in which D1 is a p × p nonsingular matrix. Furthermore, the disturbance v(t) can be
observed by

v̂(t) = D−1
1 Ω1y(t) −D−1

1 Ω1Hx̂(t), (3.3)

where x̂(t) is the estimated state generated in (3.1). For the estimated state and the
disturbance, we have

x(t) − x̂(t) → 0, v(t) − v̂(t) → 0 (3.4)

as t→ ∞.

Proof Equation (2.1) gives











ẋ(t) = Fx(t) +Gu(t) +Kv(t),

Ω1y(t) = Ω1Hx(t) +D1v(t),

Ω2y(t) = Ω2Hx(t).

(3.5)

From the second equation in (3.5), we have

v(t) = D−1
1 Ω1y(t) −D−1

1 Ω1Hx(t). (3.6)

By substituting (3.6) into the first equation in (3.5), equation (3.5) yields

{

ẋ(t) =
(

F −KD−1
1 Ω1H

)

x(t) +Gu(t) +KD−1
1 Ω1y(t),

Ω2y(t) = Ω2Hx(t).
(3.7)

Since




I −KD−1
1 0

0 I 0
0 0 I









I 0
0 Ω1

0 Ω2





[

F − cI K

H D

]

=





F −KD−1
1 Ω1H − cI 0
Ω1H D1

Ω2H 0



 , (3.8)



NONLINEAR DYNAMICS AND SYSTEMS THEORY, 7(1) (2007) 121–139 125

from Assumption 2, it can be seen that

[

F −KD−1
1 Ω1H − cI

Ω2H

]

is of full rank for all

c ∈ C satisfying Re(c) ≥ 0 by observing that D1 ∈ Rp×p is a nonsingular matrix. Thus,
the system (3.7) is detectable, i.e. the matrix L̄ exists such that F −KD−1

1 Ω1H− L̄Ω2H

is a stable matrix. If the observer is constructed as in (3.1), it yields

d

dt
(x(t) − x̂(t)) =

(

F −KD−1
1 Ω1H − L̄Ω2H

)

(x(t) − x̂(t)). (3.9)

It can be easily seen that x(t) − x̂(t) → 0 as t → ∞. From (3.6), it can be concluded
that (3.3) is an observer of the disturbance v(t) and v(t) − v̂(t) → 0 as t→ ∞.

3.2 Observation for the system when D is not of full rank

3.2.1 Some preliminaries

Let s denote the differential operator. Then, equation (2.1) can be written as
[

F − sI K

H D

] [

x(t)
v(t)

]

=

[

−Gu(t)
y(t)

]

. (3.10)

Now, pre-multiplying (3.10) by

(

adj
(

[

F − sI K

H D

]T [

F − sI K

H D

]

)

)

[

F − sI K

H D

]T

yields

k(s)

[

x(t)
v(t)

]

=

(

adj
(

[

F − sI K

H D

]T [

F − sI K

H D

]

)

)

[

F − sI K

H D

]T [

−Gu(t)
y(t)

]

,

(3.11)

where k(s) is defined as

k(s) = det

(

[

F − sI K

H D

]T [

F − sI K

H D

]

)

= k0s
q0 + · · · + kq0

, k 6= 0. (3.12)

By Assumption 2, it can be easily known that k(s) is a Hurwitz polynomial.
By observing the calculation methods of the adjoint of a matrix and the multiplication

of the matrices, equation (3.11) can be expressed as














































sl11(β11y(t)) = Φ11(s)y(t) + Ψ11(s)u(t) + k(s)x1(t),
...

sl1n(β1ny(t)) = Φ1n(s)y(t) + Ψ1n(s)u(t) + k(s)xn(t),

sl21(β21y(t)) = Φ21(s)y(t) + Ψ21(s)u(t) + k(s)v1(t),
...

sl2p(β2py(t)) = Φ1p(s)y(t) + Ψ2p(s)u(t) + k(s)vp(t),

(3.13)

where βji 6= 0 are row vectors whose entries are constants, Φji(s) are row vectors whose
entries are at most (lji − 1) − th order polynomials of s, Ψji(s) are row vectors whose
entries are at most (lji − 1) − th order polynomials of s.

Because F, G, K, H and D are known matrices, βji , Φji(s) , Ψji(s) and k(s) can
be calculated.
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Remark 3.1 If r = p, i.e. the number of the outputs equals to that of the distur-

bances, then we can simply pre-multiply the both sides of (3.10) by

[

F − sI K

H D

]

.

3.2.2 Observation of the disturbances

About the disturbance v(t) = [v1(t) · · · vp(t)]
T , from (3.13), we have















sl21(β21y(t)) = Φ21(s)y(t) + Ψ21(s)u(t) + k(s)v1(t),
...

sl2p(β2py(t)) = Φ2p(s)y(t) + Ψ2p(s)u(t) + k(s)vp(t).

(3.14)

For the i− th equation in (3.14), l2i − q0 can be regarded as the “relative degree” with
respect to the relation between the disturbance vi(t) and the “output” β2iy(t). It is easy
to see that l2i ≥ q0, otherwise, equation (3.13) contradicts with the original differential
equation (2.1).

We start with equation (3.14) to estimate the disturbances.
For simplicity, let

ηi = l2i − q0. (3.15)

To estimate the disturbances, the discussion is divided into the following two cases.
Case 1: l2i = q0

In this case, from (3.14), it gives

vi(t) =
sl2i

k(s)
(β2iy(t)) −

Φ2i(s)

k(s)
y(t) −

Ψ2i(s)

k(s)
u(t), (3.16)

i.e. the disturbance vi(t) can be expressed by the outputs and the filters of the inputs
and outputs, where only the input and output information is employed. Thus,

wi,0 ,
sl2i

k(s)
(β2iy(t)) −

Φ2i(s)

k(s)
y(t) −

Ψ2i(s)

k(s)
u(t) (3.17)

can be regarded as the estimate of vi(t).

Remark 3.2 For a complex constant Γ ∈ C satisfying Re(Γ) > 0, 1
s+Γy(t) is defined

as the solution of the following differential equation

ξ̇(t) + Γξ(t) = y(t), ξ(t0) = 0, (3.18)

where t0 is the starting time. Thus, the filters in (3.17) and the upcoming ones can be
analogously defined.
Case 2: l2i > q0

Introduce a monic li − th order Hurwitz polynomial

gi(s) =
1

k0
k(s) · (s+ λ)ηi , (3.19)

where λ is a positive constant. Then, the i− th equation in (3.14) can be rewritten as

żi(t) + λzi(t) = Li(y(t), u(t)) +
k0

(s+ λ)ηi−1
vi(t), (3.20)
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where zi(t) and Li(y(t), u(t)) are respectively defined as

zi(t) = β2iy(t), (3.21)

Li(y(t), u(t)) = (s+ λ)

{

gi(s) − sli

gi(s)
{β2iy(t)} +

Φ2i(s)

gi(s)
y(t) +

Ψ2i(s)

gi(s)
u(t)

}

. (3.22)

Remark 3.3 It should be pointed out that zi(t) and Li(y(t), u(t)) are computable
signals.

Since vi(t) are bounded signals, it can be seen that, for a positive constant λ, signals
∣

∣

∣

1
(s+λ)ji

vi(t)
∣

∣

∣
are also bounded for any positive integer ji.

The next theorem gives a method to estimate 1
(s+λ)ηi−ji

vi(t), where the upper bounds

of
∣

∣

∣

1
(s+λ)ηi−ji

vi(t)
∣

∣

∣
are adaptively updated.

Theorem 3.2 Construct the following differential equations

˙̂zi(t) + λẑi(t) = Li(y(t), u(t)) + k0wi,1(t), ẑi(t0) = zi(t0), (3.23)

˙̂wi,µi−1(t) + λŵi,µi−1(t) = wi,µi
(t), ŵi,µi−1(t0) = 0, (3.24)

where ẑi(t) and ŵi,µi−1(t) (1 < µi ≤ ηi) are the variables which can be obtained by respec-
tively solving (3.23) and (3.24); wi,1(t) and wi,µi

(t) are the inputs described respectively
by

wi,1(t) = ω̂i,1(t)
k0{zi(t) − ẑi(t)}

∣

∣k0{zi(t) − ẑi(t)}
∣

∣+ δi,1
(3.25)

and

wi,µi
(t) = ω̂i,µi

(t)
wi,µi−1(t) − ŵi,µi−1(t)

∣

∣wi,µi−1(t) − ŵi,µi−1(t)
∣

∣+ δi,µi

, (1 < µi ≤ ηi) (3.26)

δi,ji
> 0 (i = 1, · · · , p; ji = 1, · · · , ηi) are design parameters which are usually chosen to

be very small; ω̂i,µi
(t) (1 ≤ µi ≤ ηi) are updated by the following adaptive algorithms

˙̂ωi,1(t) =

{

2αi,1|zi(t) − ẑi(t)| if |k0{zi(t) − ẑi(t)}| > δi,1

0 otherwise
, (3.27)

˙̂ωi,µi
(t) =

{

2αi,µi
|wi,µi−1(t) − ŵi,µi−1(t)| if |wi,µi−1(t) − ŵi,µi−1(t)| > δi,µi

0 otherwise
(3.28)

for 1 < µ ≤ ηi, ω̂i,µi
(t0) can be chosen as any positive constants, αi,µi

are positive
constants for i = 1, · · · , p, 1 ≤ µi ≤ ηi. It can be concluded that wi,µi

(t) are the
corresponding approximate estimates of 1

(s+λ)ηi−µi
vi(t) for 1 ≤ µi ≤ ηi as t is large
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enough, i.e. there exist Ti,µi
≥ t0 and functions ǫi,µi

(ν1, · · · , νµi
) > 0 with the property

lim
∑µi

j=1
|νi|→0

ǫi,µi
(ν, · · · , νµi

) = 0 such that

∣

∣

∣

∣

∣

1

(s+ λ)ηi−µi
vi(t) − wi,µi(t)

∣

∣

∣

∣

∣

< ǫi,µi
(δi,1, · · · , δi,µi

) (3.29)

for all t ≥ Ti,µi

Proof This theorem can be proved by a similar procedure as in [4], where Assump-
tions 3 and 4 are employed.

Remark 3.4 The design parameters δi,ji
> 0 (1 ≤ ji ≤ ηi) and λ > 0 determine the

estimating precision and the estimating speed. The parameters αi,ji
> 0 should be chosen

large enough to adjust the estimated upper bounds ω̂i,ji
(t) rapidly for 1 ≤ ji ≤ ηi. The

estimation error for the disturbances can be designed to be arbitrarily small by choosing
the design parameters. The influence of the measurement noises in the output can be
similarly discussed as in [4].

Remark 3.5 For i 6= j, it can be seen that the estimation of vi(t) is independent of
the estimation of vj(t).

3.2.3 Observation of the state

About the state x(t) = [x1(t) · · · xn(t)]T , from (3.13), we have















sl11(β11y(t)) = Φ11(s)y(t) + Ψ11(s)u(t) + k(s)x1(t),
...

sl1n(β1ny(t)) = Φ1n(s)y(t) + Ψ1n(s)u(t) + k(s)xn(t).

(3.30)

To estimate the state, the discussion is divided into the following two cases.
Case 1: l1i ≤ q0

In this case, from (3.30), it gives

xi(t) =
sl1i

k(s)
(β1iy(t)) −

Φ1i(s)

k(s)
y(t) −

Ψ1i(s)

k(s)
u(t), (3.31)

i.e. the partial state xi(t) can be expressed by the outputs and the filters of the inputs
and outputs, where only the input and output information is employed. Thus,

x̂i(t) ,
sl1i

k(s)
(β1iy(t)) −

Φ1i(s)

k(s)
y(t) −

Ψ1i(s)

k(s)
u(t) (3.32)

can be regarded as the estimate of xi(t).

Remark 3.6 If l1i ≤ q0 for all i = 1, · · · , n, then there is no steady error between
the estimated state and the genuine state x(t).

Case 2: l2i > q0
In this case, the partial state xi(t) can be similarly estimated by the method proposed

for estimating the disturbances in Section 3.2.2 if the partial state xi(t) is bounded.
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However, the computation for all such partial states xi(t) satisfying l2i > q0 will become
very complicated, and the partial state xi(t) may not be bounded.

One simple method of estimating the partial state in this case is to construct a
Luenberger-type state observer for the full state x(t) by using the estimates of the dis-
turbances obtained in Section 3.2.2, and then extract the partial states xi(t) satisfying
l2i > q0. We have the following theorem to approximately construct the full state ob-
server. The estimation error is controlled by the design parameters.

Theorem 3.3 The state observer of the system (2.1) with E = I can be considered
as

{

˙̂x(t) = F x̂(t) +Gu(t) +Kw(t) + L(y(t) − ŷ(t)), x̂(t0) = 0,

ŷ(t) = Hx̂(t) +Dw(t),
(3.33)

where x̂(t) is the estimated state, w(t) = [w1,η1
· · · wp,ηp

]T is the estimate of the distur-
bance v(t) obtained in Section 3.2.2, the design matrix L is chosen such that the matrix
F − LH is stable. Then, there exists a function ǫ(νi,ji

∣

∣i ∈ S; ji = 1, · · · , ηi) > 0 with

the property lim
∑p

i=1

∑ηi
ji=1

|νi,ji
|→0

ǫ(νi,ji

∣

∣i ∈ S; ji = 1, · · · , ηi) → 0 such that

‖x(t) − x̂(t)‖2 ≤ ǫ(δi,ji

∣

∣i ∈ S; j = 1, · · · , ηi), (3.34)

as t → ∞, where S is the subset of {1, · · · , p} satisfying the condition: if i ∈ S, then
ηi > 0.

Proof It can be seen from Assumption 1 that there exists a matrix L such that
F − LH is stable. From (2.1) and (3.33), it gives

ė(t) = (F − LH)e(t) − (K + LD){v(t) − w(t)}, (3.35)

where e(t) is defined as e(t) = x(t) − x̂(t). As w(t) is the estimate of v(t), by employing
Theorem 3.1 and the stability of matrix F − LH , the result can be easily proved.

3.3 The numerical observation algorithm for the case that E is nonsingular

Suppose E = I. Otherwise, pre-multiply the first equation of (2.1) with E−1.

S1 If D is of full rank, then the disturbance v(t) and the state x(t) are asymptotically
identified by Theorem 3.1. Otherwise, go to S2.

S2 Derive the system (3.13) based directly on (2.1).

S3 Identify the disturbance vi(t) by (3.17) or Theorem 3.2.

S4 Identify the state xi(t) by using (3.32) or extracting from the constructed Luenberger-
type state observer formulated in Theorem 3.3.

4 Observation for the general descriptor system

4.1 Some preparations

Suppose the matrix E is of rank l (l < n). Since E is known, we can find nonsingular
matrices P,Q ∈ Rn×n such that

PEQ−1 =

[

Il×l 0
0 0

]

. (4.1)
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Thus, by taking the transformation

x̄(t) = Qx(t), (4.2)

the system (2.1) can be rewritten as











[

Il×l 0

0 0

]

˙̄x(t) = PFQ−1x̄(t) + PGu(t) + PKv(t),

y(t) = HQ−1x̄(t) +Dv(t).

(4.3)

Lemma 4.1 For the system (4.3), we have

rank





[

Il×l 0
0 0

]

HQ−1



 = n, (4.4)

rank





PFQ−1 − c

[

Il×l 0
0 0

]

HQ−1



 = n for all c ∈ C, (4.5)

and





PFQ−1 − c

[

Il×l 0
0 0

]

PK

HQ−1 D



 is of full rank for any c ∈ C satisfying Re(c) ≥ 0.

Proof The lemma can be easily proved by observing the following facts




[

Il×l 0
0 0

]

HQ−1



 =

[

P 0
0 I

] [

E

H

]

Q−1, (4.6)





PFQ−1 − c

[

Il×l 0
0 0

]

HQ−1



 =

[

P 0
0 I

] [

F − cE

H

]

Q−1, (4.7)





PFQ−1 − c

[

Il×l 0
0 0

]

PK

HQ−1 D



 =

[

P 0
0 I

] [

F − cE K

H D

] [

Q−1 0
0 I

]

, (4.8)

From now on, we will start with the system (4.3) to estimate the disturbance and the
state. Now rewrite the system (4.3) as











˙̄x1(t) = F11x̄1(t) + F12x̄2(t) +G1u(t) +K1v(t),

0 = F21x̄1(t) + F22x̄2(t) +G2u(t) +K2v(t),

y(t) = H1x̄1(t) +H2x̄2(t) +Dv(t),

(4.9)

where

x̄(t) =

[

x̄1(t)
x̄2(t)

]

, PFQ−1 =

[

F11 F12

F21 F22

]

, PG =

[

G1

G2

]

, HQ−1 = [H1 H2], PK =

[

K1

K2

]

,

(4.10)
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Lemma 4.2 H2 ∈ Rr×(n−l) is of full rank and r satisfies r ≥ n− l.

Proof From Lemma 4.1 and the assumptions, the lemma is obvious.
Since the matrix H2 ∈ Rr×(n−l) is of full rank, there exists a nonsingular matrix

O =

[

O1

O2

]

∈ Rr×r such that

OH2 =

[

H21

0

]

, (4.11)

where H21 ∈ R(n−l)×(n−l) is a nonsingular matrix.
Therefore, by pre-multiplying the third equation in (4.9) with O, equation (4.9) yields



















˙̄x1(t) = F11x̄1(t) + F12x̄2(t) +G1u(t) +K1v(t),

0 = F21x̄1(t) + F22x̄2(t) +G2u(t) +K2v(t),

O1y(t) = O1H1x̄1(t) +H21x̄2(t) +O1Dv(t),

O2y(t) = O2H1x̄1(t) +O2Dv(t).

(4.12)

By the third equation in (4.12), x̄2(t) can be expressed as

x̄2(t) = H−1
21 O1

(

y(t) −H1x̄1(t) −Dv(t)
)

. (4.13)

By substituting (4.13) into the first two equations in (4.12), equation (4.12) yields















˙̄x1(t)=(F11−F12H
−1
21 O1H1)x̄1(t)+F12H

−1
21 O1y(t)+G1u(t)+(K1−F12H

−1
21 O1D)v(t),

[

F22H
−1
21 O1

O2

]

y(t)=

[

F21−F22H
−1
21 O1H1

O2H1

]

x̄1(t)+

[

G2

0

]

u(t)+

[

K2−F22H
−1
21 O1D

O2D

]

v(t).

(4.14)

Now, for simplicity, we rewrite the system (4.14) in the following compact form

{

˙̄x1(t) = F̄ x̄1(t) + ū(t) + K̄v(t),

ȳ(t) = H̄x̄1(t) + D̄v(t),
(4.15)

where the matrices F̄ , K̄, H̄, D̄ are defined as

F̄ = F11 − F12H
−1
21 O1H1, K̄ = K1 − F12H

−1
21 O1D, (4.16)

H̄ =

[

F21 − F22H
−1
21 O1H1

O2H1

]

, D̄ =

[

K2 − F22H
−1
21 O1D

O2D

]

, (4.17)

ū(t) and ȳ(t) are represented by

ū(t) = F12H
−1
21 O1y(t) +G1u(t), ȳ(t) =

[

F22H
−1
21 O1y(t) −G2u(t)

O2y(t)

]

. (4.18)

Remark 4.1 The matrices F̄ ∈ Rl×l, K̄ ∈ Rl×p, H̄ ∈ Rr×l, D̄ ∈ Rr×p are available
because they can be computed out by using the known matrices E, F, G, K, H , and
D.
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Remark 4.2 ū(t) ∈ Rl and ȳ(t) ∈ Rr are available signals. Since r ≥ p, the number
of the outputs of the system (4.15) is not smaller than that of the disturbances.

Lemma 4.3 The system (4.15) is observable in the absence of the disturbance v(t).

Proof Since





PFQ−1 − c

[

Il×l 0
0 0

]

HQ−1



 =





I 0 0
0 I 0
0 0 O−1













F11 − cI F12

F21 F22

O1H1 H21

O2H1 0









=





I 0 0
0 I 0
0 0 O−1













I 0 F12H
−1
21 0

0 I F22H
−1
21 0

0 0 I 0
0 0 0 I

















F11 − F12H
−1
21 O1H1 − cI 0

F21 − F22H
−1
21 O1H1 0

O1H1 H21

O2H1 0









,

(4.19)

we obtain by Lemma 4.1 that





F11 − F12H
−1
21 O1H1 − cI

F21 − F22H
−1
21 O1H1

O2H1



, i.e.

[

F̄ − cI

H̄

]

, is of full

rank for all c ∈ C by using the fact that H21 ∈ R(n−l)×(n−l) is a nonsingular matrix.
Thus, the observability of the system (4.15) is verified.

Lemma 4.4 The system (4.15) is in minimum phase with respect to the relation
between the disturbance v(t) and the “output” ȳ(t).

Proof Since





PFQ−1−c

[

Il×l 0
0 0

]

PK

HQ−1 D



=





I 0 0
0 I 0
0 0 O−1













F11−cI F12 K1

F21 F22 K2

O1H1 H21 O1D

O2H1 0 O2D









=





I 0 0
0 I 0
0 0 O−1













I 0 F12H
−1
21 0

0 I F22H
−1
21 0

0 0 I 0
0 0 0 I









×









F11−F12H
−1
21 O1H1−cI 0 K1 − F12H

−1
21 O1D

F21−F22H
−1
21 O1H1 0 K2−F22H

−1
21 O1D

O1H1 H21 O1D

O2H1 0 O2D









, (4.20)

we obtain from Lemma 4.1 that





F11 − F12H
−1
21 O1H1 − cI K1 − F12H

−1
21 O1D

F21 − F22H
−1
21 O1H1 K2 − F22H

−1
21 O1D

O2H1 O2D



, i.e.

[

F̄ − cI K̄

H̄ D̄

]

, is of full rank for any c ∈ C satisfying Re(c) ≥ 0 by observing that

H21 ∈ R(n−l)×(n−l) is a nonsingular matrix. Thus, the lemma is proved.
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From Lemmas 4.3 and 4.4, the system (4.15) can be used to estimate the distur-
bances and to observe the partial state x̄1(t) by the algorithm proposed in Section 3.3.
Furthermore, from (4.13), the partial state x̄2(t) can be estimated as

ˆ̄x2(t) = H−1
21 O1(y(t) −H1 ˆ̄x1(t) −Dw(t)), (4.21)

where ˆ̄x1(t) is the estimate of the partial state x̄1(t), w(t) is the estimate of the distur-
bance v(t). Therefore, the state x(t) can be estimated by using the transformation

x̂(t) = Q−1

[

ˆ̄x1(t)
ˆ̄x2(t)

]

. (4.22)

4.2 The numerical observation algorithm for the general descriptor systems

with disturbances

Step1 If E is nonsingular, then the algorithm is given in Section 3.3. Otherwise, go to
step 2.

Step2 Determine the nonsingular matrices P and Q satisfying (4.1), derive the system
(4.9), and consider the state observer and the disturbance observer for the system
(4.9).

Step3 For the matrix H2 in the system (4.9), determine the nonsingular matrix O

satisfying (4.11). The system (4.10) is rearranged as the dynamical system (4.15)
and relation (4.13). For the dynamical system (4.15), the algorithm presented in
Section 3.3 can be used to estimate the disturbance v(t) and the partial state x̄1(t).

Step4 Construct the observer ˆ̄x2(t) for the partial descriptor state x̄2(t) by (4.21).

Step5 The descriptor state x(t) is estimated by (4.22).

5 Design examples and simulation results

Example 5.1 Consider the descriptor system





0 1 1
0 1 0
0 0 1









ẋ1

ẋ2

ẋ3



 =





0 0 1
1 −2 0
−2 0 2









x1

x2

x3



+





1 0
0 2
1 −1





[

v1(t)
v2(t)

]

,





x1(0)
x2(0)
x3(0)



 =





1
0
2



 , (5.1)

[

y1
y2

]

=

[

1 0 0
1 1 0

]





x1

x2

x3



+

[

0 1
0 2

] [

v1
v2

]

, (5.2)

where the input u(t) is assumed as zero, the disturbances are governed by

v1(t) = φ(t) + ψ(t), v2(t) = 1 + ψ(t) (5.3)

with φ(t) =

{

t 0 ≤ t ≤ 3

3 t > 3
and ψ(t) =

{

t 0 ≤ t ≤ 6

4 t > 6
.
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It can be easily checked that the assumptions in Section 2 are all satisfied. Further-
more, it can be checked that deg(det(sE − F )) = rank(E), i.e. this descriptor system is
of index at most one.

In the following, the disturbance observer and the descriptor state observer will be
formulated by following the algorithm summarized in Section 4.2.

Step1 Since E is singular with rank(E) = 2, go to step 2.

Step2 The nonsingular matrices P and Q satisfying (4.1) are determined as

P =





0 0 1
0 1 0
1 −1 −1



 , Q =





0 0 1
0 1 0
1 0 0



 .

Let x̄(t) =

[

x̄1(t)
x̄2(t)

]

=





x̄11

x̄12

x̄21



 = Qx(t). Then, corresponding to (4.9), it yields



































˙̄x1(t) =

[

2 0

0 −2

]

x̄1(t) +

[

−2

1

]

x̄2(t) +

[

1 −1

0 2

]

v(t),

0 = [−1 2]x̄1(t) + x̄2(t) + [0 − 1]v(t),

y(t) =

[

0 0

0 1

]

x̄1(t) +

[

1

1

]

x̄2(t) +

[

0 1

0 2

]

v(t).

Step3 For the matrix H2 =

[

1
1

]

, the nonsingular matrix O satisfying (4.11) can be

determined as

O =

[

1 0
−1 1

]

.

Thus, corresponding to (4.12), it gives


























˙̄x1(t) =

[

2 0
0 −2

]

x̄1(t) +

[

−2
1

]

x̄2(t) +

[

1 −1
0 2

]

v(t),

0 = [−1 2]x̄1(t) + x̄2(t) + [0 − 1]v(t),

[1 0] y(t) = [0 0]x̄1(t) + x̄2(t) + [0 1]v(t),

[−1 1] y(t) = [0 1]x̄1(t) + [0 1]v(t).

(5.4)

Then, from the third equation in (5.4), x̄2(t) can be expressed as

x̄2(t) = [1 0]y(t) − [0 1]v(t). (5.5)

By substituting the expression of x̄2(t) into the other equations in (5.4), the equa-
tion corresponding to (4.15) is given by























˙̄x1(t) =

[

2 0

0 −2

]

x̄1(t) +

[

−2 0

1 0

]

y(t) +

[

1 1

0 1

]

v(t),

[

−1 0

−1 1

]

y(t) =

[

−1 2

0 1

]

x̄1(t) +

[

0 −2

0 1

]

v(t).

(5.6)
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Now, based on (5.6), the disturbance v(t) and the variable x̄1(t) will be estimated
by following the algorithm summarized in Section 3.3.

S1 Since D̄ =

[

0 −2
0 1

]

is not of full rank, go to S2.

S2 Rewrite (5.6) as









2 − s 0 1 1
0 −2 − s 0 1
−1 2 0 −2
0 1 0 1









[

x̄1(t)
v(t)

]

=









2 0
−1 0
−1 0
−1 1









y(t). (5.7)

By pre-multiplying the both sides of (5.7) with

adj









2 − s 0 1 1
0 −2 − s 0 1
−1 2 0 −2
0 1 0 1









=









0 4 s+ 3 2s+ 2
0 1 0 −1

−s− 3 4s− 7 s2 + s− 6 2s2 − s− 2
0 −1 0 −s− 2









the system corresponding to (3.13) is derived as



















s(3y1 − 2y2) + 9y1 − 2y2 = (s+ 3)x̄11,

y2 = (s+ 3)x̄12,

s2(3y1 − 2y2) = −s(6y1 + y2) + 9y1 − 2y2 + (s+ 3)v1,

s(−y1 + y2) = 3y1 − 2y2 + (s+ 3)v2.

(5.8)

S3 Based on (5.8), the disturbance v2(t) can be simply estimated by

w2,0 ,
s

s+ 3
(−y1 + y2) −

1

s+ 3
(3y1 − 2y2).

The disturbance v1(t) is estimated as follows.

Introduce the Hurwitz polynomial

g1(s) = (s+ 3)(s+ 2),

where λ is chosen as λ = 2.

Define z1 = 3y1 − 2y2. Corresponding to (3.10), the third equation in (5.8)
can be rewritten as

ż1(t) + 2z1(t) =
s

s+ 3
(9y1 − 11y2) +

1

s+ 3
(27y1 − 14y2) + v1(t).

By Theorem 3.2, construct the following differential equation

˙̂z1(t) + 2ẑ1(t) =
s

s+ 3
(9y1 − 11y2) +

1

s+ 3
(27y1 − 14y2) + w1,1(t),

ẑ1(0) = z1(0),

w1,1(t) = ω̂1,1(t)
z1(t) − ẑ1(t)

|z1(t) − ẑ1(t)| + δ1,1
,
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ω̂1,1(t) is updated by the following adaptive algorithms

˙̂ω1,1(t) =







1200|z1(t) − ẑ1(t)| if |z1(t) − ẑ1(t)| > δ1,1

0 otherwise
, ˙̂ω1,1(0) = 5 .

Then, w1,1(t) can be regarded as an estimate of v1(t).

S4 By the theory in Section 3.2.3, the variables x̄11(t) and x̄12(t) can be respec-
tively estimated by ˆ̄x11(t) and ˆ̄x12(t) defined by

ˆ̄x11 =
s

s+ 3
(3y1 − 2y2) +

1

s+ 3
(9y1 − 2y2),

ˆ̄x12 =
1

s+ 3
y2.

Step4 Construct the observer ˆ̄x2(t) for the partial descriptor state x̄2(t) by (5.5).

ˆ̄x2(t) = [1 0]y(t) − [0 1]

[

w1,1(t)
w2,0(t)

]

= y1(t) − w2,0(t).

Step5 The descriptor state x(t) is estimated by

x̂(t) =





0 0 1
0 1 0
1 0 0









ˆ̄x11(t)
ˆ̄x12(t)
ˆ̄x2(t)



 .

It can be seen that some steady error exists in the estimation of v1(t), and the error
depends on the design parameter δ11. Furthermore, there are no steady errors existing
in the estimation of the disturbance v2(t) and the descriptor state x(t).

Computer simulation results show that the disturbance v2(t) and the descriptor state
x(t) can be perfectly identified. The figures are omitted. The estimation error of the
disturbance v1(t) is shown in Figure 5.1, where the parameter δ11 is chosen as δ11 =
0.0001.

It should be noted v1(t) is not differentiable at t = 3 and t = 6 and is not continuous at
t = 6. Simulation results show that the disturbance observer works well at the continuous
points and has a transient error at the discontinuous points. This is because that the
proposed method is trying to identify the unknown signals by using a differentiable
approach. It is considered that the new method can be applied to practical problems
with piecewise differentiable disturbances. For the sake of strictness, the disturbances
are assumed to be continuous and piecewise differentiable.

Example 5.2 Consider the descriptor system





0 1 1
1 1 0
−1 0 1









ẋ1

ẋ2

ẋ3



 =





2 0 1
1 −2 0
−2 0 2









x1

x2

x3



+





1 0
0 2
1 −1





[

v1(t)
v2(t)

]

,





x1(0)
x2(0)
x3(0)



 =





1
0
2



 , (5.9)

[

y1
y2

]

=

[

1 0 0
1 1 0

]





x1

x2

x3



+

[

0 1
0 2

] [

v1
v2

]

, (5.10)

where the input u(t) is assumed as zero, v1(t) and v2(t) are the disturbances.
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Figure 5.1: The difference between the disturbance v1(t) and its estimate

It can be easily checked that the assumptions in Section 2 are all satisfied. Further-
more, it can be checked that deg(det(sE − F )) 6= rank(E), i.e. this descriptor system is
not of index at most one.

Since E is singular with rank(E) = 2, the nonsingular matrices P and Q satisfying
(3.32) are determined as

P =





0 0 1
0 1 0
1 −1 −1



 , Q =





−1 0 1
1 1 0
1 0 0



 .

Let x̄(t) =

[

x̄1(t)
x̄2(t)

]

=





x̄11

x̄12

x̄21



 = Qx(t) . Then, by a computation similar to that in

Example 5.1, the relations corresponding to (5.5) and (5.8) are derived as

x̄2(t) = [1 0]y(t) − [0 1]v(t), (5.11)



















s(−y2) + 15y1 − 4y2 = (2s+ 3)x̄11,

6y1 − y2 = (2s+ 3)x̄12,

s2(−y2) = −s(15y1 − y2) + 33y1 − 10y2 + (2s+ 3)v1,

s(y2) = 3y1 − 2y2 + (2s+ 3)v2.

(5.12)

Similar to Example 5.1, the disturbances and the descriptor state can be identified.
It can be seen that the proposed method can also deal with the descriptor systems which
are not of index at most one.

6 Conclusions

In this paper, the observation problem for the descriptor systems with disturbances is
studied. It is assumed that the disturbances and their first order derivatives are bounded
in the open loop. However, the upper and lower bounds are unknown. The formulated
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descriptor system can be decomposed into a dynamical system and an algebraic equation.
Based on this obtained dynamical system, first, the disturbances are estimated; then, one
part of the descriptor state is observed. Finally, the other part of the descriptor state is
estimated based on the obtained algebraic equation.

If D (if E is nonsingular; or D̄ if E is singular) is of full rank, then the estimation
errors of the full state and all the disturbances decay to zero exponentially. For the
cases lji < q0, the estimation errors of the corresponding partial states and disturbances
still remain, and they can be controlled to be as small as necessary by choosing the
design parameters. For the cases lji ≥ q0, no steady errors exist in the estimates of the
corresponding partial states and disturbances. After the disturbance and the descriptor
state are estimated, the controller can be designed by referring to the results in [8, 16, 20].
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