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PERSONAGE IN SCIENCE

Academician Yu.A. Mitropolskii

V. Lakshmikantham
1
, A.A. Martynyuk

2∗
and J.H. Dshalalow

1

1 Department of Mathematical Sciences, Florida Institute of Technology,

Melbourne, FL 32901, USA
2 Institute of Mechanics, National Academy of Sciences of Ukraine,

Nesterov Str., 3, Kiev, 03057, MSP-680, Ukraine

On January 3, 2007, Professor Yurii Alexeevich Mitropolskii, the Member of

the National Academy of Sciences of Ukraine and Member of Russian Academy

of Sciences, will turn 90. The Editorial Board of the International Scientific

Journal “Nonlinear Dynamics and Systems Theory” wishes him many happy

returns of this day and a great health and prosperity. To honor Professor

Mitropolskii, the Editorial Board of “Nonlinear Dynamics and Systems The-

ory” presents here a biographical sketch highlighting Mitropolskii’s research and

scholarly activities.

1 Brief Outline of Mitropolskii’s Life

Yurii Alexeevich Mitropolskii was born on January 3, 1917 in the Charnysh’s estate
located in Kobelyakskiy district of Poltava province. Shortly thereafter he was baptized
in Shishaki village, Kobelyakskiy district of the same province where his birth certificate
was issued. This is why Shishaki village is erroneously referred to as his place of birth.

Yurii Alexeevich’s grandfather on his father’s side, Savva Alexeevich Mitropol-
skii, graduated from St. Petersburg Military Medical Academy and then served at
Michailovskoye Artillery Academy. In 1906 he retired at the rank of a general.

Yurii Alexeevich’s father, Alexey Savvich, enrolled St. Petersburg University, depart-
ment of physics and mathematics, but later changed his major to law and graduated 1906
with a law degree. Yurii Alexeevich’s mother, Vera Vasilievna (whose maiden name was
Charnysh) was born to a noble family. Her great-grandfather, Ivan Vasilievich Charnysh,
was the chairman of the noble community in Poltava province. His grandson, Vasiliy
Nikolaevich Charnysh, the father of Vera Vasilievna, at the age of 17, voluntarily joined
the Russian Imperial army during the Russian-Turkish war to liberate Bulgaria from
the Ottoman oppression. In 1878, in the battle at Plevna (Bulgaria), he was severely
wounded. He died in 1906 at the age of 46.

∗ Corresponding author: anmart@stability.kiev.ua

c© 2006 Informath Publishing Group/1562-8353 (print)/1813-7385 (online)/www.e-ndst.kiev.ua 309
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Alexey Savvich served in the Russian Army during the First World War. Later he
joined the Red Army and continued to serve there until his retirement in 1926.

During the civil war (in 1918), the Charnysh’s residence was completely destroyed.
It was common for that time. Consequently, the Mitropolskii’s moved to Kiev. In
1932, Yurii Alexeevich finished a 7-years school in Kiev followed by his employment at
a cannery. In 1938, Yurii Alexeevich graduated from a high school with honors. In the
same year, he was accepted at Kiev University in the department of mathematics and
physics. During that time, lectures were taught by B.Ya. Bukreev, G.F. Pfeiffer, and V.E.
Dyachenko, while N.N.Bogoliubov and M.A.Lavrentiev were among young instructors.

Upon completion of his third year at Kiev University, when on the day of June
22, 1941, the fascist Germany attacked the Soviet Union, Yurii Alexeevich married his
university mate Alexandra Ivanovna to live together happily for more than 60 years. All
this time, Alexandra Ivanovna has been his loyal friend and a guardian angel. Yurii
Alexeevich and Alexandra Ivanovna have two children: son Alexey (born in 1942) and
daughter Nadezhda (born in 1948).

On July 7, 1941 Yurii Alexeevich joined the Soviet Army and was stationed in an
armor division in the city of Chuguyev. In October of 1941, according to the decree issued
by the Defense Secretary S.K. Timoshenko, all fourth and fifth years college students
were eligible to continue their degrees at the corresponding universities, with forthcoming
appointments at military academies. Yurii Alexeevich was sent to the city of Kzyl-Orda in
Kazakhstan where Kiev University was evacuated to. In March of 1942, Yurii Alexeevich
successfully passed all exams and graduated from Kazakh University and then was sent
to Ryazan Artillery Academy in the city of Talgar, which he graduated from in March
of 1943 in the rank of a lieutenant. He was sent to the Stepnoy battlefield thereafter.

In 1946, after being discharged from the army, Yurii Alexeevich joined the Ukrainian
Academy of Sciences in Kiev in the capacity of a Junior Scientist. In 1948 Yurii Alexee-
vich received his Candidate of Science degree (the Western equivalent of a Ph.D. degree).
His thesis was titled “Investigation of resonance phenomena in nonlinear systems with
variable frequencies.” In the same year he joined the Institute of Constructive Mechanics
of the Ukrainian Academy of Sciences (now S.P. Timoshenko’s Institute of Mechanics of
the National Academy of Sciences of Ukraine) in the capacity of a Senior Scientist under
the supervision of N.N. Bogoliubov.

In 1951 he was awarded a Doctor of Science degree (the Western and Eastern Euro-
pean equivalent of Habilitation Degree). His thesis was titled “Slow processes in nonlinear
oscillatory systems with many degrees of freedom.” Earlier he moved to the Institute of
Mathematics of the Ukrainian Academy of Sciences where he was appointed a Senior Sci-
entist. In 1953 Yurii Alexeevich was promoted to the rank of Professor and Department
Head in the same Institute. In 1956 he became the Associate Provost of Science of this
Institute and in 1958 he was appointed its Director. He remained in this capacity up until
1988. Since1988 he has served as the Honorary Director of the Institute of Mathematics.

In 1958, Yurii Alexeevich was elected the Corresponding Member of the Academy of
Sciences of Ukrainian SSR and in 1961 he was elected the Full Member of the Academy of
Sciences of the USSR (now the Russian Academy of Sciences), then the most prestigious
academic title in the USSR.
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2 Basic Trends of His Scientific Work

During the years of his scientific activity, Yurii Alexeevich Mitropolskii has obtained
numerous fundamental results in nonlinear mechanics and differential equations. The
results of his prolific research were manifested in more than 700 articles and 50 mono-
graphs, of which most essential are “Nonstationary Processes in Nonlinear Oscillating
Systems” (1955), “Asymptotic Methods in the Theory of Nonlinear Oscillations” (1964),
“Averaging Method in Nonlinear Mechanics” (1971), and “Nonlinear Mechanics. Single-
Frequency Oscillations” (1997).

We present an overview of his most significant work.

2.1 Development of Asymptotic Methods in Nonlinear Mechanics

Along with N.M. Krylov and N.N. Bogoliubov, Mitropolskii was one of the first to develop
asymptotic methods in nonlinear mechanics. More specifically, he studied nonstationary
processes under variations of frequency, mass and other parameters of nonlinear systems.

Imposing the condition on the system parameters to be of slow variation relative to
the characteristic period of oscillations, Mitropolskii created a very efficient approach.
In fact, this condition turned out to be very practical and it often applies to various
problems of physics and engineering. By means of this approach, he obtained significant
results in many real world situations for models with one and many degrees of freedom
that pass through a resonance.

Due to the successful applications of this method, a number of phenomena in nonlinear
oscillating systems (for example, amplitude delay, breakdowns and abrupt changes of
amplitude, beats, etc.) were finally explained.

An important application of this method was the calculation of resonance. This
method has also led to the description of the formation of a noise in a cyclotron built
in the United Institute of Nuclear Research located in Dubna (Russia). Calculation of
turbo-engine rotor oscillations and of centrifuge oscillations were among other notable
applications of the method.

A historical development of this method was described in his monographs [1-3, 12,
14, 15, 26, 30, 36, 38, 40, 47, 48] written in Russian. Some of them were translated into
many languages worldwide (see [6, 7, 10, 11, 17, 43, 46]).

2.2 The Development of the Single-Frequency Method

In 1948, when investigating an autonomous system with many degrees of freedom,
N.N. Bogoliubov suggested a scheme of partial solution for equations describing single-
frequency oscillations. The proposed scheme was based on the averaging method. Having
used the same averaging method, Mitropolskii developed a technique of an asymptotic
solution in the form of a series. A remarkable advantage of the series method is that one
can construct a differential equation to define the amplitude and phase with no need of
precise motion equations.

Mitropolskii extended the single-frequency method to distributed parameter systems
and systems with gyroscopic terms. A version of one-frequency method developed by
him for equations in a symbolic form turned out to be effective in the investigation
of nonstationary oscillations of crank-shafts, systems of transmissions, and electrical
circuits.



312 V. LAKSHMIKANTHAM, A.A. MARTYNYUK AND J.H. DSHALALOW

The method is well established in a series of papers by Mitropolskii as well as in his
monograph [42].

2.3 Contribution to the Method of Integral Manifolds

Another major area of Mitropolskii’s research was initiated in his work on the method of
integral manifolds. In the early 50th, he proposed and laid the foundation to the method
involving the construction of a two-parametric family of partial solutions to systems with
many degrees of freedom and slowly varying parameters.

His most important contribution to this subject of study includes establishing an
existence criteria for integral manifolds in systems of nonlinear differential equations
with variable coefficients and in resonance systems. In particular, these existence criteria
were related to the regions of parametric resonance in resonance systems. Furthermore,
Mitropolskii came across the quasisyncronization phenomenon. He also extended the
method of integral manifolds from finite- to infinite-dimensional systems, distributed
parameter systems, and singularly perturbed systems, to name a few.

The results obtained along this topic have been presented in monographs [13, 19, 24].

2.4 The Method of Accelerated Convergence

His work on accelerated of convergence corresponds to yet another direction in Mitropol-
skii’s research. It was initially suggested by N.N. Bogoliubov, and it was based on a
combination of the accelerated convergence method and the method of integral mani-
folds. This approach was essentially developed by Mitropolskii and recently applied to
numerous problems in nonlinear mechanics.

Let us mention some of them: the problem of reducibility of a nonlinear system
of differential equations to a linear system with constant coefficients, the problem on
reducibility of linear systems with quasiperiodical coefficients to linear systems with
constant coefficients, investigation of trajectories on tora, and others. The basic results
obtained along this subject have been summarized in monograph [22] (see also [27]).

2.5 The Averaging Method

Mitropolskii’s studies on the averaging method also generated a new direction in his
intense research activities. The initiation of a rigorous theory of the averaging method
was due to N.N. Bogoliubov. In Mitropolskii’s work, the Bogoliubov’s technique became
further enhanced and adopted to new classes of differential equations containing small
and large parameters, as well as to equations in functional spaces, equations with devi-
ating arguments, and to integro-differential and stochastic differential equations. For the
investigation of partial differential equations of a quasi-hyperbolic type he developed a
particular version of averaging and shortening technique for infinite-dimensional systems.
This begot an investigation of distributed parameter systems and systems with slowly
varying parameters.

Numerous results obtained along this line have been brought together in monograph
[23] (see also [31, 32, 35, 44] in Russian and [25, 37] in other languages).

2.6 Asymptotic Methods and Averaging Method for Distributed Parameter Systems

Another notable direction in Mitropolskii’s research includes his studies on distributed
parameter systems. Based on N.M. Krylov’s and N.N. Bogoliubov’s suggestions to use
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asymptotic expansion method for distributed parameter systems, Mitropolskii explored
their ideas beginning with a rigorous mathematical formalism. In a combination of the
single-frequency method with Fourier method of separation of variables and the averaging
method, Mitropolskii developed a very efficient and innovative approach.

This enabled him and his followers to construct approximate solutions for distributed
parameter systems under nonlinearity, random perturbations, delays, nonlinearity with
boundary conditions, and slowly varying parameters.

All of these led to the creation of the energy method, which is based on the con-
struction of first and second approximation equations for the amplitude and phase of a
single-frequency oscillating process. Instead of some preliminary construction of a precise
quasi-hyperbolic partial differential equation, the use of the new approach enabled one
to proceed immediately to an expression for potential and kinetic energy.

All related results have appeared in Mitropolskii’s numerous papers and they were
summarized in his monographs [34, 37, 41].

2.7 Contribution to the Theory of Systems with Delay and Small Parameter

The development of the theory of systems with delay and small parameter proves a
unique versatility of Mitropolskii’s analytical mind.

In this area he established existence conditions for periodic and quasiperiodic solu-
tions for various classes of equations, he rendered stability analysis of these solutions,
constructed toroidal manifolds and investigated the path behavior on them. He also
solved problems of reducibility of difference equations with quasiperiodic coefficients to a
linear system of differential equations, studied quasi-hyperbolic partial differential equa-
tions with delay, and constructed periodic solutions for neutral systems.

The results obtained in this area have been the subject to some special courses at
Kiev University and they have appeared in monographs [21, 31].

2.8 Development of the Theory of Random Oscillating Processes

Mitropolskii developed asymptotic methods of nonlinear mechanics in the area of oscil-
lating stochastic processes. He investigated the white noise effect on autonomous and
nonautonomous quasilinear oscillating systems described by various equations and found
various characteristics of oscillating stochastic processes.

The main results obtained along this line have been presented in monograph [36].

2.9 Contribution to the Theory of Decomposition of Systems

Recently, under the guidance of Mitropolskii and with his direct participation, a group
of his students and collaborators developed the theory of multi-frequence oscillating pro-
cesses and theory of decomposition for a wide class of large scale systems of ordinary
differential equations. Mitropolskii and his research team developed a group theory ap-
proach when studying the solution structure of systems of ordinary differential equations.
They constructed an enveloping Lie algebra generated by an initial system and its associ-
ated enveloping pseudogroup. Furthermore, they studied systems of linear and nonlinear
differential equations with constant and variable coefficients, established conditions for
their decompositions, and developed algorithms of some specific decompositions. The
results obtained in the direction have been applied in physics and engineering.

The results obtained along this line were summarized in monograph [32] (see also [39]).
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At the end of our survey on the main directions of investigations by Mitropolskii it
should be noted that one of the characteristic features of his profound and prolific research
is his versatility starting with a rigorous problem setting, continuing with analytical
solution, and ending with an algorithm including numerical illustrative examples.

3 Research-Organizational and Pedagogical Activity

Since 1958, Mitropolskii has focused his attention on the development of the Institute of
Mathematics of Academy of Science of the USSR. He initiated new departments setting
up to facilitate research in the areas of algebra, probability theory, real and functional
analysis, and mechanics of special systems.

During this period of time, the post-graduate enrollment was substantially expanded.
As the result of Mitropolskii’s efforts, the Institute produced about 500 candidates of
science (equivalent to Ph.D. degrees in the US) and more than 80 doctors of science
(equivalent to Habilitation Degree in Eastern and Western Europe) for their further
employments at national universities and research labs in Ukraine, Russia, and other
countries.

As a consequences of Mitropolskii’s colossal scholarly activity, the Institute of Math-
ematics of Academy of Science of Ukranian SSR has become the leading scientific center
of mathematical research in Ukraine.

Mitropolskii began his pedagogical activity in 1948 at Kiev university to extend it
up to 1989. During all these years, along with the regular courses at the department of
mechanics and mathematics he taught a variety of special courses in nonlinear mechanics,
mathematical physics, and differential equations. Under Mitropolskii’s supervision the
Institute of Mathematics offered seminars, summer mathematical schools, and organized
international conferences which all have had an enormous impact upon youth of all ages,
including high school students.

Mitropolskii himself supervised and directed 100 Ph.D. and 25 Habilitation theses in
physical and mathematical sciences.

From 1961 until 1992 Mitropolskii had been the Head of the Department of mathe-
matics, mechanics and cybernetics at Academy of Sciences of Ukrainian SSR. Over this
period of time he paid much attention to the development of mathematical schools in
various Ukrainian districts where new scientific research institutes were opened and new
programs were launched, all majoring in mathematics and physics.

In 1992 Mitropolskii was appointed the director of the International mathematical
center of National Academy of Science of Ukraine and Counselor of Presidium of National
Academy of Science of Ukraine. This position he continues to hold to this day.

4 Editorial Activity

Mitropolskii has been much involved in editorial work. He has initiated the publication of
works by Academician N.M. Krylov and selected works by Academician N.N. Bogoliubov.
In the years 1961 through 1968, the Institute of Mathematics of Academy of Science of
Ukrainian SSR copyrighted and published Proceedings of seminars held at the Institute
of Mathematics under Mitropolskii’s direct editorship.

Since 1967, Mitropolskii has been the Editor-in Chief of the “Ukrainian Mathematical
Journal” whose English translation is regularly published in the US. Since 1961, he has
been an editorial board member of three Russian and three international journals.



NONLINEAR DYNAMICS AND SYSTEMS THEORY, 6(4) (2006) 309–318 315

Mitropolskii was among main contributors to a 12-volume selected works by N.N.
Bogoliubov in the area of mathematics and nonlinear mechanics. Three volumes of this
edition has been already published by the Russian Academy of Sciences.

Mitropolskii dedicated much of his time and efforts to popularize mathematics to the
general public. He gave popular lectures, talks, and wrote articles on various topics in
mathematics for newspapers and popular magazines. He also held the city hearings on
urgent mathematical problems.

5 International Scientific Activity

The first international talk Mitropolskii gave in 1956 at the International congress of
mathematicians in Bucharest, Romania. Since 1958, he has been an invited speaker to the
International Mathematical Congresses held in Edinburgh, Scotland (1958), Stockholm
Sweden (1962), Moscow, Russia (1966), Niece, France (1970), Vancouver, Canada (1974),
Warsaw, Poland (1983), Berkeley, USA (1986), and Kyoto, Japan (1990).

In 1960, Mitropolskii spoke at the plenary meeting of 10th International Congress on
theoretical and applied mechanics at Streza, Italy, to present the main achievements and
unsolved problems in asymptotic methods of nonlinear mechanics. In 1970 he took part
in the 1st Pan-African Mathematical Congress.

In 1961, Mitropolskii gave a plenary talk on the method of integral manifolds in
nonlinear mechanics at the International Conference held in Colorado Springs, USA. His
talk was synchronously translated by Professor S.A. Lefshets. A series of lectures and
talks on individual problems in nonlinear mechanics was given by Mitropolskii at various
universities in the USA, China, Vietnam, Czechoslovakia, Poland, Mexico, Canada, Italy,
and Yugoslavia and numerous international conferences.

His active cooperation over the past two decades with Vietnamese scientists in the
area of nonlinear mechanics and theory of differential equations is worth mentioning. Due
to this cooperation, they have opened an active scientific school of nonlinear mechanics
in Ukraine.

6 Awards

Mitropolskii has been one of the most celebrated scientists who has ever lived in Ukraine
and Russia. Consequently, his research, scholarly, pedagogical activities and public ser-
vice have been highly revered. He was awarded by almost all known highest and most
prestigious prizes ever given to a Soviet citizen. Here is the list of some of them:

Hero of the Socialist Labor;
Honored Activist of Science of UkrSSR;
Lenin Prize Laureate;
State Prize Laureate of Ukraine;
Federal Prize Laureate of Soviet Union;
Lyapunov Golden Medal;
Certificate of the Soviet Supreme Presidium;
Certificate of Presidium of Supreme Soviet of UkrSSR;
Lenin Golden Medal;
Two Red Star Orders;
October Revolution Medal;
Labor Red Banner Medal;
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Second-Degree Great Patriotic War Medal;
The Fifth Degree Yaroslav Mudryi Order;
Bogdan Hmelnitskiy Medal;
N.M. Krylov, N.N. Bogoliubov and M.A. Lavrentiev prizes of Presidium of the

Academy of Sciences of Ukrainian SSR.
Also, outside Ukraine and Russia, Mitropolskii has been treated with a high respect.

In 1971, he was elected the foreign member of Bologna Academy of Sciences (Italy) and
awarded with a Silver Medal of Czechoslovak Academy of Sciences “For Achievements
in Science and Deeds for the Mankind”. The government of Vietnam awarded him with
the “Friendship” Medals in 1987 and 2001.

Completing our survey of scientific, scientific-organizational and pedagogical activi-
ties of Mitropolskii we acknowledge his undisputable achievements in mathematics, his
remarkable versatility, novelty and depth of his mathematical thinking, his profound con-
tributions to the development of nonlinear mechanics and theory of differential equations,
his loyalty and tireless efforts towards mathematical sciences, that all qualifies him as
one of the most distinguished mathematicians of the twentieth century.
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Abstract: In this paper, we use an extended Kalman filter (EKF) to sinchro-
nize discrete-time hyperchaotic systems. In particular, we consider unidirec-
tionally coupled maps corrupted by noise. Approximate synchronization is
obtained between master and slave maps in case that the slave is designed as
an EKF which is driven by a noisy drive signal from a noisy master dynam-
ics. Two numerical examples are provided to illustrate the efficiency of the
proposed approach.

Keywords: Synchronization; hyperchaotic maps; discrete-time systems; extended

Kalman filter; Lyapunov stability; convergence analysis.

Mathematics Subject Classification (2000): 34C15, 34C28, 37B25, 37D45,
60G35, 93C55, 93E11.

1 Introduction

Synchronization of chaotic oscillations has attracted in recent decades much attention.
Different approaches have been reported in the literature see, e.g. [1-14] and references
therein. This phenomenon is supposed to have interesting applications in secure com-
munications, see for example [14-23]. However, it has been shown [24, 25] that masking
information signals by means of comparatively simple chaos with only one positive Lya-
punov exponent does not ensure a sufficient level of security. In some cases, extracting
of the information can be performed using common signal processing techniques. For
higher security the hyperchaotic systems characterized by more than one positive
Lyapunov exponent are advantageous over “simple” chaotic systems. Two factors
of primordial importance in security considerations related to chaotic communication
systems are:
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i) the dimensionality of the chaotic attractor, and

ii) the effort required to obtain the necessary parameters for the matching of a slave

dynamics.

One way to enhance the level of encryption security of the communication system
consists in applying proper cryptographic techniques to the information signal in com-
bination with chaos [26, 27]. Another way to solve this security problem is to encrypt
the information by using high dimensional chaotic attractors, or hyperchaotic attractors,
which take advantage of the increased randomness and unpredictabilily of the higher di-
mensional dynamics. In such option, one generally encounters multiple positive Lyapunov
exponents. However, hyperchaotic synchronization is a much more difficult problem, see
for example [28-30] and [11] for discrete-time context. Other alternative of synchronize
hyperchaotic dynamics is using delay differential (or difference) equations, such systems
have an infinite-dimensional state space and produce hyperchaos with an arbitrary large
number of positive Lyapunov exponents [22, 23].

On the other hand, most of the previous work done on chaos synchronization has been
concentrated on continuous-time chaotic systems. Discrete-time systems used for chaos
synchronization though, having potential in applications of discrete communications,
have not been thoroughly discussed. While a lot of work is available in the control of
chaotic mappings, only a few works face the problem of synchronization of discrete-time
chaotic systems.

Moreover, parameter uncertainty or unstructured uncertainty in the master dynamics
and coupling signal, noise may appear due to measurement noise or uncertainties in the
dynamics. In this case, synchronization becomes a more difficult problem, certainly no
exact state reconstruction will be possible. Nevertheless, a filtering approach may be
very suitable in this case, see [31] and in the discrete-time context [6, 7].

On the basis of these considerations, the objective of this paper is to extend the
approach developed in [6, 7] to the synchronization of hyperchaotic noisy maps with
noisy coupling signal. Our goal is achieved by designing an EKF as a slave. In this work,
we show that synchronization of discrete-time hyperchaotic systems is indeed suitable
from this viewpoint and, moreover, we proceed to apply this approach to synchronize
two noisy maps as illustrative examples.

The paper is organized as follows. In Section 2 we state the problem under con-
sideration, the noisy synchronization of discrete-time systems. In Section 3, based on
Lyapunov theory, we present an analysis of asymptotic convergence of the EKF. To il-
lustrate the proposed approach, we use in Section 4 an EKF as a slave to synchronize
two noisy hyperchaotic maps. Finally, some conclusions are drawn in Section 5.

2 Problem Statement

We consider noisy master dynamics given by the state equation

x (k + 1) = f (x (k)) + w (k) , x (0) = x0, (1)

with coupling signal
y (k) = h (x (k)) + v (k) . (2)
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In system (1), w (k) represents the noise in the dynamics of the master system, which
is assumed to be a zero mean noise process with E

[

w (k)wT (l)
]

= Qδkl > 0, with δkl the
Kronecker delta function. Also v (k) is a zero mean noise process with E [v (k) v (l)] =
Rδkl > 0; the processes v (k) and w (k) are assumed to be independent.

The EKF that we use as slave dynamics for (1) with noisy coupling signal (2) is
described as follows [32]:
Measurement update equations:

x̂ (k) = x̂ (k/k − 1) + Kx̂ (k) [y (k) − h (x̂ (k/k − 1))] , (3)

where the vector x̂ (k) is referred as the filtered estimate for the master state vector x (k)
at time k. The covariance of the error in x̂ (k) is given by

Px̂ (k) = [I − Kx̂ (k)Hx̂ (k)] Px̂ (k/k − 1) . (4)

Time update equations:

The (one-step ahead) predictor of x̂ (k + 1) is given by

x̂ (k + 1/k) = f (x̂ (k)) , (5)

the covariance matrix of the prediction error is

Px̂ (k + 1/k) = F
x̂
(k)Px̂ (k)FT

x̂
(k) + Q, (6)

where
Kx̂ (k) = Px̂ (k/k − 1)HT

x̂ (k)
[

Hx̂ (k)Px̂ (k/k − 1)HT
x̂ (k) + R

]−1
(7)

is the Kalman gain matrix, and

F
x̂
(k) =

∂ f (x (k))

∂ x (k)

∣

∣

∣

∣

x(k)= x̂(k)

, (8)

Hx̂ (k) =
∂ h (x (k))

∂ x (k)

∣

∣

∣

∣

x(k)= x̂(k/k−1)

.

In this paper, our main objective is: Given a noisy master system, and a noisy
coupling signal; we want to design a suitable EKF for synchronization in the master-
slave framework, such that the following problem is solved.

Definition (Noisy synchronization). The slave dynamics (3)-(8) synchronizes
with the noisy master dynamics (1) with noisy drive signal (2), if

‖x (k) − x̂ (k)‖ ≤ ρ, ∀k ≥ τ, (9)

where ρ should be related to Q and R and is a constant of the synchronization/estimation

error. If for a given ρ there exists a time instant τ (to be called the synchronization
time) such that condition (9) is fulfilled, then the noisy master (1) and the EKF slave

(3)-(8) are approximately synchronized with level ρ.

One might also consider as an adequate condition for approximate (or noisy) syn-
chronization, if there exists a positive constant τ such that

E
{

‖(x (k) − x̂ (k))‖
2
}

≤ ρ, ∀k ≥ τ.
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Figure 2.1: Master-slave coupling scheme for noisy hyperchaotic maps: where x′ = x (k + 1)
is the state master, w and v are independent noise processes, y the coupling signal, and ŷ the
output of EKF.

In particular, this may be a more relevant requirement if w (k) is not necessarily bounded.
Since we will assume that v (k) and w (k) are bounded, then is sufficient to take condi-
tion (9). Figure 2.1 shows the master-slave coupling scheme for approximate (or noisy)
synchronization of maps (1) and (3)-(8) when the noisy drive signal (2) is used. Also, in
all subsequent simulations we check the condition (9) over a long but finite time interval
[0, tf ].

3 Convergence Analysis of the EKF for Synchronization

In this section, based on Lyapunov theory, we make an analysis of the convergence
of the synchronization error. Define the estimation (synchronization) error as

e (k) = x (k) − x̂ (k) , (10)

and the error between the state and the prediction of the estimation as

e (k/k − 1) = x (k) − x̂ (k/k − 1) .

If we assume that f and h are C1 functions, then f can be expanded (using Taylor’s
Theorem) as follows,

f (x) = f (x̂) + F (k) [x (k) − x̂ (k)] + ϕ (x (k) , x̂ (k)) , (11)

where f (x̂) represents the copy of the system f (x), F = ∂f (x) /∂x the first derivative
of f (x), and ϕ (x, x̂) the remainder after the first order expansion of f (x).

The dynamics of the error between the state of the master and the prediction are
given by the equation,

e (k + 1/k) = x (k + 1) − x̂ (k + 1/k)

= f (x (k)) + w (k) − f (x̂ (k))

= F (k) e (k) + ϕ (x (k) , x̂ (k)) + w (k)

and the dynamics of the state estimation (synchronization) error system are governed by
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the following equation

e (k + 1) = x (k + 1) − x̂ (k + 1)

= f (x (k)) + w (k) − f (x̂ (k)) − K (k + 1) [y (k + 1) − Hx̂ (k + 1/k)]

= [I − K (k + 1)H ]F (k) e (k) + [I − K (k + 1)H ]ϕ (x (k) , x̂ (k))

+ [I − K (k + 1)H ]w (k) − K (k + 1) v (k + 1) ,

e (k + 1) = [I − K (k + 1)H ]F (k) e (k) + r (k) + s (k) , (12)

where

r (k) = [I − K (k + 1)H ]ϕ (x (k) , x̂ (k)) ,

s (k) = [I − K (k + 1)H ]w (k) − K (k + 1) v (k + 1) .

Before going to analyze the stability of the error system (12) we make the following
assumptions:

(A1) There exist positive constants f̄ , h̄, p1, and p2 such that the following bounds

hold for all k ≥ 0:

‖F (k)‖ ≤ f̄ , (13)

‖H (k)‖ ≤ h̄, (14)

p1I ≤ P (k) ≤ p2I, (15)

qI ≤ Q, (16)

rI ≤ R. (17)

(A2) F (k) is nonsingular for all k ≥ 0.

(A3) There exist positive constants ǫ and κ such that the function ϕ (x (k) , x̂ (k)) in

(11) is bounded by

‖ϕ (x (k) , x̂ (k))‖ ≤ κ ‖x (k) − x̂ (k)‖
2
,

for x (k) , x̂ (k) ∈ R
n with ‖x (k) − x̂ (k)‖ ≤ ǫ.

In addition to this, we demonstrate the following lemmas to be required to establish
the necessary conditions on stability of the estimation (synchronization) error given by
the EKF.

Lemma 3.1 Under the boundedness conditions (13)-(17) there exists a real number

0 < α < 1 such that P−1 (k) satisfies the inequality

FT (k) [I − K (k + 1)H ]T P−1 (k + 1) [I − K (k + 1)H ]F (k) ≤ (1 − α) P−1 (k)

for all k ≥ 0.

Proof The term P (k + 1) = [I−K (k + 1)H ]
[

F (k)P (k)FT (k) + Q
]

can be rewrit-
ten as follows

P (k + 1) = [I − K (k + 1)H ]F (k)P (k)FT (k) [I − K (k + 1)H ]T (18)

+ [I − K (k + 1)H ]Q[I − K (k + 1)H ]T

+ [I − K (k + 1)H ]
[

Q + F (k)P (k)FT (k)
]

HT KT (k + 1) ,
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where [I − K (k + 1)H ]
[

Q + F (k)P (k)FT (k)
]

is a symmetric matrix. Making use of
the matrix inversion Lemma, we obtain

[I − K (k + 1)H ]
[

Q + F (k)P (k)FT (k)
]

=

[
(

Q + F (k)P (k)FT (k)
)−1

+ HT R−1H ]−1 > 0, (19)

from Eq. (19) it follows that

[I − K (k + 1)H ]
[

Q + F (k)P (k)FT (k)
]

HT KT (k + 1) ≥ 0, (20)

using the condition (20) and eliminating that term of (18), the following inequality holds

P (k + 1) ≥ [I − K (k + 1)H ]F (k)P (k)FT (k) [I − K (k + 1)H ]T

+ [I − K (k + 1)H ] Q [I − K (k + 1)H ]T .

Now, the above inequality can be rewritten as follows

P (k + 1) ≥ [I−K (k + 1)H ]F (k)
[

P (k) + F−1 (k)QF−T (k)
]

FT (k) [I−K (k + 1)H ]T .

Using the conditions (13), (15), and (16), we have that

P (k + 1) ≥ [I − K (k + 1)H ]F (k)

(

I +
qI

f̄2p2

)

P (k)FT (k) [I − K (k + 1)H ]T (21)

and taking the inverse in both sides of inequality (21) and multiplying by FT (k) [I −

K (k + 1)H ]T and [I − K (k + 1)H ]F (k) , we have that

FT (k) [I − K (k + 1)H ]T P−1 (k + 1) [I − K (k + 1)H ]F (k) ≤

(

1 +
q

p2f̄2

)

−1

P−1 (k)

with (1 − α) =
(

1 + q
p2f̄2

)

−1

.

Lemma 3.2 Since conditions (13)-(17) hold. Then, there exist positive constants ǫ
and knom such that

rT (k)P−1 (k) [ 2[I − K (k + 1)H ]F (k) e (k) + r (k) ] ≤ knom ‖e (k)‖
3

holds for all ‖e (k)‖ ≤ ǫ.

Proof Since r (k) = [I − K (k + 1)H ]ϕ (x (k) , x̂ (k)) and by Assumption (A3), we

have that ‖ϕ (x (k) , x̂ (k))‖ ≤ κ ‖e (k)‖2 in addition, considering Q ≤ δ1I it follows that

‖K (k+1)‖ ≤

∥

∥

∥

[

F (k)P (k)FT (k)+Q
]

HT
[

H
[

F (k)P (k)FT (k)+ Q
]

HT +R
]−1

∥

∥

∥

≤

∥

∥

[

F (k)P (k)FT (k)+Q
]∥

∥

∥

∥HT
∥

∥

∥

∥

∥

[

H
[

F (k)P (k)FT (k) + Q
]

HT +R
]−1

∥

∥

∥

≤

∥

∥

[

F (k)P (k)FT (k)+Q
]
∥

∥

∥

∥HT
∥

∥

∥

∥

∥

[

H
[

F (k)P (k)FT (k)+Q
]

HT +R
]−1

∥

∥

∥

≤

(

f̄2p2+δ1

) h̄

r
.
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The term ‖K (k + 1)‖ can be expressed as ‖K (k + 1)‖ ≤ ρ1 + ρ2δ1 with ρ1 = f̄2p2h̄
r and

ρ2 = h̄
r . Therefore, we obtain

‖r (k)‖ ≤ ‖I − K (k + 1)H‖ ‖ϕ (x (k) , x̂ (k))‖

≤ ‖I − K (k + 1)H‖κ ‖e (k)‖
2

≤ [‖I‖ + ‖K (k + 1)H‖] κ ‖e (k)‖
2

≤ [1 + ‖K (k + 1)‖ ‖H‖]κ ‖e (k)‖
2

≤

(

1 + ρ1h̄ + ρ2h̄δ1

)

κ ‖e (k)‖
2

(22)

and making use of inequality (22), we have that

rT (k)P−1 (k) [ 2[I − K (k + 1)H ]F (k) e (k) + r (k)]

≤

∥

∥rT (k)P−1 (k) [ 2[I − K (k + 1)H ]F (k) e (k) + r (k)]
∥

∥

≤

∥

∥rT (k)
∥

∥

∥

∥P−1 (k)
∥

∥

‖[ 2[I − K (k + 1)H ]F (k) e (k) + r (k)]‖

≤

(

1 + ρ1h̄ + ρ2h̄δ1

)

κ ‖e (k)‖2

(

1

p1

)

×

[

2
(

1 + ρ1h̄ + ρ2h̄δ1

)

f̄ ‖e (k)‖ +
(

1 + ρ1h̄ + ρ2h̄δ1

)

κ ‖e (k)‖
2
]

≤

(

1 + ρ1h̄ + ρ2h̄δ1

)2
κ

(

1

p1

)

(

2f̄ + κǫ
)

‖e (k)‖3

≤ knom ‖e (k)‖
3

with

knom =
(

1 + ρ1h̄ + ρ2h̄δ
)2

κ

(

1

p1

)

(

2f̄ + κǫ
)

and δ = δ1.

Lemma 3.3 Under the boundedness conditions (13)-(17). There exist positive real

numbers ρ3, ρ4, and ρ5 independent of δ, such that

E
{

sT (k)P−1 (k + 1) s (k)
}

≤ ρ3δ
3 + ρ4δ

2 + ρ5δ

holds for some constant δ > 0.

Proof Firstly, we have that

sT (k)P−1(k+1) s (k) = wT (k)[I−K (k+1)H ]T P−1(k+1)[I−K (k + 1)H ]w (k)(23)

− wT (k) [I − K (k + 1)H ]P−1 (k + 1)K (k + 1) v (k)

− vT (k)KT (k + 1)P−1 (k + 1) [I − K (k + 1)H ]w (k)

+ vT (k)KT (k + 1)P−1 (k + 1)K (k + 1) v (k)

since w (k) and v (k) are uncorrelated signals, the expression (23) becomes,

sT (k)P−1 (k + 1) s (k) = wT (k) [I − K (k + 1)H ]T P−1 (k + 1) [I − K (k + 1)H ]w (k)

+ vT (k)KT (k + 1)P−1 (k + 1)K (k + 1) v (k) .

From Lemma 3.2, we have obtained that ‖K (k + 1)‖ ≤ ρ1 + ρ2δ1 with ρ1 = f̄2p2h̄
r and

ρ2 = h̄
r and, considering again that Q ≤ δ1I and R ≤ δ2I, we have

sT (k)P−1(k+1) s (k) ≤

(

1+ρ1h̄ + ρ2h̄δ1

)2 1

p1
wT (k)w (k) + (ρ1 + ρ2δ1)

2 1

p1
vT (k) v (k)

≤

(

1 + ρ1h̄ + ρ2h̄δ1

)2 1

p1
δ2 + (ρ1 + ρ2δ1)

2 1

p1
δ1 (24)
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considering δ1 = δ2 = δ the above inequality can be rewritten as follows,

sT (k)P−1 (k + 1) s (k) ≤ ρ3δ
3 + ρ4δ

2 + ρ5δ

with

ρ3 =
ρ2
2

(

1 + h̄2
)

p1
, ρ4 =

2ρ2

(

h̄ + ρ1h̄
2 + ρ1

)

p1
, ρ5 =

1 + 2ρ1h̄ + ρ2
1h̄

2 + ρ2
1

p1
.

Lemma 3.4 ([35]) Suppose that V (e (k)) is a stochastic process and that exist real

numbers v1, v2, µ > 0, and 0 < α′
≤ 1 such that:

v1 ‖e (k)‖
2
≤ V (e (k)) ≤ v2 ‖e (k)‖

2
,

E {V (e (k + 1)) /e (k)} − V (e (k)) ≤ µ − α′V (e (k))

hold for all solution of Eq. (12). Then, the stochastic process is exponentially bounded

as follows

E
{

‖e (k)‖2
}

≤

v2

v1
E

{

‖e (0)‖2
}

(1 − α)k +
µ

v1α′
.

In order to prove stability of the estimation (synchronization) error (10), we propose
the following function as a Lyapunov function candidate

V (e (k)) = eT (k)P−1 (k) e (k) (25)

since P (k) is a positive definite matrix, then P−1 (k) is another positive definite matrix,
and therefore V (e (k)) is positive definite, hence Lyapunov function candidate. From
(15), we can obtain

1

p2
‖e (k)‖

2
≤ V (e (k)) ≤

1

p1
‖e (k)‖

2
,

iterating both sides of (25), we have

V (e (k + 1)) = e (k + 1)
T

P−1 (k + 1) e (k + 1)

= eT (k)FT (k) [I − K (k + 1)H ]T P−1 (k + 1) [I − K (k + 1)H ]F (k) e (k)

+ rT (k)P−1 (k + 1) [2[I − K (k + 1)H ]F (k) e (k) + r (k)]

+ 2sT (k)P−1 (k + 1) [[I − K (k + 1)H ]F (k) e (k) + r (k)]

+ sT (k)P−1 (k + 1) s (k) .

Using the Lemma 3.1, we obtain

V (e (k + 1)) ≤ (1 − α)V (e (k))

+ rT (k)P−1 (k + 1) [2[I − K (k + 1)H ]F (k) e (k) + r (k)]

+ 2sT (k)P−1 (k + 1) [[I − K (k + 1)H ]F (k) e (k) + r (k)]

+ sT (k)P−1 (k + 1) s (k) .

Taking the conditional expectation E {V (e (k + 1)) /e (k)} and considering the properties
of the white Gaussian random process, it is not difficult to see that the term

E
{

2sT (k)P−1 (k + 1) [[I − K (k + 1)H ]F (k) e (k) + r (k)] |e (k)
}
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vanishes. Thus, we have that

E {V (e (k + 1)) /e (k)} ≤ (1 − α) V (e (k)) + sT (k)P−1 (k + 1) s (k)

+ rT (k)P−1 (k + 1) [2[I − K (k + 1)H ]F (k) e (k) + r (k)] .

Now, invoking to Lemmas 3.2 and 3.3, we obtain that

E {V (e (k + 1)) /e (k)} ≤ V (e (k))−αV (e (k))+ρ3δ
3 +ρ4δ

2 +ρ5δ+ knom ‖e (k)‖3 (26)

or equivalently,

E {V (e (k + 1)) /e (k)} − V (e (k)) ≤ −

α

p2
‖e (k)‖2 + ρ3δ

3 + ρ4δ
2 + ρ5δ + knom ‖e (k)‖3 .

(27)
The function (27) will be negative semidefinite if satisfies:

knom ‖e (k)‖ ≤

α

2p2
, (28)

ρ3δ
3 + ρ4δ

2 + ρ5δ ≤

α

2p2
‖e (k)‖

2
, (29)

the expression (29) can be replaced by

(

1 + ρ1h̄ + ρ2h̄δ1

)2 1

p1
δ2 + (ρ1 + ρ2δ1)

2 1

p1
δ1 ≤

α

2p2
‖e (k)‖

2
,

if we do not consider δ1 = δ2 = δ. Defining ε = min
(

ǫ, α
2p2knom

)

and using it in (26),

the following inequality

E {V (e (k + 1)) /e (k)} − V (e (k)) ≤ −

α

2
V (e (k)) + ρ3δ

3 + ρ4δ
2 + ρ5δ

holds for all ‖e (k)‖ ≤ ε. Now, invoking to Lemma 3.4 with ‖e (0)‖ ≤ ε, v1 = 1
p2

, v2 = 1
p1

,

α′ = α
2 , and µ = ρ3δ

3 +ρ4δ
2 +ρ5δ to quantify the estimation/synchronization error e (k).

The previous results can be combined to obtain the main result of this paper on the
stability of the estimation (synchronization) error given by EKF, when it is applied to
hyperchaotic synchronization of stochastic discrete-time systems, which is established in
the following theorem.

Theorem 3.1 Consider a stochastic nonlineal system defined by (1) with noisy cou-

pling signal (2). In addition, consider an extended Kalman filter described by (3)-(8).

Assume that Assumptions (A1)-(A3) hold. Then, the estimation (synchronization) error

e (k) given by (10) is exponentially bounded, if the initial error satisfies

‖e (0)‖ ≤ ε,

and the covariance matrices of the noise terms are bounded by

Q ≤ δ1I,

R ≤ δ2I

for some constants δ1, δ2, ε > 0.
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The above result shows that the stability of the estimation (synchronization) error
depends on the nature of the nonlinearities and of the size of the noise in the processes,
thus as of the boundedness of the initial estimation error. Therefore, this result can be
used to design nonlinear filters (EKF) with stability to approximate synchronize noisy
hyperchaotic maps, as will be shown in the next section. In addition to this, we mention
that other bounds on the error dynamics of the EKF can be obtained with a prescribed
degree of stability from [33–35].

4 Synchronization of Noisy Hyperchaotic Maps

Example 1. Consider the following discrete-time system

x1 (k + 1) = x2 (k) + ax1 (k) , (30)

x2 (k + 1) = x1 (k)
2
+ b

with parameter values a = −0.1 and b = −1.7, the map (30) exhibits hyperchaotic
dynamics [12]. Figure 4.1 shows the hyperchaotic attractor generates for the map (30).
In the sequel, based on this mapping, we show approximate synchronization, by using an
EKF as slave dynamics, which will try to estimate the master dynamics (30) corrupted
by noise, described by

x1 (k + 1) = x2 (k) + ax1 (k) + w1 (k) , (31)

x2 (k + 1) = x1 (k)
2
+ b + w2 (k) ,

with output corrupted by noise defined by

y (k) = x1 (k) + v (k) .

The EKF will generate the estate estimates x̂i (k), i = 1, 2 for the master states xi (k).
The state equations of EKF as slave, are described by

x̂1 (k) = x̂1 (k/k − 1) + K1 (k) [y (k) − x̂1 (k/k − 1)] , (32)

x̂2 (k) = x̂2 (k/k − 1) + K2 (k) [y (k) − x̂1 (k/k − 1)] ,

where the Kalman gain (K1 (k) , K2 (k))
T

is given by (7).

For the noisy map (31) with the above parameter values, we obtain that: h̄ = 1,
f̄ = 4, p1 = 4.52 × 10−6, p2 = 5.52 × 10−6, and κ = 2. By computer simulations, we
take δ1 = 0.0005 such that the system remains with hyperchaotic dynamics. In addition,
we propose the values for q and r as q = r = δ1

100 . With previous data and by using
conditions (28) and (29), we obtain the values δ2 = 0.0001 and ‖e (0)‖ ≤ 0.02 which
satisfy the mentioned conditions. In the sequel, we show some computer simulations.

We take x (0) = (0.1, 0.1), P0 = diag {p0i}, p0i
= 5 × 10−6. Figure 4.2 shows the

time evolution of synchronization errors e1 (k) and e2 (k) for x̂ (0) = (0.13, 0.13) for one
realization of the noise, where approximate synchronization is achieved for τ = 0 when
the level of synchronization ρ = 0.06 was considered. While, in Figure 4.3 we can see the
time evolution of synchronization errors e1 (k) and e2 (k) for one realization of the noise,
starting at x̂ (0) = (0.31, 0.31), in this case approximate synchronization is achieved for
τ = 7 when ρ = 0.06 was considered.



NONLINEAR DYNAMICS AND SYSTEMS THEORY, 6(4) (2006) 319–336 329

To evaluate the performance of EKF from the point of view of sensitivity to initial
error and noise, twenty different Monte Carlo runs were taken in order to obtain root-
mean-square error statistics. The results are summarized in Table 4.1, where SSEi is
the sum of square errors for each realization of the noise given by

SSEi =

N
∑

k=0

(xi (k) − x̂i (k))
2
, i = 1, 2, ..., n

where xi (k) and x̂i (k) are the true and estimated states, respectively, and N the number
of time steps. So, the mean-square error (MSE i) is obtained as 1

N+1 (SSEi). Therefore,
the Monte Carlo sum of square errors (SSEi)MC is given by

(SSEi)MC =
1

20

20
∑

j=1

(SSEi)j , i = 1, 2, ..., n.

With the purpose of knowing the same statistics, when the transient has died out we
define the truncated mean-square error (TMSEi) for each realization of the noise as

TMSEi =
1

N + 1 − τ

N
∑

k=τ

(xi (k) − x̂i (k))2 , i = 1, 2, ..., n,

so, the Monte Carlo truncated mean-square error is obtained as

(TMSEi)MC =
1

20

20
∑

j=1

(TMSEi)j , i = 1, 2, ..., n,

and the Monte Carlo synchronization time τMC by

τMC =
1

20

20
∑

j=1

max (τi (ρ))j , i = 1, 2, ..., n.

From Table 4.1, it possible to appreciate the suitable performance of the EKF as
slave for the estimation/synchronization of the noisy master (31), when the conditions
e (0) < ε and R < δ1 and Q < δ2 are satisfied. Note that last three lines in Table 4.1,
we take the initial error values e (0) > ε, nevertheless the EKF achieves approximate
synchronization, due to the bounds used are conservatives.

Example 2. Consider the hyperchaotic Rössler map

x1 (k + 1) = αx1 (k) (1 − x1 (k)) − β (x3 (k) + γ) (1 − 2x2 (k)) , (33)

x2 (k + 1) = δx2 (k) (1 − x2 (k)) + ζx3 (k) ,

x3 (k + 1) = η ((x3 (k) + γ) (1 − 2x2 (k)) − 1) (1 − θx1 (k)) ,

with the set of parameter values: α = 3.8, β = 0.05, γ = 0.35, δ = 3.78, ζ = 0.2, η = 0.1,
and θ = 1.9 the Rössler map (33) exhibits hyperchaotic dynamics [12]. Figure 4.4 shows



330 A. Y. AGUILAR-BUSTOS AND C. CRUZ-HERNÁNDEZ

Table 4.1: Monte Carlo sum of square errors (SSEi)MC , Monte Carlo truncated

mean-square error (TMSEi)MC , and synchronization time (τMC) for Example 1 with

p0i
= 5×10−6, i = 1, 2, Q = R = 5× 10−5, ρ = 0.06, and N = 100.

e (0) (SSE1)MC (SSE2)MC (TMSE1)MC (TMSE2)MC (τMC)

(0.2, 0.2) 0.0043 0.0595 0.0035 0.0203 2
(0.05, 0.05) 0.0065 0.0235 0.0064 0.0228 0
(0.01, 0.01) 0.0040 0.0219 0.0042 0.0210 1

(−0.01,−0.01) 0.0038 0.0204 0.0042 0.0213 0
(−0.05,−0.05) 0.0065 0.0243 0.0064 0.0262 0
(−0.1,−0.1) 0.0141 0.0319 0.0055 0.0216 2
(−0.2,−0.2) 0.0450 0.0721 0.0042 0.0229 4
(−0.5,−0.5) 0.2676 0.4756 0.0040 0.0214 6

(−1,−1) 1.1183 3.09 0.0052 0.0230 7
(−5,−5) 30.37 544.12 0.0038 0.0194 10

several hyperchaotic attractors generate for the Rössler map (33). Consider the noisy
master map

x1 (k + 1) = αx1 (k) (1 − x1 (k)) − β (x3 (k) + γ) (1 − 2x2 (k)) + w1 (k) , (34)

x2 (k + 1) = δx2 (k) (1 − x2 (k)) + ζx3 (k) + w2 (k) ,

x3 (k + 1) = η ((x3 (k) + γ) (1 − 2x2 (k)) − 1) (1 − θx1 (k)) + w3 (k) ,

and the noisy drive signal
y (k) = x1 (k) + v (k) . (35)

The covariance Q and variance R were fixed at R = Q = 1 × 10−6. The slave system
(EKF) will generate the state estimates x̂i (k), i = 1, 2, 3 for each xi (k), which is designed
as

x̂1 (k + 1) = αx̂1 (k)(1−x̂1 (k))−β (x̂3 (k) + γ)(1 − 2x̂2 (k)) + k1 (k)(y (k)−x̂1 (k)),(36)

x̂2 (k + 1) = δx̂2 (k) (1 − x̂2 (k)) + ζx̂3 (k) + k2 (k) (y (k) − x̂1 (k)) ,

x̂3 (k + 1) = η ((x̂3 (k) + γ) (1 − 2x̂2 (k)) − 1) (1 − θx̂1 (k)) + k3 (k) (y (k) − x̂1 (k)) ,

where (k1 (k) , k2 (k) , k3 (k))T is given by (7).

For noisy Rössler map (34), we obtain that: h̄ = 1, f̄ = 3.84, p1 = 5.5 × 10−3,
p2 = 248, and κ = 7.6. By computer simulations, we take δ1 = 0.00005 such that
the mapping remains with hyperchaotic dynamics. We propose q = r = δ1/1000 and
using (28) and (29), we have that δ2 = 1 × 10−7 and ‖e (0)‖ ≤ 0.03 which satisfy these
conditions. In the following simulations we take x (0) = (0.95, 0.9, 0), P0 = diag {p0i

},
p0i

= 500, i = 1, 2, 3. Figure 4.5 shows the synchronization error evolution between (34)
and (36) for x̂ (0) = (0.9, 0.95, 0.05) for one realization of the noise. We can see, after
some transient behavior, that approximate synchronization is achieved at time τ = 3
when ρ = 0.05 was considered. Tables 4.2 and 4.3 show the suitable behavior of EKF as
a estimator of the state vector of noisy hyperchaotic map (34).
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Table 4.2: Monte Carlo sum of square errors (SSEi)MC and synchronization time

(τMC) for Example 2 with p0i
= 500, i = 1, 2, 3, Q = R = 1×10−6

, ρ = 0.05, and N = 100.

e (0) (SSE1)MC (SSE2)MC (SSE3)MC τMC

(0.1, 0.1, 0.1) 0.0100 0.1066 0.0110 6
(0.05, 0.05, 0.05) 0.0025 0.0532 0.0035 5
(0.01, 0.01, 0.01) 1.0095× 10−4 0.0142 0.0010 4

(−0.01,−0.01,−0.01) 1.0100× 10−4 0.0176 0.0011 3

Table 4.3: Monte Carlo truncated mean-square error and synchronization time

(τMC) for Example 2 with p0i
= 500, i = 1, 2, 3, Q = R = 1× 10−6

, ρ = 0.05, and N = 100.

e (0) (TMSE1)MC (TMSE2)MC (TMSE3)MC τMC

(0.1, 0.1, 0.1) 1.0205× 10−6 0.0131 9.7194× 10−4 6
(0.05, 0.05, 0.05) 9.6606× 10−7 0.0128 9.7529× 10−4 5
(0.01, 0.01, 0.01) 8.5910× 10−5 0.0117 9.8750× 10−4 4

(−0.01,−0.01,−0.01) 9.5976× 10−5 0.0148 0.0011 3
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Figure 4.1: Hyperchaotic attractor of discrete-time system (30).
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Figure 4.2: Time evolution of synchronization errors e1 (k) and e2 (k) for x̂ (0) = (0.13, 0.13);
τ = 0 when ρ = 0.06 was considered (for one realization of the noise).
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Figure 4.3: Time evolution of synchronization errors e1 (k) and e2 (k) for x̂ (0) = (0.31, 0.31);
τ = 7 when ρ = 0.06 was considered (for one realization of the noise).
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Figure 4.4: Hyperchaotic attractors of Rössler map (33).
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Figure 4.5: Time evolution of the estimation errors ei (k), i = 1, 2, 3 between (34) and (36)
for x̂ (0) = (0.9, 0.95, 0.05) (for one realization of the noise).
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5 Conclusions

In this paper, we have approached the problem of synchronization of discrete-time hy-
perchaotic systems from the perspective of an extended Kalman filter (EKF) designed
as slave. Approximate synchronization was obtained between a noisy master and slave
dynamics when the slave was driven by a noisy drive signal from the master. Based on
Lyapunov theory, we have demonstrated stability of the estimation/synchronization er-
ror, this result provides necessary conditions to achieve approximate synchronization. By
extensive computer simulations, we have shown that the filter/slave is indeed suitable for
synchronization of noisy hyperchaotic maps, it was illustrated by means of two numer-
ical examples. The adopted approach shows great potential for actual communication
systems in which the encoding is required to be secure. In a forthcoming article we will
be concerned with the application to secure communication, and with the quantization
of the degree of safety of the proposal in actual communication systems. Finally, we
comment that this type of approximate synchronization method can be applied to secure
chaotic communication, by using similar idea developed in [6, 7] and for continuous case
in [31].
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Abstract: Several currently planned space missions consist of a set of satellites
flying in formation. While increasing the functionality, this concept introduces
several new challenges with respect to the design of the mission. The topol-
ogy of the sensing or communication network among the satellites can be a
bottleneck in the operation because the transmission of information and the
coordination of the formation relies on it. Here we study the robustness of the
formation dynamics with respect to changes in the communication topology
(like the failure of some communication links). Moreover, we propose a special
variant of the notion of stability radius in order to measure the robustness of
a certain topology.
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1 Introduction

Space missions with several spacecraft flying in formation have received a lot of attention
recently. Increased functionality and robustness of the mission are two key characteristics
of this approach. Several currently planned space missions consist of a set of satellites
flying in formation, like, e.g., the NASA mission Terrestrial Planet Finder (TPF) and
the ESA mission Darwin. In both missions, a network of formation flying spacecraft
builds up an infrared interferometer in order to detect and study planets in outer space.

One key challenge in the design of these missions is the question on how to efficiently
attain and accurately maintain the desired formation. In [1, 5] it has been shown that
formation-stabilizing control laws can be derived for the individual spacecraft that rely
on local information only. The key idea is that, together with the stability properties
of the dynamics of the individual spacecraft, the spectrum of the Laplacian associated
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to the graph that describes which spacecraft communicate with which other spacecraft
plays a crucial role in the design of this control law.

In this paper, by means of a network of six spacecraft with simple linear dynamics,
we study the robustness of certain communication graphs with respect to the removal of
edges (i.e. the failure of some communication links). Based on stabilizability statements
from [1, 5] we analyse how many communication links can fail before the dynamics of
the overall system becomes unstable. For more complicated situations we propose an
adapted version of the concept of stability radius of a linear system in order to measure
this robustness.

2 Model

In the current mission design for Darwin and TPF it is planned to inject the spacecraft
into a Libration orbit around the Lagrange point L2. Close to this orbit, a time-dependent
linear model may be used in order to describe the motion of the spacecraft [4]. For the
purposes of this paper we restrict ourselves to a time-independent model as used in [5],
i.e. we model the dynamics of each of the N vehicles by

ẋi = Axi + Bui, i = 1, . . . , N, (1)

where xi ∈ R6 is the state and ui ∈ Rp for some p is the control of vehicle i and A
and B are real matrices of appropriate size. As shown in [5], a linear local feedback can
be designed which drives the system asymptotically into a prescribed formation, i.e. the
vehicles attain prescribed distances relative to each other as well as the same velocity.
We follow [5] in the following description.

The feedback law is local in the sense that each vehicle i can generate its own control
ui from the determination of its state relative to the states of some subset Si ⊂ {1, . . . , N}

of all vehicles (obtained, e.g., by communicating with the vehicles in Si). The i-th vehicle
computes

zi = (xi − hi) −
1

|Si|

∑

j∈Si

(xj − hj), (2)

where hi ∈ R6 is some reference state for the i-th vehicle, and sets ui = Fzi for some
feedback matrix F .

Viewing the system as an undirected graph G = (V, E), where the set of nodes
V = {1, . . . , N} represent the vehicles and the set of edges E represent communication
links (i.e. E = {(i, j) : j ∈ Si}), one can compactly write the system in the form

ẋ = Âx + B̂F̂ L̂(x − h). (3)

Here x = (x1, . . . , xN ) ∈ R6N , Â = IN ⊗A, B̂ = IN ⊗B, F̂ = IN ⊗F , h = (h1, . . . , hN )
and L̂ = L ⊗ I6, with L being the Laplacian of the graph G, i.e.

Lij =











1 : i = j,

−

1

|Si|
: j ∈ Si,

0 : j /∈ Si.

(4)
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3 Robustness of Communication Topologies

In [5] it is shown that the vehicles are in formation if and only if L̂(x−h) = 0 and (under
certain assumptions) that if the matrix A+λBF is stable for each nonzero eigenvalue λ
of L, then L̂(x(t)−h) → 0 as t → ∞, i.e. the vehicles asymptotically attain the desired
formation. For a given communication graph, this result thus gives a criterion on how
to design the feedback matrix F . In fact, under certain assumptions on the uncontrolled
dynamics of a single system, i.e. on the matrix A, one can show that for every connected
graph one can find a feedback matrix F which renders the closed loop system stable
([5], Proposition 4.4). What is more, under these assumptions, feedback matrices can in
fact be constructed which render the system stable regardless of how the communication
graph is chosen — as long as it is connected.

However, the choice of the feedback matrix F will depend on the single system dynam-
ics (i.e. the matrix A) and, in particular in our application context, in a non-autonomous
setting it may happen that A is changing in such a way that the overall system dynamics
becomes unstable. In this case, the question arises which communication topology is best
suited in the sense that it will ensure stability of the formation for the largest “range”
of single system dynamics. What is more, taking into account that communication links
may fail, the question is which topology is most robust with respect to such failures, i.e.
ensures stability of the system even when a certain number of links fail.

In order to make these considerations more precise we focus on the following basic
setting from [5]: we assume that each coordinate of the system is modelled by the same
second order dynamics, i.e. we have

A = I3 ⊗

(

0 1
0 a22

)

and B = I3 ⊗

(

0
1

)

.

Using F = I3⊗(f1 f2) as the feedback matrix, our goal will thus be to render the matrix

Hλ =

(

0 1
0 a22

)

+ λ

(

0 0
f1 f2

)

stable for each nonzero eigenvalue λ of the Laplacian L. This matrix will be stable if and
only if

a22 + λf2 < 0 and λf1 < 0,

i.e. f1 has to be chosen negative (since λ ∈ [0, 2] for all eigenvalues of L). If the single
system dynamics is unstable, i.e. a22 > 0, then the eigenvalue λ of L which is closest to
zero determines how f2 has to be chosen in order to render the overall system stable.

Since we are assuming that all vehicles have identical dynamics and communication
capabilities, it seems natural to restrict the choice of communication graphs to regular
ones. Figure 3.1 shows all non-isomorphic connected regular (undirected) graphs with
six nodes (see e.g. [6]). In the first column of Table 3.1 we list the corresponding
minimal nonzero eigenvalues of the Laplacians (except for the 2-regular graph which
becomes disconnected as soon as more than one edge is removed). The other columns
show how these eigenvalues change when removing a certain number of edges from the
corresponding graph (where we minimized over all possible removals).

From these values, the choice of the full graph appears to be the best one (as one
might have expected), since it features the largest minimal nonzero eigenvalue (and thus,
for a fixed f2, allows for the largest value for a22).
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Figure 3.1: All non-isomorphic connected regular undirected graphs with six nodes.

graph \ # of edge failures 0 1 2 3 4
3 regular (1) 0.6670 0.4226 0.2047 0.1960 0.1910
3 regular (2) 1.0000 0.6670 0.5286 0.2929 0.1910

4 regular 1.0000 0.8104 0.6670 0.4610 0.2727
5 regular 1.2000 1.0000 0.8911 0.8104 0.7180

Table 3.1: The minimal nonzero eigenvalues for the communication graphs under consideration
in dependence of the number of edge failures.

The full graph is also optimal if we choose f2 dependent on the graph and ask for
maximal robustness with respect to communication link failures, since the absolute de-
crease of the minimal nonzero eigenvalue is smallest for this graph. This fact is also
visualized in Figure 3.2.

Figure 3.2: The plot of normalized λmin.
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4 Conclusion and Outlook

Stability radius. In the preceding section we have been considering a simple model
in order to analyse robustness properties of certain communication topologies. In a more
general setting it will be necessary to approach this question in a more systematic way.
To this end, we propose to use the concept of the stability radius from control theory,
see [3].

We denote by Un the set of unstable real n × n matrices:

Un = {U ∈ Rn×n : σ(U) ∩ C+ 6= ∅}, (5)

where C+ is the closed right half complex plane. For a general matrix A ∈ Rn×n, the
stability radius measures the distance r(A) of A from the set Un of unstable matrices,

r(A) = inf
U∈Un

‖A − U‖. (6)

Proposition 4.1 ([2]) Let A ∈ Rn×n be stable and normal with eigenvalues λj =
−αj ± iωj, α1 ≥ · · · ≥ αn > 0, then r(A) = αn.

This proposition shows that for normal matrices A, the distance of A from the set
of unstable matrices is given by the distance of its spectrum from the imaginary axis.
If A is not normal, then the distance of σ(A) from the imaginary axis can be a very
misleading indicator of the “robustness” of A.

Motivated by an adaptation of this notion to structured systems [2] we we propose
the following definition which is adapted to our context. Let L(G) be the Laplacian
associated with a given communication graph G = (V, E) and let L(G) be the set of
Laplacians associated with those graphs which result from G by removing some edges,
i.e.

L(G) = {L(G′) : G′ = (V, E′), E′
⊂ E}.

For some Laplacian L′ = L(G′) ∈ L(G) with G′ = (V, E′) let

d(L′) = |E| − |E′
|

be the number of communication link failures. We define the stability radius
r(A, B, F, G) of a given system (A, B, F, G) as the minimum number of edges failures
such that the system is unstable, i.e.

r(A, B, F, G) = min
L∈L(G)

{d(L) : σ(Â + B̂F̂ L̂) ∩ C+ 6= ∅} . (7)

In future work we will explore the usefulness of this concept for the analysis of the
robustness of certain communication topologies within systems with more complicated
dynamics.

Conclusion. Using a simple linear model, we explored the robustness of different com-
munication graphs with respect to failures of communication links. We introduced a
variant of the notion of the stability radius of a given system as a means of system-
atically measuring the robustness for more complicated systems. It remains to explore
this concept in an application scenario as well as to analyse nonautonomous systems like
motivated by missions with formation flying spacecraft on Libration orbits.
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Abstract: One of the key issues when working with formations of spacecraft is how
to reconfigure the formation in order to change its orientation, its pointing or just to
arrive to a given pattern. In this paper we treat these reconfiguration tasks as an opti-
mal problem and set out the problem using the finite element method. Although the
methodology is general, and suits to many different types ofproblems, the examples
that have been considered focus in some basic maneuvers of the TPF and Darwin
missions about the L2 Lagrange point of the Earth-Sun system.

Keywords: Formation flight; optimal reconfiguration; finite element method; spacecraft for-
mations.
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1 Introduction

In the last few years, the interest in constellations of spacecraft and formation flight has been
increasing. One of the major applications of this techniqueis for remote sensing missions, where
using the formation it is possible to increase the resolution as a virtual antenna, resulting in a
much larger one than using a single spacecraft. Examples of this procedure are missions such as
Darwin of the ESA and TPF of the NASA (see [5, 3]).

Among others, one of the problems one must face when working with formations of space-
craft are the reconfiguration maneuvers. For instance, several situations where the need of recon-
figuration of the formation appears are the following:

• There are some basic maneuvers that a formation must be capable to perform, such as
expansions and contractions, or simply to change the pattern to perform specific tasks.

∗ Corresponding author: josep@barquins.upc.edu

c©2006 Informath Publishing Group/1562-8353 (print)/1813-7385 (online)/www.e-ndst.kiev.ua 343
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Figure 1.1: Two examples of reconfiguration of spacecraft. In the left-hand side, we change the position of
the inner and outer spacecraft of the TPF formation. In the right-hand side we have a constellation pointing
to a certain target and we reconfigure it to point to another one.

• The lifetime of a formation finishes when a spacecraft ends its fuel. Many times will be
mandatory to equilibrate the consume of fuel of all the spacecraft to extend the lifetime
of the formation. An example of this situation is the TPF formation, where the outer
spacecraft consume more fuel than the inner ones. To exchange the position of the inner
and outer spacecraft, as in Figure 1.1 may be a solution to theproblem.

• In interferometry missions, the formation of spacecraft usually will have to point to many
targets. It is necessary to reconfigure the formation in order to point to the next goal as it
is represented in Figure 1.1.

• In some cases, due to the number of spacecraft of the formation, the deployment phase
might follow after a rendezvous of several motherships. Deployments can be treated as
special cases of reconfigurations where the satellites depart from different locations and
configure a final pattern.

The objective of this work is to compute reconfigurations of the spacecraft in a systematic
way and taking into account collision avoidance during the execution of the maneuvers. Ear-
lier approaches with different methodologies can be found in the literature. For instance C.R.
McInnes creates a local topology based on artificial potential functions (see [2]). The method
is also used in the guidance of robots which move avoiding fixed objects or in the guidance of
a robotic arm (see [7]). Singh and Hadaegh also treated the problem as an optimization one,
modeling the trajectory with cubic splines (see [6]). However our proposed research in the use of
finite element methods looks very promising due to the huge amount of knowledge on this area.
The finite element method implements in a systematic and general way giving a full methodo-
logy. There is no need to look or adjust functions or parameters in special situations and different
levels of approximation can be attained. Moreover it has a complete mathematical foundation in
behind assuring nice properties such as convergence to solutions and adaptability.



NONLINEAR DYNAMICS AND SYSTEMS THEORY, 6(4) (2006) 343–352 345

2 The methodology

In the results we present, we assume that the spacecraft are in a L2 Halo orbit of 120,000 km
of z-amplitude in the Sun-Earth system. The model we use for the computations is the RTBP,
but the procedure is easily generalized to any other one or tofree space. Since we work with
formations of a diameter of few hundred meters, the size of the formation with respect to the
orbit is very small and it is feasible to use the linearized equations about the nonlinear orbit.

In this paper, the problem we consider is how to reconfigure a formation ofN spacecraft in a
selected timeT . The formation will evolve in the vicinity of a given point onthe halo orbit. Let
us denote byXi the position and velocity of thei-th spacecraft of the formation with respect to
this point on the nominal halo orbit. The governing equations for the formation are:

{

Ẋi(t) = A(t)Xi(t) + Ui(t),
Xi(0) = X0

i , Xi(T ) = XT
i ,

(1)

in the time interval[0, T ], for i = 1 . . .N . HereA(t) is the Jacobian matrix of the equations
of motion about the halo orbit andUi(t) is the control law to be applied to thei-th satellite,
so it is of the formUi(t) = (0, 0, 0, ux

i (t), uy
i (t), uz

i (t))
t. The final goal is to find optimal

controls,U1, . . . , UN , subjected to certain restrictions on mutual distances (i.e. Euclidean norms
in the position components ofXi(t)) or being the satellites on a certain surface, manifold, etc.
Restrictions can be also time dependent.

The finite element method could be applied directly to equations (1), but in order to work
with the simplest equations, we introduce a change of coordinates which castsA(t) into its
Jordan form which is

















λ1(t)
−λ1(t)

0 λ2(t)
−λ2(t) 0

0 λ3(t)
−λ3(t) 0

















.

This change of variables reduces (1) into a new set of equations each one them of the form






ẍ(t) + λ(t) ẋ(t) + τ(t)x(t) = u(t),
x(0) = x0, x(T ) = xT ,
ẋ(0) = v0, ẋ(T ) = vT .

(2)

whereλ(t) andτ(t) are computed from a correspondingλi(t) set. At this point it is also worth to
mention that if one wants to consider the motion of the formation in free space, which is common
in many studies of formation flight, we need only to takeλ(t) = τ(t) ≡ 0.

Assuming the time interval[0, T ] splitted in a given number,M , of smaller intervals (ele-
ments),t0 = 0, t1, . . . , tM−1, tM = T , we apply the Galerkin finite element method in time to
the equations (2) by means of considering products by weightfunctionsw(t) and the usual weak
form on each element is computed from the expression (see [8]):

∫ tk+1

tk

w(t) (ẍ(t) + λ(t) ẋ(t) + τ(t)x(t))dt =

∫ tk+1

tk

w(t)u(t)dt, k = 0, . . . , M − 1.

As it is well known, depending on the order of the elements used in the procedure one ob-
tains different linear systems of equations associated with them. In case of considering a linear
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element, the system is

(

Kk
11 Kk

12

Kk
21 Kk

22

) (

xk

xk+1

)

=

(

∆vk

∆vk+1

)

,

which essentially states a relation between the nodal valuesxk andxk+1, which are related to the
positions of the reconfiguration trajectory, and the delta-v’s, ∆vk and∆vk+1, applied in the nodal
places of the element. We note that at this momentxk, xk+1, ∆vk and∆vk+1 are unknowns
and theKk

ij are3 × 3 known matrices which are systematically computed following Galerkin’s
method. Finally, assembling the elementary equations we obtain the relations between the all the
nodal positions and delta-v’s. For each one of the spacecraft of the formation(i = 1 . . .N) we
obtain a system of the form
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, (3)

for the interior nodes, while for the boundary ones we incorporate what is known as essential
boundary conditions and results in

∆vi,0 = K0
11 xi,0 + vi,0 + K0

12 xi,1, ∆vi,M = KM−1
21 xi,M−1 + KM−1

2,2 xi,M − vi,T .

From now on we treat the problem as an optimal control problem, where the functional we
minimize is a penalty on the delta-v of the spacecraft. Collision avoidance and any other type of
requirements enters in the method as restriction functionsin thexi,k andvi,k.

The objective function

The solution to our reconfiguration problem must be found attending essentially to the fuel
consumption of the satellites. For this purpose we have selected an objective function of the form

J(∆v1,0, . . . , ∆vN,M ) =
N

∑

i=0

Ji, with Ji(∆vi,0, . . . , ∆vi,M ) =
M
∑

k=0

ρi,k||∆vi,k||
2, (4)

(here|| ∗ || denotes Euclidean norm), because it is directly related with the fuel expenditure,
moreover derivatives are easily computed.

We consider parametersρi,k because in some way can be selected to equilibrate the fuel
consumption of the spacecraft. For instance, incrementingthe values ofρ corresponding to a
particular satellite the penalty function takes into account that for that particular satellite fuel
consumption is more critical. We also note that parametersρ can depend on time (through the
subscriptk), this fact may be used to penalize the delta-v in certain time intervals.
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Collision avoidance and other restrictions

In the reconfiguration planning it is essential to avoid collision between spacecraft. A mini-
mum security distance between them must be required while maneuvering. In our procedure this
distance can be chosen constant for general purpose reconfigurations or variable in time for spe-
cial situations. For instance, during deployment a variable security distance is needed because at
the beginning of the maneuver the satellites are closer thanthe usual safety distance demanded
for reconfigurations.

As we previously stated, collision avoidance enters in the variational method as constraints in
the position coordinates ofXi(t) of (1). Via the change of coordinates used to obtain (2) and the
finite element discretization, the constraints translate into conditions on thexi,k nodal variables.
The finite element discretization is used to compute the distance between each spacecraft on each
element and to check that this distance is greater than the security distance.

In a similar way many other restrictions can be applied (provided that there exist compati-
bility with the requirements). For instance some other cases that we have been studying are the
following

• It is possible to maintain a formation in a region determinedby a geometrical condition,
such as an sphere, a paraboloid or a plane in an optimal way.

• It is also possible to keep the geometrical condition duringa formation reconfiguration.
For instance satellites can be forced to move in a plane or in asphere while maneuvering
for the reconfiguration.

• We can impose that particular spacecraft do not perform maneuvers during certain time
intervals. In this case restrictions are set fixing the values of some∆vi,k (to zero in this
example).

• The procedure can be used to keep the formation pointing continuously to a selected goal.

• Satellites can be restricted to maintain only certain relative distances between them. For
instance to keep an equilateral triangle or tetrahedron. When the relative distances do not
depend on time, the formation will evolve like a solid.

• Moreover in all these cases the final position of the spacecraft of the formation can be
selected fixed (as in the formulation given by equations (1)), restricted to certain conditions
or free.

Computing the initial seed for the iterative procedure

The computation of the optimal value of the objective function (4) involves an iterative pro-
cess which needs an initial seed. In our approach this initial seed is computed using the uncoupled
systems (3) and without taking into account the restrictions. This is, the initial guess does not
have to be compatible with distance requirements between spacecraft or other type of constraints.

We have chosen to minimize the each one of the values given by

J̄i =

M
∑

k=0

||∆vi,k||
2, i = 1 . . .N.

Note that we do not use the parameterρ to find the initial seed. If we denote byK xi +bi = ∆vi,
the system (3) the function̄Ji casts into the form

J̄i = (K xi + bi)
T (K xi + bi) + (∆v0)

2 + (∆v
M

)2.
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Then it is easy to see that the trajectory of thei-th satellite which minimizes̄Ji, and it is repre-
sented by the nodal valuesxi, is obtained solving a linear system

(KT K + Ci)xi + (KT bi + di) = 0,

whereC is an sparse matrix andd is an sparse vector.

Other computational issues

In order to find reconfiguration paths, we have implemented a specific program in C which
returns the optimal trajectory for a given discretization of finite elements in time. The program
obtains the trajectory in an iterative way. Usually we startwith a few number of elements (ty-
pically 6 elements in the first step) and then we refine it by more or less doubling the number of
elements at each iteration.

Using a slow computer such as a Pentium 3, 1.5 GHz, the CPU timeto find the initial optimal
six element trajectory from the initial seed is less than 20 seconds for a formation of 5 or 6
satellites. Doubling the number of elements from 50 to 100 for the same formation requires
less than 40 seconds. Of course these CPU times, specially for the initial iterations, depend
strongly on the characteristics of the reconfiguration demanded, but these ones are in general
good indicators.

In case that problems of convergence had appeared in the firstiterations we could also have
used continuation methods, for instance with respect to thesecurity distance, but it has not been
necessary in all the examples that we have tried.

3 Some examples of reconfigurations

To illustrate the procedure we have selected three examples, two of them related with current
missions of the NASA and ESA agencies. The TPF Mission (Terrestrial Planet Finder) is one
of the masterpieces of the NASA Origins Program. Its goal is the detection and characterization
of Earth-like planets that orbit nearby stars (see [3], [1]). The TPF configuration is currently
considered to be formed by five spacecraft contained in a plane. Four spacecraft are evenly
distributed in a baseline of approximately 100 m. The fifth one, the collector, forms an equilater
triangle with the two interior satellites of the baseline (see Figure 3.1).

The Darwin Mission is a project of the ESA with a similar objective of the TPF Mission. The
Darwin configuration (see [5]) is formed by seven spacecraftcontained in a plane. Six of them
are on the vertices of a regular hexagon of radius about 100 m and the seventh one is located at
the baricenter (see again Figure 3.1).

In the examples, and only for illustration purposes, of we have also computed the delta-v
on/off necessary to reconfigure the formation. We note however that the on/off control does not
take into account collision avoidance which is a major requirement in the following examples,
where the satellites will irremediable collide using the on/off technique.

Changing inner-outer position in the TPF formation

In the TPF formation, the exterior spacecraft have a bigger fuel consumption than the interior
ones (see [4]). To compensate the difference, we can consider changing their position at some
moment in the lifetime of the mission. In Table 3.1 we presentthe cost, in terms of total delta-v
(cm/s), for each satellite to accomplish the task. Relativetrajectories and the profile of delta-v
consumption is represented in Figure 3.2.
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Figure 3.1: Representations of the TPF (left-hand side) and Darwin (right-hand side) configurations.

Satellite 1 2 3 4 5 Total (cm/s)
∆v 1.65 1.63 1.65 1.67 0.19 6.79

∆v on-off 0.23 0.23 0.23 0.23 0.00 0.92

Table 3.1: Change the position of the consecutive interior and exterior spacecraft of TPF in 8 hours. The
formation is considered about a halo orbit of 120000 km ofz-amplitude. The results corresponds to a
discretization of each trajectory in 50 linear elements.

Exchanging positions of several spacecraft

In this example (see Figure 3.3), we have 4 small spacecraft in a square of length 40 meters
and another one in the center of the it. Again the satellites are about a halo orbit of 120000 km
of z-amplitude being the central one on the halo orbit. The example consist in switching the
satellites located in the opposite vertices, while the central one returns to the same place after
letting the other ones pass near the center. Total costs are displayed in Table 3.2.

Rendezvous and formation deployment

We consider the Darwin configuration to perform an example ofrendezvous and deployment.
We start with two groups of 3 and 4 spacecraft separated by a distance of 1000 m. The exam-
ple is again about a halo orbit of 120000 km ofz-amplitude about the L2 Sun-Earth libration
point. It turns out that the optimum place for the rendezvousis the relative point located in the
center of mass of the initial configuration. We show the trajectory and the profiles of the delta-v
expenditures in Figure 3.4. Total amounts of∆v are given in Table 3.3.

Satellite 1 2 3 4 5 Total (cm/s)
∆v 1.17 1.02 1.21 0.93 0.28 4.61

∆v on-off 0.39 0.39 0.39 0.39 0.00 1.56

Table 3.2: Delta-v expenditure to change the position of four satellites located in opposite corners of an
square of 40 m. Reconfiguration time has been set to 8 hours. Inthis example 100 linear elements have
been used.
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Figure 3.2: In the left-hand side plot we have the trajectory obtained when we change the consecutive
interior and exterior spacecraft in the TPF configuration. Satellites are represented in the center of the
collision avoidance spheres which cannot intersect duringthe maneuver (the radius of the sphere is half of
the security distance considered). In the right hand side plot we show the profile of the∆v expenditure for
each satellite. The corresponding total amounts are given in Table3.1

Figure 3.3: In the left-hand side plot we have the trajectory of the spacecraft when we change the position
of the opposite spacecraft in a square. In the right hand sideplot we have the profile of the∆v expenditure
for each spacecraft. Total amounts of∆v are given in Table3.2.
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Figure 3.4: In the left-hand side we plot a snapshot of a rendezvous trajectory for the Darwin mission. In
the right hand side plot we show the profile of the∆v expenditure for each spacecraft. Total amounts of
∆v are given in Table3.3

Satellite 1 2 3 4 5 6 7 Total (cm/s)
∆v 1.83 1.83 1.83 1.33 1.33 1.33 1.33 10.81

∆v on-off 1.32 1.32 1.32 0.99 0.99 0.99 0.99 7.92

Table 3.3: ∆v cost corresponding to the rendezvous example for the Darwinformation. The two groups
of satellites depart from 1000 m apart and perform rendezvous in one day. The example uses 50 linear
elements for each satellite.

4 Conclusions

In this paper we present a technique for reconfigurations of spacecraft formations based in the
use of the finite element method and optimal control. The finite element method provides a
systematic approach to the discretization of the problem which tends to a low thrust continuous
solution when the mesh of elements is refined. This approach has been presented in several
examples concerning the TPF and Darwin missions with satisfactory results but much more
general situations can be dealt using the methodology.
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352 L. GARĆIA AND J. J. MASDEMONT

[2] McInnes, C.R. Autonomous proximity manoeuvring using artificial potential functions.ESA Journal
17(2) (1993) 159–169.

[3] The TPF Science Working Group.The Terrestrial Planet Finder: A NASA Origins Program to Search
for Habitable Planets. JPL Publication 99-3, 1999.
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1 Introduction

The optimum orbital transfer problem of the space vehicle was studied initially by God-
dard [1] in 1919, with his pioneer paper about the maximization of the final altitude of
the rocket under the gravitation field and atmosphere drag. Hohmann [2] in 1925 found
the minimum fuel solution for the bi-impulsive transfer problem between two space ve-
hicle circular and coplanar orbits. This solution was considered the final solution for
this problem until 1959. In this year Hoelker and Silber [3] published the minimum fuel
condition for the Hohmann transfer limited to 11.94. This value is the ratio between the
final orbit and initial orbit radius to the bi-impulsive maneuver. In the non-impulsives
maneuvers is it very important to know one of the thrust burn point to avoid the mis-
alignment’s thrust. Lawden [4] in 1955 found optimum directions to thrust application
and showed that the thrust direction would be tangente to the trajectory. There are
others maneuvers of tri- and multi-impulsives under minimum fuel consumption condi-
tion and under others in-orbital restrictions, studied by many authors through several
methods. Many authors used the propulsion system as control system to reach many
purposes. See e.g., Kluever and Tanck [5] (1997), Javorsek II and Longuski [6] (1999),
Vassar and Sherwood [7] (1985), Ulybyshev [8] (1998), etc. The orbital and rotational
motions coupling effects through the transfer maneuvers were studied, e.g., Duboshin [9]
(1958), Barkin [10] (1985), Beletski [11] (1990), Wang et alli [12] (1991), Wang et alii
[13] (1992) and Maciejewski [14] (1995), etc.

Study of the superposition thrust deviations effects for the space vehicle trajecto-
ries is important, due to their technological importance and space missions feasibility
to vehicle under thrusters burns. The poorly modeled maneuvers and/or non optimized
to turn aside from nominal orbits and the correction or vehicle capture maneuvers can
be unworkable, due to the operational expense and the fuel availability on board. The
satellite orbits under non-ideal propulsion system are affected due to the non-superposed
directions thrust. This results was verified by Jesus [15] in (1999) to orbital transfers
planar maneuvers. The numerical analysis of the maneuvers under superposed and cor-
related thrust deviations were published in 2004 by Jesus and Santos [16] and the mission
feasibility analysis under thrust direction deviations by Jesus et al. [17]. In this paper we
realized the algebraic demonstration of the cause/effect relation between the semi-major
axis deviations and the thrust superposed pitch and yaw deviations to orbital transfers
maneuvers. Our results were found without restrictions on the kind of maneuvers with
respect to the their altitude, power thrusters, etc.

2 Mathematical Formulation and Coordinate System

The mathematical problem is to find the motion equations of the space vehicle and show
the cause/effect algebraic relation between superposed ”pitch” α and ”yaw” β, thrust
direction deviations and the semi-major axis deviations of the orbital transfer trajectory.
Besides this, the maneuvers were considered optimum as minimum fuel consumption
condition. The Figure 2.1, shows the reference system where we wrote the Newton laws.
The optimum problem associated with the space vehicle orbital dynamic is:

1) Globally minimize the performance index: J = m(t0) − m(tf );

2) With respect to α : [t0, tf ] → R (”pitch” angle) and β : [t0, tf ] → R (”yaw” angle)
with α , β ∈ C−1 in [t0, tf ] ;
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Figure 2.1: Reference systems used in this work.

3) Consideration of the dynamics in inertial coordinates Xi, Yi, Zi (see Figure 2.1) for
∀t ∈ [t0, tf ]

m
d2X

dt2
= −µm

X

R3
+ Fx, (1)

m
d2Y

dt2
= −µm

Y

R3
+ Fy, (2)

m
d2Z

dt2
= −µm

Z

R3
+ Fz , (3)

Fx = F [cosβ sin α (cosΩ cos θ − sin Ω cos I sin θ) + sin β sin Ω sin I −

cosβ cosα (cosΩ sin θ + sin Ω cos I cos θ)] , (4)

Fy = F [cosβ sin α (sin Ω cos θ + cosΩ cos I sin θ) − sinβ cosΩ sin I −

cosβ cosα (sin Ω sin θ − cosΩ cos I cos θ)] , (5)

Fz = F (cosβ sin α sin I sin θ + cosβ cosα sin I cos θ + sinβ cos I) . (6)

The VN , VT and VR are the normal, transversal and radial velocity components, re-
spectively. Their accelerations are aN , aT and aR. These equations in orbital coordinates
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(radial R, transverse T , and binormal N) of Figure 2.1 are:

maR(t) = F cos(β(t) + ∆β(t)) sin(α(t) + ∆α(t)) −
µm

R2(t)
, (7)

maT (t) = F cos(β(t) + ∆β(t)) cos(α(t) + ∆α(t)), (8)

maN (t) = F sin(β(t) + ∆β(t)), (9)

aR(t) = V̇R −

V 2
T

R
−

V 2
N

R
, (10)

aT (t) = V̇T +
VRVT

R
− VN İ cos θ − VN Ω̇ sin I sin θ, (11)

aN (t) = ˙VN +
VRVN

R
+ VT İ cos θ + VT Ω̇ sin I sin θ, (12)

VR = Ṙ, (13)

VT = R(Ω̇ cos I + θ̇), (14)

VN = R(−Ω̇ sin I cos θ + İ sin θ), (15)

θ = ω + f, (16)

where ∆α and ∆β are the errors in the ”pitch” and in the ”yaw” angles, respectively. In
this way, for each implementation of the orbital transfer arc, values of α and β are chosen,
whose errors are inside the range, that produce the direction for the overall minimum
fuel consumption. If we consider mass time-variable, for example, linear variation, so,

m(t) = m(to) + ṁ(t − to) (17)

with ṁ < 0 and

F ∼=| ṁ | c. (18)

The motion Equations (1),(2),(3) etc. must be modified to include the force associated
to mass variation.

4) Given the initial and final orbits, and the parameters of the problem m(to), c, . . .
these equations were obtained by: 1) writing in coordinates of the dexterous rectangular
reference system with inertial directions OXiYiZi the Newton’s laws for the motion of
a satellite S with mass m, with respect to this reference system, centered in the Earth’s
center of mass O with Xi axis toward the Vernal point, XiYi plane coincident with
Earth’s Equator,and Zi axis toward the Polar Star approximately; 2) rewriting them
in coordinates of the dexterous rectangular reference system with radial, transverse,
binormal directions SRTN , centered in the satellite center of mass S; helped by 3) a
parallel system with OXoYoZo directions, centered in the Earth’s center of mass O, Xo

axis toward the satellite S, XoYo plane coincident with the plane established by the
position ~R and velocity ~V vectors of the satellite, and Zo axis perpendicular to this
plane; and helped by 4) the instantaneous Keplerian coordinates (Ω, I, ω, f, a, e). These
equations were later rewritten and simulated by using 5) 9 state variables, defined and
used by Biggs [19, 20] and Prado [21].
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3 Orbital Continuous Transfer under Thrust Deviations – General Equa-

tions

The cause/effect relation between the thrust vector directions deviations and the semi-
major axis of the final orbit can be found if we consider the mechanical energy of the
space vehicle under thrusters burns. This dynamics is under action of two forces: natural
force (gravity) and nonnatural force (due to the thrusters). Our algebraic approach for
the semi-major axis deviations is done through the rate of change of the space vehicle
mechanical energy with respect to the time, which is equal to the power applied by
forces components in the transverse, radial and normal directions. We considered the
Earth mass and the space vehicle mass as punctual. Also we considered the thrust to be
nonideal in direction, transfering the deviations effects to the vehicle dynamics. Their
energy rate of change are:

dEM (t)

dt
= F cosα(t) cosβ(t)vT (t) + F sin α(t) cosβ(t)vR(t) + F sin β(t)vN (t). (19)

In the Equation (19) the powers are included applied by forces components in the
transverse, radial and normal directions, without the thrust deviations. During the time
interval ∆t, we integrated and found the change of the mechanical energy,

∆EM (t1, t2) = EM (t2) − EM (t1) =
∫ t2

t1

F [cosα(t) cosβ(t)vT (t) + sin α(t) cosβ(t)vR(t) + sin β(t)vN (t)]dt =

−µm

2a(t2)
+

µm

2a(t1)
(20)

with a(ti) the semi-major axis of the space vehicle orbit in the instant i. This mechanical
energy change, Equation (20), can be computed for one transfer under ”pitch”, ∆α(t)
and ”yaw”, ∆β(t) deviations. So,

∆E′

M (t1, t2) = E′

M (t2) − E′

M (t1) =
∫ t2

t1

F [cos(α(t) + ∆α(t)) cos(β(t) + ∆β(t))v′T (t)]dt +

∫ t2

t1

F sin(β(t) +

∆β(t))v′N (t)dt +

∫ t2

t1

F [cos(β(t) + ∆β(t)) sin(α(t) + ∆α(t))v′R(t)]dt =

−µm

2a′(t2)
+

µm

2a′(t1)
. (21)

The terms in (′) denotes functions under thrust deviations influence. We define ∆2EM

as change of the mechanical energy change, that is, the difference between its values with
and without thrust deviations. So, taking the difference between Equations (20) and (21)
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and using a small mathematical manipulation,

∆2EM (t1, t2) ≡ ∆E′

M (t1, t2) − ∆EM (t1, t2) =
−µm

2a′(t2)
+

µm

2a′(t1)
+

µm

2a(t2)
+

−µm

2a(t1)
=

∫ t2

t1

F [cos(β(t) + ∆β(t)) sin(α(t) + ∆α(t))v′R(t) − sin α(t) cosβ(t)vR(t)]dt +

∫ t2

t1

F [sin(β(t) + ∆β(t))v′N (t) − sin β(t)vN (t)]dt +

∫ t2

t1

F [cos(α(t) + ∆α(t)) cos(β(t) + ∆β(t))v′T (t) − cosα(t) cos β(t)]vT (t)dt. (22)

4 ∆α(t) and ∆β(t) Not Correlated with the Transverse, Radial and Normal

Velocities (Uniform Deviations)

Equation (22) is general, but we need to realize the integrations to realistic space missions
conditions. In this way, we consider that the direction deviations are not correlated (in
the time) with the transversal, radial and normal velocities components. That is, during
the burn time, the thrust vector deviations have not functional dependence with space
vehicle velocity. Besides this, we consider that the semi-major axis in the initial instant
to the initial and final orbits are equal. This condition is physically reasonable, because
during the initial instant there is no time to the deviations affect the semi-major axis.

To find the cause/effect relation, we apply the expectation operator, E , (or the first
moment, or mean) over the Equation (22). In this way, we select the mean of the func-
tions inside the integrations. We consider the probabilistic approach, where the mean
over the physical functions is very good to represent the dynamic phenomena under de-
viations, define through probabilistic errors function (Gaussian, Uniform, etc.). This
approach is applicable in the space technology, because the direction deviations are due
to the several unpredictable reasons such as: vehicle mass center displacement, due to
the fuel consumption or movable parts as solar panels, antennas, booms, pendulums,
etc., and their angular deviations. These deviations and others in the thrust magnitude
cause resultant nonideal force, which do not pass through the vehicle mass center. So,
the linear and/or angular misalignments displace the vehicle with respect to its nomi-
nal directions. The technological implementations has shown that these deviations can
be modeled through the uniform and gaussian probability function. We assume that
stochastic processes are ergotic. So, the expectation operator (mean in the ensemble)
commutes with the integral operator (in time). Besides this, the function F and the
trigonometric functions are deterministic in time.

The non-correlation of the deviations with the velocities allows us to decompose the
expectation operator as one product of the individual expectatins for the product of the
functions. Therefore, taking the expectation, E , and doing some algebraic manipulation,
we have

E [∆2EM (t1, t2)] = [Q11 + Q22][E [cos∆β(t) cos∆α(t)] − 1] + [Q12 +

Q21][E [cos ∆β(t) sin ∆α(t)] − 1] + [Q31 + Q42][E [sin ∆β(t) cos∆α(t)] − 1] +

[Q32 + Q41][E [sin ∆β(t) sin ∆α(t)] − 1] + Q93[E [cos∆β(t)] − 1] +

Q10[E [sin ∆β(t)] − 1] + [Q51 + Q52 + Q61 + Q71 + Q72 + Q82], (23)
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where Qij are quadratures in sines and cosines. Besides this, we consider that the
velocities effects inside the interval [−∆αmax, ∆αmax] in the same time are,practically,
balanced, because the deviations occur between values maxima and minima inside them.
That is, the velocities with and without deviations have, in mean, very close values. So,

E [v′R,T,N (t)] = vR,T,N (t1). (24)

We consider the important approach of the ∆α(t) and ∆β(t) are random-bias devi-
ations with uniform distribution inside the interval [−∆αmax, αmax], that is, ∆α(t) =
∆α(t1) = ∆α and ∆β(t) = ∆β(t1) = ∆β (systematic deviations) through the orbital
transfers. Besides this, we consider that the pitch and yaw deviations are not corre-
lated with each other (it occurs in the practice) and that their values in anterior instant
(due to thrusters action) are not correlated with their values in posterior instant (due to
thrusters action again). This last effect was analized in 2004 by Jesus and Santos [16] in
numerical approach. They modeled the consuming of the thrusters through it. Hier, we
do not consider this effect. Therefore, applying the expectation operator over the first
term (not correlated) of the Equation (23), for example,

E{cos∆α(t1)} =
1

2∆αmax

∫ ∆αmax

∆αmax

cos∆αd(∆α) =

1

2∆αmax
sin[∆α]∆αmax

∆αmax
=

sin ∆αmax

∆αmax
(25)

and

E [sin ∆β(t1)] = E [sin ∆α(t1)] = 0. (26)

If we compute the expectation over all the terms of the Equation (23), we obtain

∆2EM (t1, t2) = C1[[
sin ∆αmax

∆αmax
][

sin ∆βmax

∆βmax
] − 1] + C2[[

sin ∆βmax

∆βmax
− 1] +

QT1 − Q10 + QT2 (27)

or, writting in Taylor expansion to the sin ∆α, sin ∆β, we obtain

E{∆2EM (t1, t2)} = C1

∞
∑

n=0

(−1)n 1

(2n + 1)!
∆α2n

max.

∞
∑

n=0

(−1)n 1

(2n + 1)!
∆β2n

max +

C2

∞
∑

n=0

(−1)n 1

(2n + 1)!
∆β2n

max + QT , (28)

where QT , C1 and C2 are quadratures. The expectation over the left side of the Equation
(23) provide

E{∆2EM (t1, t2)} = E{

µm

2a(t2)
−

µm

2a′(t2)
} =

µm

2

1

a(t2)
E{

∆a(t2)

a′(t2)
}. (29)
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If we expand Equation (29) about the rate ∆a(t2)
a(t2)

, we get

E{∆2EM (t1, t2)} =
µm

2
[

1

a2(t2)
E{∆a(t2)} −

1

a3(t2)
E{∆2a(t2)} +

1

a4(t2)2!
E{∆3a(t2)} −

1

a5(t2)3!
E{∆4a(t2)} + . . .] =

µm

2

∞
∑

n=1

(−1)n+1 1

an+1(t2)(n − 1)!
E{∆na(t2)}, (30)

where, ∆a(t2)=a′(t2) − a(t1). So,

∞
∑

n=1

(−1)n+1 1

an+1(t2)(n − 1)!
E{∆na(t2)} =

[C4 + C3

∞
∑

n=0

(−1)n 1

(2n + 1)!
∆α2n

max].

∞
∑

n=0

(−1)n 1

(2n + 1)!
∆β2n

max + C5. (31)

Equation (31) is the cause/effect relation between thrust vector pitch and yaw di-
rection deviations and semi-major axis deviation of the final orbit. It shows that the
direction deviations affect directly the transfer maneuvers. It is nonlinear relation in
even power of the maxima deviations terms

C3 =
2C1

µm
; C5 =

2C2

µm
; C5 =

2QT

µm
. (32)

Equations (30) and (31) can be expandied, that is,

E{∆2EM (t1, t2)} = C7 −
C3

3!
(∆α2

max + ∆β2
max) +

1

5!
(C3∆α4

max + C6∆β4
max) +

1

7!
(C3∆α6

max + C6∆β6
max) +

1

(3!)2
(∆αmax∆βmax)2 +

1

(5!)2
(∆α2

max∆β2
max)2 +

1

(7!)2
(∆α3

max∆β3
max)2 −

C3

(3!5!)
(∆α2

max∆β4
max + ∆α4

max∆β2
max) +

C3

(3!7!)
(∆α2

max∆β6
max + ∆α6

max∆β2
max) +

C3

(5!7!)
(∆α4

max∆β6
max + ∆α6

max∆β4
max) + . . . (33)

The space missions conditions request direction deviations inside the practical interest
range, that is, maximum two degree. So, for small deviations we can neglect high power
terms. In this condition we can choose n = 0 for the expansion

E{∆a(t2)} = K1 − K2∆α2
max − K2∆β2

max. (34)

This is the first order nonlinear cause/effect relation between thrust direction devia-
tions and semi-major axis. It is one revolution paraboloid. Our paper [18] in 2004 showed
numerical simulation results of these superposed direction deviations case and found a
revolution paraboloid deformed inside general deviations pitch and yaw range and revo-
lution paraboloid not deformed inside the space missions practical interest range. This
algebraic results confirm it (Figures 4.1, 4.2, 4.3, 4.4).The deviations in modulus thrust
(DES1),in pitch direction (DES2) and in yaw direction (DES3). These deviations are
modeled as operational (white-noise) and systematic (random-bias).
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Figure 4.1: Noncoplanar Transfer under Operational Deviations.

Figure 4.2: Noncoplanar Transfer under Systematic Deviations.
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Figure 4.3: Coplanar Transfer under Operational Deviations.

Figure 4.4: Coplanar Transfer under Systematic Deviations.
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5 ∆α(t) and ∆β(t) Not Correlated with the Transverse, Radial and Normal

Velocities (Gaussian Deviations)

The procedures for the ∆α(t) and ∆β(t) with Gaussian distribution inside the inter-
val [−∆αmax, ∆αmax] and [∆αmax, ∆αmax] are the same for the uniform distribution.
Therefore, applying the expectation operator over the first term (not correlated) of the
Equation (23) for the Gaussian distribution, for example, we have

E{cos∆α(t1)} =

∫

∞

−∞

cos∆α
exp−

(∆α)

2σα

√

2πσα

d(∆α) = exp
−σα

2

2 =
∞
∑

n=0

(−1)n σ2n
α

2nn!
. (35)

The expectation of the sinos terms are zero. So, we can obtain the nonlinear cause e
effect relation between thrust direction gaussian deviations and the semi-major axis,

∞
∑

n=1

(−1)n+1 1

an+1(t2)(n − 1)!
E{∆na(t2)} =

[C4 + C3

∞
∑

n=0

(−1)n σ2n
α

(2n)n!
].

∞
∑

n=0

(−1)n
σ2n

β

(2n)n!
+ C5, (36)

where σα and σβ are standard pitch and yaw deviations, respectively. Equation (36) is
similar to Equation (31), that is, the nonlinear cause/effect relation do have dependence
with the probability deviations function.

So, for small deviations we can neglect high power terms. In this condition we can
choose n = 0 for the expansion

E{∆a(t2)} = K3 − K4
σ2

α

2
− K5

σ2
β

2
. (37)

6 ∆α(t) Correlated with Transverse, Radial and Normal Velocities

In this case, we cannot decompose the expectation operator as a product of the in-
dividual expectations for the trigonometric functions of the ∆α(t) and ∆β(t) and the
velocities components, because now they are correlated. The procedures are the same
done until this point, except that we must evaluate the expectation of the products
of the different variables, without decomposing them. Besides this, we consider the
∆α(t) and ∆β(t) random-bias deviations, that is, ∆α(t)=constant=∆α(t1)=∆α and
∆β(t)=constant=∆β(t1)=∆β. After many mathematical manipulations we found the
following equation, for both cases, uniform and Gaussian distribution,

It,r,n =

∫ t1

t2

E{(cos∆α)(cos ∆β)v′t,r,n(t)ḟ ′

t,r,n(t)}dt. (38)

We know that the integral of the odd functions for symmetrical distributions is null.
But Equation (38) has even product of the functions. The odd functions inside the
product are not known, but we can modeled its product as one even function, for ex-
ample, cos∆α. Besides this, we consider that the I, Ω, θ, İ and Ω̇ effects inside the
[−∆αmax, ∆αmax] and [−∆βmax, ∆βmax] intervals in the same time are, practically, bal-
anced, because the deviations occur between values maxima and minima inside them.
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That is, these instantaneous Keplerian coordinates values with and without deviations
are, in mean, very close values. So,

E{İ ′(t) cos θ′(t)} = İ(t1) cos θ(t1), (39)

E{Ω̇′(t) sin I ′(t) sin θ′(t)} = Ω̇(t1) sin I(t1) sin θ(t1). (40)

Other important approach in this way is to consider for Equations (9) and (11) that
the expectation of the product is equal to the product of the expectations of the functions,
so that

E{

(cos∆α)(cos ∆β)

(r′)2(t)
} = E{(cos(∆α)(cos ∆β)

1

(r′)2(t)
}
∼=

E{cos∆α}E{cos∆β}E{
1

(r′)2(t)
} =

E{cos∆α}E{cos∆β}

r2(t)
. (41)

The final forms are:

∞
∑

n=1

(−1)n+1 1

an+1(t2)
E{∆na(t2)} = λ1 + λ2∆αmax + λ3∆βmax +

λ4∆αmax∆βmax − λ5∆α2
max − λ6∆α2

max∆βmax − λ7∆β2
max∆αmax +

λ8∆α2
max∆β2

max + λ9∆α4
max + λ10∆α5

max −

λ11∆αmax∆β4
max − λ12∆α2

max∆β4
max + λ13∆α4

max∆β2
max +

λ14∆α4
max∆β4

max + . . . (42)

for the uniform deviations and

∞
∑

n=1

(−1)n+1 1

an+1(t2)
E{∆na(t2)} = f1 + f2σα + f3σβ + f4σασβ − f5σ

2
α

−f6σ
2
ασβ − f7σ

2
βσα + f8σ

2
ασ2

β + f9σ
4
α + f10σ

5
α − f11σασ4

β − f12σ
2
ασ4

β

+f13σ
4
ασ2

β + f14σ
4
ασ4

β + . . . (43)

for the Gaussian deviations.
The coefficients λi, λij , fi and fij are mathematical operations (sums, products and

sums of the products) between quadratures in sines and cosines of the pitch and yaw
angles.

If we compute the first order terms, Equations (42) and (43), and consider deviations
inside the practical range for the space missions, we obtain, for the both cases,

E{∆α(t2)} = C1 + C2∆αmax + C3∆βmax + C4∆αmax∆βmax − C5∆α2
max (44)

for the uniform deviations and

E{∆α(t2)} = C6 + C7σα + C8σβ + C9σασβ − C10σ
2
α (45)

for the Gaussian deviations.
These results show once again the nonlinear relationship between cause and effect

since n=1 of the expansions.
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We modeled in the Equation (38) the product of the not known odd functions as an
even function equal to the cos∆α. If we choose it as the cos∆β the results are different.
So, with the same previous algebraic proceedings, we have

∞
∑

n=1

(−1)n+1 1

an+1(t2)
E{∆na(t2)} = λ′

1 + λ′

2∆αmax + λ′

3∆βmax +

λ′

4∆αmax∆βmax − λ′

5∆α2
max − λ′

6∆β2
max − λ′

7∆α2
max∆βmax − λ′

8∆β3
max +

λ′

9∆α4
max + λ′

10∆β4
max + λ′

11∆α2
max∆β2

max − λ′

12∆α2
max∆β3

max −

λ′

13∆α2
max∆β4

max − λ′

14∆β6
max + λ′

15∆α2
max∆β6

max + . . . (46)

for the uniform deviations, and

∞
∑

n=1

(−1)n+1 1

an+1(t2)
E{∆na(t2)} = f ′

1 + f ′

2σα + f ′

3σβ + f ′

4σασβ − f ′

5σ
2
α

−f ′

6σ
2
β − f ′

7σ
2
ασβ − f ′

8σ
3
β + f ′

9σ
4
α + f ′

10σ
4
β + f ′

11σ
2
ασ2

β − f ′

12σ
2
ασ3

β

−f ′

13σ
2
ασ4

β − f14σ
6
β + f ′

15σ
2
ασ6

β + . . . (47)

for the Gaussian deviations.
These results for the space missions interest deviations range are

E{∆α(t2)} = C11 + C12∆αmax + C13∆βmax + C14∆αmax∆βmax −

C15∆α2
max − C16∆β2

max, (48)

E{∆α(t2)} = C17 + C18σα + C19σβ + C20σασβ − C21σ
2
α − C11σ

2
β . (49)

These results show, again, the nonlinear relation between the thrust deviations and
the mean semi-major axis uncertainess. The difference between this case, correlated
with cossine of the yaw, is that, in the practical interest range, it occurs the − cos∆β2

max

contribution. It is the out-plane angle deviation and the nonlinear relation in the space
missions interest must avoid it, because the in-plain maneuvers are fuel-optimal.

7 Conclusions

Our results show the nonlinear relations between thrust superposed pitch and yaw direc-
tion deviations and the final mean semi-major axis. We analysed the correlated and not
correlated deviations with the satellite velocity. In all the cases, the relation shows a pro-
gressive deformation of the trajectory due these deviations. This dependence is presented
as a revolution paraboloid in the space mission practical interest in the range deviations
and the deformed revolution paraboloid in general case. In the space mission interest
the relation is dominated by (∆αmax)2 term for the α-correlation and (∆βmax)2 and
(∆αmax)2 terms for the β-correlation. We suggest the first correlation for the transfers
maneuvers under fuel consumption optimal. Besides this, these algebraic results confirm
the exhaustive numerical simulation realized before in all the deviations ranges. These
results do not depend of the trajectory.
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Abstract: New models and properties of piezoceramic transducer due to the
interaction with the excitation device of limited power-supply are built and
investigated in details. The special attention is given to examination of ori-
gin and development of the deterministic chaos in this system. It is shown,
that a major variety of effects typical for problems of chaotic dynamics is in-
herent in the system. The presence of several types of chaotic attractors is
established and the existence of hyper-chaos is revealed. Various scenarios of
passage from the regular regimes to chaotic are explored. Explicitly phase por-
traits and Poincaré sections and maps of of chaotic attractors are investigated.
Their spectral densities and distributions of invariant measures are obtained
and explored.

Keywords: Limited excitation; piezoeffect; chaotic attractor; Lyapunov exponents;

Poincaré section and mapping.
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1 Introduction

Functioning of many important and mission-critical devices of various engineering ma-
chines, including transformers, is based on the effect of coupling of mechanical and elec-
trical fields in piezoceramic media [2, 3, 8, 26, 27, 28, 23]. Hence, creation of a general
mathematical theory of electroelastic processes in such media under arbitrary conditions
of mechanical and electrical loading is important, both in scientific and applied aspects.
Such theory for many piezoceramic devices and constructions is created by A.F. Ulitko
and his school [3, 8, 26, 27, 28]. However, in these theories, and in other publications,
a problem of behaviour of electroelastic fields is considered only for conditions of forced
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and free oscillations, when the piezoelectric ceramics is under the action of applied me-
chanical and electrical fields of given values. Thus a problem of influence of dissipation
and radiation of energy under oscillations of coupled fields of the device remains outside
of many considerations. If the transducer with electroelastic coupled field is mounted in
a medium with resistance, as happens in operation of sound emitters, then radiation of
energy changes an electric field in the power generator, as opposed to the “ideal” case
when no losses occur happen. This adjustment can be essential and lead to unexpected
dynamic conditions or be negligibly small — it depends on outer power of the gener-
ator compared as with an emitting power. Examination of new effects in dynamics of
piezoceramic coupled fields and in functioning of the power generator, which are caused
by “sensitivity” of cumulative systems to radiation of energy is, without a doubt, of
significant scientific interest. This is a case of so-called limited or non-ideal excitation
[12, 24, 25] when supply power is of the same order as the power consumed by a loading
piezoceramic transducer. In this case the electric generator is said to have limited power,
i.e. a power comparable with the power radiated or consumed by piezoceramic coupled
field. The present paper is devoted to the analysis of interaction effects, collectively called
the effect of Sommerfeld–Kononenko [12, 13, 15, 16, 17, 18, 19, 24, 25], in oscillations of
the piezoceramic transducer and in the mechanism of its excitation — the generator of
the electric current of limited power-supply. A new mathematical model of interaction
of the generator and the piezoceramic transducer submerged in a hydromedium with
resistance is constructed. The coupling of processes in the transformer and the energy
source (the generator) leads to the qualitatively new effects in their dynamics that can-
not be seen using a model of the problem with unlimited or so-called “ideal” excitation
— primarily the possibility of appearance of deterministic chaotic regimes, which are
theoretically impossible in a problem with ideal excitation (when corresponding math-
ematical models of such a problem have dimensionality of phase spaces equal to two, a
possibility of chaos origination is excluded).

2 Construction of a mathematical model

Let us consider a piezoceramic rod transducer, which is loaded on the acoustic medium
and to which electrodes the electrical voltage is affixed, raised by the LC–generator
(Figure 2.1). The selection of the generator of such type is caused by the renaissance of
its application observable now in the up-to-date technique. This is related with facts that
the electrovacuum-tube (analogue) devices ensure higher metrological characteristic on
to comparison with the numeral devices. The origin of the Cartesian coordinate system
is in the middle of the rod; from its surfaces S− and S+, which are perpendicular to axis
oz, acoustic signals radiate into the medium. We will examine the longitudinal vibrations
of a round rod of length 2h and cross-sectional area S, with longitudinal polarization.

According to the theory of longitudinal deformations [8, 27] the piezoeffect constitu-
tive relations have the form

ǫz = s33σz + d33Ez, Dz = ǫ33E,z +d33σz , (1)

where ǫz is a longitudinal deformation; σz is the mechanical stress; Ez is the intensity of
the electric field; Dz is an induction of this field; and s33, d33, ǫ33 are constants.

When studying the acoustic frequency region, we used the equations of a quasistatic
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Figure 2.1: Scheme of viewed system.

field. Here, they could be written as

∂Dz

∂z
= 0, Ez = −

∂Ψ

∂z
, (2)

where Ψ is an electrical potential.

We shall add to equations (1)–(2) the Cauchy relation ǫz =
∂u

∂z
and the equation of

the rod vibrations
∂σz

∂z
= ρ

∂2u

∂t2
, (3)

where u = u(z, t) is the longitudinal displacement of the rod, ρ is its density.
The boundary conditions, when the rod is under an acoustic load impedance η0, are

as follows

σz = −η0
∂u

∂t
, Ψ = ±V (t), z = ±h. (4)

The voltage in the electrodes of the rod is 2V (t). It is a known function of time in
the problem of “forced” vibrations of the transducer and “unlimited” power from the
generator. The system of equations (1)–(4) represents a complete description of “forced”
vibrations with ideal excitation, when 2V (t) is a harmonic function of time. But 2V (t)
is the voltage in a real physical circuit and a current

i = −

∂(Sz)

∂t

flows through the rod. The current i of the transformer with the rod is related with a
current of the generator i2 + i3 according to the differential equation

2V + L
di

dt
= M

d(i2 + i3)

dt
. (5)
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For comparison we may present this relation for the case of the absence of the rod, namely

L
di

dt
= M

d(i2 + i3)

dt
.

So, the presence of the rod in the circuit changes the disturbance to the voltage in every
part of the circuit. The addition of a rod is like the addition of some capacity (the input
electrical impedance at the rod transducer can be calculated to some approximation from
so - called geometrical capacity) [2]. We must have a different value i for the circuit with

the transducer as compared with that without it. If i is small and 2V ≫ L
di

dt
(in this

case, 2V ≈ M
d(i2 + i3)

dt
) then we have an ideal excitation of the transducer. When

2V is comparable with L
di

dt
, the statement does a given value of 2V (t) not hold about,

because i will also influence regimes of the generator through a transformer (i influences
the current i2 + i3).

A vacuum-tube generator is the classical example of a self-exciting system [21]. Let
us write Kirchhoff’s equations for each branch of the tube generator current [13, 15].
First of all we assume, that the generator works in the soft condition, i.e.

ia = I0 + I1(eg + Dea) − I3(eg + Dea)3, (6)

where ia is the anode current, eg is the tube grid voltage; ea is the anodic voltage; D is
the penetration factor of the tube; I0, I1, I3 are constant parameters of the tube.

The equations of currents of the generator are

ia = i1 + i2 + i3, ea − Ea + Rai1 = 0, eg + Eg − Mc
di2
dt

= 0,

Lc
di2
dt

+ Rci2 =
1

Cc

∫

i3 dt,

ea + Lc
di2
dt

+ Rci2 + L1
d(i2 + i3)

dt
= 0.

(7)

The system of equations (6)–(7) describes interior processes in a vacuum-tube generator.
These equations are nonlinear with respect to eg ( usually D is a small value), we can
reduce them to a single equation. Introducing a new variable

φ(t) =

∫ t

0

(eg − Eg)dt (8)

(here −Eg is the constant component of the voltage eg), we obtained the following non-
linear equation for the function φ

d2φ

dt2
+ ω2

0φ = a1
dφ

dt
+ a2

(

dφ

dt

)2

− a3

(

dφ

dt

)3

, (9)

where

a1 =
Mc

LcCc

[

I1 −
RcRaCc − Lc

Ra(Mc − DLc)
+

RcL1

R2
aMc

− 3I3(Eg)
2

]

, a2 = 3
McI3Eg

LcCc
, a3 =

McI3

LcCc
.
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Besides

ω2
0 =

Ra + Rk

RaLkCk

and ω0 is a frequency of the generator in the linear theory.
If the generator is connected to the electric circuit of the transformer, the last equation

of the system (7) changes to the following

ea + Lc
di2
dt

+ Rci2 + L1
d(i2 + i3)

dt
= M

di

dt
. (10)

Now for inner processes in the generator a such new equation for the function φ should
be fulfilled

φ̈ + ω2
0φ = a0φ̇ + a2φ̇

2
− a3φ̇

3
− a4V (t), (11)

where

a0 = a1 −
M2Rc

LcCcLR2
a

, a4 =
2MMc

LRaLcCc
.

Thus, the operation of the generator and the creation of a voltage 2V (t) are described
not by the equation (9), but by the system of fourth order equations (11) and (5), where
the value of i depends on the mechanical deformations of the rod.

For such deformations and the electric field we have the following system of equations

c2 ∂2u

∂z2
=

∂2u

∂t2
,

∂2Ψ

∂z2
=

k2

d33(1 − k2)

∂2u

∂z2
, (12)

where c = [ρs33(1 − k2)]−1/2 is a velocity of longitudinal conjugate waves in the rod;
k = d33(ǫ33s33)

−1/2.
Let’s present longitudinal oscillations of the rod in the form of the sum of eigenmodes,

namely [22]

u(z, t) =

N
∑

i=1

fi(t) sin µiz. (13)

Here µi is a solution of the equation µih cosµih − k2 sinµih = 0.
In this case for the voltage Ψ we shall have [2]

Ψ(z, t) = f(t)z +
k2

d33(1 − k2)

N
∑

i=1

fi(t) sin µiz. (14)

Thus the current i, flowing through the rod is equal to

i = −

∂(SDz)

∂t
= Sǫ33(1 − k2)ḟ = Sǫ33

(1 − k2)

h

[

V̇ −

k2

d33(1 − k2)

N
∑

i=1

ḟi sin µih

]

. (15)

Using boundary conditions (4), we obtain the following relations for eigenmodes of oscil-
lations

−

s33hη0

d33

N
∑

i=1

ḟi(t) sin µih = V (t) (16)

and

i =
Sǫ33(1 − k2)

h
V̇ (t) +

ǫ33k
2

h2η0
V (t). (17)
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Substituting these expressions in (5), we find that voltage 2V (t), applied to the elec-
trodes of the transducer should be determined as the solution of the system of equations

φ̈ + ω2
0φ = a1φ̇ + a2φ̇

2
− a3φ̇

3
− a4V (t),

V̈ (t) + ω2
1V (t) = a5φ + a6φ̇ − a7V̇ (t).

(18)

Here

ω2
1 =

2h

LSǫ33(1 − k2)
, a5 = −

Mω2
1Rc(Ra + Rc)

2McRaLc
, a6 = −

Mω2
1Rc

2McRa
, a7 =

k2

η0hS(1 − k2)
.

After the determination of V (t), longitudinal oscillations of the rod u(t) =
N

∑

i=1

fi(t) sin µiz are defined by the following equation

∂2u

∂t2
= c2 ∂2u

∂z2
−

d33

s33hρ
V (t)δ(z − h) +

d33

s33hρ
V (t)δ(z + h), (19)

where δ(z) is the delta-function.
If we neglect the inverse influence of transducer oscillations (mechanical and electrical)

on functioning of the generator (a4 = 0), in other words, if we neglect the effect of
Sommerfeld - Kononenko, the system of equations (18) breaks up into two equations,
each of which has dimension of a phase space equal to two. First of them is the self-
exciting equation and can be solved irrespectively of the second. The second equation,
featuring vibrational processes in the rod, is linear. In this case possible attractors
of the system of equations (18) always are the regular one. Therefore, in this situation
functioning of the generator and radiation of waves by the transducer in acoustic medium
correspond to regular (probably complex enough) processes.

If a4 6= 0, dimension of a phase space of the equation system (18) is equal to four. In
this case in the system both regular, and chaotic attractors can exist [14, 21, 20]. Thus,
the basic possibility of existence of chaotic regimes in the generator and excitation of
chaotic waves in acoustic medium is caused by the effect of Sommerfeld–Kononenko.

3 Investigation of the steady-state regimes of interaction

For determination of the possible steady-state regimes of interaction in the system (18)
we use the dimensionless variables

ξ =
φω0

Eg
,

dξ

dτ
= ζ, β =

V

Eg
,

dβ

dτ
= γ, τ = ω0t. (20)

Then the system of equations (18) can be written in the form

dξ

dτ
= ζ,

dζ

dτ
= −ξ + α1ζ + α2ζ

2
− α3ζ

3 + α4β,

dβ

dτ
= γ,

dγ

dτ
= α5ξ + α6ζ − α0β − α7γ,

(21)

where the coefficients are equal to

α0 =
ω2

1

ω2
0

, α1 =
a0

ω0
, α2 =

a2Eg

ω0
, α3 =

a3E
2
g

ω0
,

α4 = −

a4

ω0
, α5 =

a5

ω3
0

, α6 =
a6

ω2
0

, α7 =
a7

ω0
.
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First of all we investigate equilibrium states of the system (21). All of them are defined
as solutions of non-linear algebraic coupled equations

ζ = 0, −ξ + α1ζ + α2ζ2 − α3ζ3 + α4β = 0,

γ = 0, α5ξ + α6ζ − α0β − α7γ = 0.
(22)

At realization of the requirement α0 = α4α5 this system has the infinite set of solutions
which are defined by the formulas

ζ = 0, ξ = α4β, γ = 0, β = r,

where r is any real number not equal to zero. At realization of the requirement

α0 6= α4α5 (23)

the system (22) has the single trivial solution ξ = 0, ζ = 0, β = 0, γ = 0. This
solution corresponds to the zero equilibrium state, which at realization of a requirement
(23), will be a single equilibrium state of the system.

According to the criterion of Hurwitz, sufficient conditions for asymptotic stability of
a zero equilibrium state can be written in the form

α7 − α1 > 0, (24)

1 + α0 − α1α7 > 0, (25)

α7 − α4α6 − α0α1 > 0, (26)

α6 − α4α5 > 0, (27)

(α7 − α1)(1 + α0 − α1α7)(α7 − α4α6 − α0α1)

− (α7 − α4α6 − α0α1)
2
− (α7 − α1)

2(α6 − α4α5) > 0.
(28)

Thus, at realization of the requirement (23) and not realization of at least one of
inequalities (24)–(28) single equilibrium state of system (21) is unstable. In this case all
trajectories of the system starting from a neighborhood of an origin of coordinate phase
spaces, eventually abandon this neighborhood and due to dissipativity of the system,
aspire to some limiting sets — attractors, which, as we shall see in the following, can be
both regular and chaotic.

As the system of equations (21) is a non-linear system of the fourth order differential
equations, all its further examinations will be done by means of numerical methods. The
basic method of determination of solutions of the system (21) is the fourth or fifth order
method of Runge–Kutta with the application of correcting procedure of Dormand–Prince
[9], which ensures precision of the order O(10−8) – O(10−15). In the construction of phase
portraits of the steady-state regimes the special attention was given to non-admission
of their contortions by trajectories of transients process. For calculation of a spectrum
of Lyapunov characteristic exponents (LCE) of attractors the algorithm of Benettin,
etc. [4, 14, 21, 11] was applied. The influence of atypical trajectories on quantities
of Lyapunov characteristic exponents was excluded. For construction of the Poincaré
sections and mappings for attractors of the system the method of Hénon [10, 14] was
applied, and for calculation of spectral densities the method of Filon was used [7].

Extensive numerical experiments were carried out with the purpose of finding the
regions of exsistence of chaotic solutions. We assume that the generator works with the
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following parameters:

Eg = 700V, Ea = 2000V, I1 = 6.5 × 10−5A/V, I3 = 5.184× X×10−9A/V 3,

D = 0.015, Ra = 160Ω, Rc = 10Ω, Lc = 0.094H,

Cc = 1.0465 mmF, Mc = 0.275H, M = 1H, L = 100H.
(29)

Here X is the dimensionless bifurcation parameter.
In this case the coefficients of system (21) are equal to

α0 = 0.995, α1 = 0.0535, α2 = 0.63 × X, α3 = 0.21 × X,

α4 = −0.103, α5 = −0.0604, α6 = −0.12, α7 = 0.01.
(30)

We want to underline especially, that the values of parameters in formulas (29 - 30)
correspond to real characteristics of LC-generators and piezoceramic transducers [2, 28].
For the chosen parameters of the system (21) it has a single zero equilibrium state which
is unstable in the sense of Lyapunov.

Let’s determine divergence (div F ) of the system (21). It is obvious, that it can be
found using the formula

div F = α1 + 2α2ζ − 3α3ζ
2
− α7. (31)

As is seen from the formula (31) in a general case divergence will be a sign-alternating
quantity. Taking into account parameters of system (30) it is possible to write the
expression for divergence as

div F = 0.63Xζ(2 − ζ) + 0.0435. (32)

If the parameter X is positive then, up to 0.0435, divergence of system will be positive
during those moments of time, when the phase variable ζ satisfies the inequality 2 >
ζ > 0. Therefore, in cotrast to systems with a constant negative divergence, the question
about local change in time of the phase volume of the system near a particular solution
demands additional explanations. As is known [1], the given phase volume changes in
time according to the expression

V (t) = V (t0)e
(div F )t = V (t0)e

(λ1+λ2+λ3+λ4)t, (33)

where V (t) is the phase volume, λi is a Lyapunov characteristic exponent of an attractor,
and in expression div F the line denotes averaging in time. The carried out calculations
have shown that the sum of Lyapunov characteristic exponents for all (examined further
in the article) regular and chaotic attractors of system (21) will be negative. Therefore,
negative will be averaged in time divergence of the system, though at some intervals
of time it can be positive. It means, that all attractors of the systems (21) have zero
limiting volumes.

Let’s consider the bifurcations which are taking place in the system (21), when the
parameter X is changing. We shall give special attention to the origin of chaotic attrac-
tors, their detailed exposition and scenarios of transitions from the regular regimes to the
chaotic one. As is known, the basic practical criterion of existence of a chaotic attractor
is the presence in a spectrum of LCE of at least one of the positive exponent [21, 14].
In Figure 3.1 a dependence of the maximal, distinct from zero, Lyapunov characteris-
tic exponent on the parameter X is shown. Referring to Figure 3.1, there is a series
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Figure 3.1: Dependence of the maximal Lyapunov characteristic exponent λ on X.

of X intervals in which the maximal Lyapunov exponent is positive. Hence, in these
intervals there are chaotic attractors. Intersection points of this diagram with horizontal
coordinate axis correspond to bifurcation values of parameter X .

In Figure 3.2 the phase-parametric characteristic of system (so-called bifurcation
tree) is given. This characteristic is constructed as a function of coordinate ξ. Phase-
parametric characteristics regarding other coordinates of the system are qualitatively
similar to given in Figure 3.2. The light sites of this tree “crone” correspond to periodic
regimes of the steady-state oscillations of the system (21), and densely blacked out - to
chaotic. Points of a bifurcation, at which transition from regular periodic regime to the
nonregular chaotic one occurs are precisely visible.

Let’s now consider these changes of regimes in more details. At changing of the
parameter X value in a segment 9.3 ≥ X ≥ 9.01 in the system there is a stable limit
cycle with the signature of a LCE spectrum which looks like (“0′′, “ −

′′, “ −
′′, “ −

′′).
That is, the maximal Lyapunov exponent of the cycle is zero, and three others are
negative. A three-dimensional projection of the phase portrait of this cycle, its Poincaré
section by the plane β = 0 and the spectral density constructed in logarithmic scale, are
given, accordingly, in Figure 3.3.a-b, Figure 3.4.a. The given figures are constructed at
the value X = 9.01. Poincaré section and the spectral density have a structure typical
for the regular regimes. A signal sent by the transducer to the medium in this case is
periodic.

At X = 9.005 instead of a limit cycle as a result a saddle-knot or the tangen-
tial bifurcation a chaotic attractor arises in the system. In the signature of the LCE
spectrum of the attractor the positive maximal exponent appears and it becomes:
(“ +′′, “0′′, “ −

′′, “ −
′′). In Figures 3.4.b, 3.5.a-b, 3.6.a the three-dimensional projec-

tion of the attractor phase portrait , its Poincaré section and mapping and the spectral
density (Fourier spectrum) constructed at the value X = 8.955 are given, accordingly.
Transition from the regular attractor to chaotic is carried out through an intermittency
of the first type in the sense of Pomeau–Manneville [5]. When we move to a point of a
bifurcation, the unstable cycle comes nearer to the limit cycle. In a point of bifurcations
both cycles merge and disappear. Trajectories of system leave for remote fields of a
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Figure 3.2: Phase-parametric characteristic of the system.

a b

Figure 3.3: Projection of the phase portrait (a) and Poincaré section by the plane β = 0 (b)

at X = 9.01.
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a b

Figure 3.4: Spectral density at X = 9.01 (a) and the projection of the phase portrait at
X = 8.955 (b).

a b

Figure 3.5: Poincaré section by the plane β = 0 (a) and mapping (b) at X = 8.955.

phase space. Then, because the system (21) is stable in the sense of Lagrange (by its
dissipativity) and in the sense of Poisson (as a regime is steady-state) and is unstable in
the sense of Lyapunov (a positive Lyapunov exponent exists), a process of reinjections
happens, when returnings of trajectories to neighborhood of the vanished limit cycle hap-
pen, then again they leave and return end so on. Laminar phase of this intermittency
is the motion in enough small neighborhood of the vanished limit cycle, and turbulent
phase is unpredictable roamings around the coils of a spiral chaotic attractor (see Figu-
re 3.4.b). Transition to chaos through an intermittency is also testified by the structure
of a bifurcation tree in a neighbourhood of the point X = 9.01.

Poincaré section and mapping represent some chaotic point sets, which are grouped
inside of several domains having quasiribbon structure. The view of Poincaré mapping
shows, that the system (21) can be roughly enough approximated by means of the one-
dimensional mapping that will essentially simplify its investigation. The view of this
mapping (which can be substituted by a set of one-dimensional parabolic and horseshoe-
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a b

Figure 3.6: Spectral density at X = 8.955 (a) and a projection of a phase portrait at X = 8.41
(b).

shaped lines) is one more proof that the system has a chaotic regime [14]. A spectrum
of an attractor is continuous, but with apparent enough peaks. A continuity of Fourier
spectrum also testifies a chaotic character of the given attractor. Chaotic attractors of
such type exist in the system (21) at 9.005 ≥ X ≥ 8.645. A signal generated by the
transducer to the medium at such X will be chaotic.

Now consider several types of the attractors existing in the system (21). At 8.645 >
X ≥ 8.41 a stable limit cycle exists in the system. A projection of a phase portrait of
such cycle is given in Figure 3.6.b. This cycle has more complex structure, than the cycle
given in Figure 3.3.a. Besides it has approximately six times larger period, than a cycle
given in Figure 3.3.a. At the value X ≃ 8.405 this cycle disappears, due to a tangent
bifurcation, and the chaotic attractor of new type is born (whose projection of the phase
portrait is constructed at value X = 8.25 and is given in Figure 3.7.a). Transition
from the regular attractor to the chaotic one, as before, is carried out through the first
type intermittency in the sense of Pomeau–Manneville according to the described above
scenario. However, unlike the previous described chaotic attractor (Figure 3.4.b), here
we have a more continuous covering by turbulent splashes of an attractor trajectories of
its phase volume. The signature of the LCE spectrum of this chaotic attractor looks like:
(“+”, “0”, “−”, “−”).

In Figure 3.7.b Poincaré section of this attractor is shown. It represents a chaotic
point set the number of which constantly increases with the time of numerical integration
time of the system. However for this type of chaotic attractors its Poincaré section loses
quasiribbon structure.

In Figure 3.8.a one more important characteristic of chaotic attractors is shown,
namely a distribution of an invariant measure of Krylov–Bogolyubov on the attractor
phase portrait. The given figure is constructed by so-called technique of coding by grey
color tones as stated in [14]. The invariant measure is a quantitative characteristic of
the residence time of a representation point of attractor trajectories in the given region
of the phase volume. More dark parts in the figure correspond to regions in which
representation point of trajectories spends a majority of time. As is apparentl from
Figure 3.8.a, the trajectories spend the largest part of time in the neighborhoods of
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a b

Figure 3.7: Projection of the phase portrait (a) and Poincaré section by the plane β = 0 (b)

at X = 8.25.

a b

Figure 3.8: Distribution of an invariant measure at X = 8.25 (a) and projection of the phase
portrait at X = 7.85 (b).
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a b

Figure 3.9: Poincaré section by the plane β = 0 (a) and mapping (b) at X = 7.85.

the vanished limit cycle that is the testimony of larger duration of laminar phases in
comparison with the turbulent ones. Moreover, this figure is one more verification of
realization of the intermittency scenario at transition from the regular regime to chaotic.

At the value X = 7.86 an extremely interesting bifurcation of a type “chaos–chaos”
happens, when as a result of the complex mechanisms of interactions of a chaotic attractor
with the saddle limiting cycles existing in pool of its attraction, in the system (21) an
attractor arises whose signature of LCE spectrum looks like (“+”, “+”, “0”, “−”). This
attractor has two positive Lyapunov exponents. Such attractor is called hyper-chaotic
[14]. Such type attractors exist only in dynamic systems, dimensionality of which in
phase space is more or equal to four, and are characterized by the presence in LCE
spectrum of not less than two positive Lyapunov exponents. Presence of two positive
exponents indicates the existence in a phase space of two directions in which the close
phase trajectories of an attractor diverge. All above-considered chaotic attractors have
only one direction of divergence of the close phase trajectories. In Figure 3.8.b the
projection of a phase portrait of a hyper-chaotic attractor is shown for X = 7.85. A
phase portrait of such attractor has a “hole” in its lower ring spirals.

In Figures 3.9.a-b the Poincaré section and mapping of a hyper-chaotic attractor are
shown. As can be seen the observed structures have more complicated chaotic point sets
than those in (Figures 3.5.a-b and Figure 3.7.b). The one-dimensional approximation of
mapping of Poincaré ia out of the question. Further in Figures 3.10.a-b the distribution
of invariant Krylov-Bogolyubov’s measure and the spectral density of the hyper-chaotic
attractor are given, accordingly. As is apparent from Figure 3.10.a, now the hyper-chaotic
attractor possesses more uniform distribution of invariant measure than the attractor
existing at X = 8.25. Distribution of the spectral density of the hyper-chaotic attractor
is , as before, continuous, however in it separate peaks practically disappear. Hyper-
chaotic attractors exist in rather small interval of changing of the parameter X , namely,
7.86 ≥ X ≥ 7.745. At the further decreasing of X they disappear and in the system a
stable limit cycle arises again.

As can be seen in Figure 3.1, there are some more intervals of the parameter X
changing in which chaotic attractors exist. The further examinations made possible
to find out still some more transitions from the regular motions to chaotic through
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a b

Figure 3.10: Distribution of an invariant measure (a) and a spectral density (b) at X = 7.85.

intermittency. Besides, transitions to chaos have been discovered through cascade of
bifurcations of doubling of a period [6].

Let’s consider one more type of the chaotic attractor discovered in system (21). At-
tractors of such type exist in system at 4.325 ≥ X ≥ 4.115. Transition from the regular
condition to chaotic here, as well as in several previous cases, is carried out under the
scenario of an intermittency of the first type. The signature of LCE spectrum of such
attractor looks like: (“ +′′, “0′′, “ −

′′, “ −
′′). In Figures 3.11.a-b, 3.12.a-b the three-

dimensional projection of the attractor phase portrait, its Poincaré section by the plane
β = 0, Poincaré mapping and a spectral density constructed at the value X = 4.255are
shown respectively . As can be seen from these figures, the phase portrait of a chaotic
attractor has varied noticeably, on which merging of rings of its spirals has happened.
Amplitudes of oscillations of phase variables have decreased. But, at the same time, as
is apparent from Figure 3.1, the maximal Lyapunov characteristic exponent for this at-
tractor is approximately twice as large as corresponding exponents for the above chaotic
attractors. It testifies to much greater velocity of divergence of the close phase trajecto-
ries. Disposition of points in Poincaré cross-section has considerably varied, however, it
is still some chaotic point set. Mapping of coordinate ξ vaguely resemble corresponding
mapping, given in Figure 3.5.b, however, a disposition of points on mapping, given in
Figure 3.12.a, testifies about impossibility of any one-dimensional approximation in this
case. Fourier spectrum of an attractor (Figure 3.12.b) has continuous structure and is
characterised by the absence of peaks.

The comparative analysis of behaviour of the system “generator – transducer” in the
case of an ideal excitation, when we neglect influence of a transducer on functioning of
the generator, attracts a significant interest. This is the case of zero coefficient α4 in
the system of equations (21). In Figure 3.13.a-b phase portraits are given for attrac-
tors of the systems (21) constructed at α4 = 0, X = 8.25 (Figure 3.13.a) and α4 = 0,
X = 7.85 (Figure 3.13.b). In both cases attractors of system are limit cycles. Meanwhile
under the nonideal excitation, which always takes place by virtue of the law of conser-
vation of energy, the system will be in chaotic (at X = 8.25) or in hyper-chaotic (at
X = 7.85) regimes. Moreover, the case of an ideal excitation is characterised by appre-
ciable diminution of vibration amplitudes of phase variables, especially of the variables
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a b

Figure 3.11: Projection of a phase portrait (a) and Poincaré section by the plane β = 0 (b)

at X = 4.255.

a b

Figure 3.12: Poincaré mapping (a) and spectral density (b) at X = 4.255.
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a b

Figure 3.13: Projection of a phase portrait at X = 8.25, α4 = 0 (a) and projection of a phase
portrait at X = 7.85, α4 = 0 (b).

β, γ which describe oscillations of the transducer. Thus, the neglection of nonidealness of
excitation leads to the significant errors in exposition of process of interaction of trans-
ducer and generator both quantitative, and, what is more essential, qualitative. For
example, instead of expected periodic regimes of interaction the system actually will be
in a hyper-chaotic regime.

Further an examination of the bifurcations which are taking place at a changing
of parameter α4 (which, as it has just been noted, characterizes interaction between
transducer and generator) has been carried out. In the computer experiments values of
parameters of system were defined by formulas (30) except for the parameter α4 which
was taken as bifurcation one and was variable. For parameter X it was supposed, that
X = 7.82. Such value of parameter X previously corresponded to the case of hyper-chaos
in the system.

In Figure 3.14 dependence of the maximal, distinct from zero, Lyapunov character-
istic exponent of the system λ on the values α4 is given. As is apparent from the figure,
there are intervals of α4 in which values of λ will be positive. In these intervals the
system has chaotic attractors. At α4 = 0 the system (21) has stable limited cycle, whose
phase portrait practically coincides with phase portrait of a cycle given in Figure 3.13.b.
However, already at very small changing of α4 value, namely at α4 = −0.004, the max-
imal Lyapunov characteristic exponent becomes positive, that testifies about origin of
the chaotic attractor. As we see, even very small interaction between subsystems, the
generator and the transducer, leads to occurrence of chaos.

Let’s consider the bifurcations happening in the system (21) at increasing of α4. At
α4 = −0.138 in system a stable limit cycle exists. Further, at increase of value α4, on very
small interval (−0.138,−0.13515) in the system there is a cascade of bifurcations of period
doubling, which comes to an end with origin of a chaotic attractor at α4 = −0.1351. A
projection of a phase portrait of this attractor, its Poincaré section and mapping, and also
distribution of the spectral density, constructed at α4 = −0.135, are given respectively
in Figures 3.15.a–b, 3.16a–b.

Here the transition from the regular regime to chaotic here is carried out in correspon-
dence with Feigenbaum’s scenario [6]. We would like to emphasize, that this attractor is
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Figure 3.14: Dependence of the maximal Lyapunov characteristic exponent λ on the parameter
α4.

a b

Figure 3.15: Projection of a phase portrait (a) and Poincaré section by the plane β = 0 (b)

at α4 = −0.135.
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a b

Figure 3.16: Mapping (a) and spectral density (b) at α4 = −0.135.

a b

Figure 3.17: Projection of a phase portrait (a) and Poincaré section by the plane β = 0 (b)

at α4 = −0.025.
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hyper-chaotic as it has two positive Lyapunov characteristic exponents. Phase portrait
of this attractor noticeably differs from the hyper-chaotic attractor considered above. At
the same time Poincaré section and mapping possess some qualitative simularity with the
cases of hyper-chaos shown in Figure 3.9 a–b. Essential differences are found in Fourier
spectrum of the given attractor. It is continuous, but, at the same time, the spectrum
peaks are precisely pronounced. They are “the memories” about harmonics of vanished
limit cycles. This the hyper-chaotic attractor exists in system in the very small interval
(−0.1351,−0.1348) of α4. Then in the system there is “a window of periodicity” which
again is replaced by hyper-chaotic attractor at α4 = −0.1344. Arising attractor is qual-
itatively similar to a hyper-chaotic attractor, given in Figure 3.8.b. Further increase of
α4 leads to the bifurcation “hyper-chaos — chaos”, as a result of which, at α4 = −0.058,
a chaotic attractor arises. The signature of LCE spectrum of given attractor looks like:
(“+”, “0”, “−”, “−”). In Figure 3.17.a a projection of a phase portrait and Poincaré
section of attractors of this type constructed at value α4 = −0.025 are given, accord-
ingly. Chaotic attractors similar to that given in Figure 3.17 exist in the system (21) at
−0.058 ≤ α4 ≤ −0.004. Then, at α4 > −0.004, the regular attractor — a limit cycle
arises again in the system.

4 Conclusion

Thus, in the present work a series of new effects has been discovered, caused by pro-
cess of interaction of oscillation regimes in piezoceramic transducer and setting electric
generator, and obtained on the basis of the constructed new mathematical model.

In the given deterministic system some types of chaotic attractors were revealed,
including the hyper-chaotic one. It is shown, that the system possesses a significant
variety of existing in it steady-state regimes of interaction, their properties, and also
scenarious of transition from the regular conditions to chaotic. It was established that
existence of the deterministic chaos in the system is caused only by interaction between
subsystems (generator and transducer), instead of their independent properties.

These effects are applicable at the analysis of the regular and chaotic regimes of func-
tioning of electrodynamic, electromagnetic and piezoceramic vibrators with the limited
excitation.
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[11] Khaki–Sedigh, A., Ataei, M., Lohmann, B. and Lucas, C. Adaptive Calculation of Lyapunov
Exponents from Time Series Observations of Chaotic Time Varying Dynamical Systems.
Nonlinear Dynamics and Systems Theory 4 (2004) 145–159.

[12] Kononenko, V.O. Vibrating systems with a limited power supply. Iliffe Books, London, 1969.

[13] Kononenko, V.O. and Krasnopolskaya, T.S. The vacuum tube generator in to system of
excitation of mechanical oscillations. Vibrotechnics 28 (4) (1977) 105–120. [Russian]

[14] Kouznetsov, S.P. Dynamic chaos. Physmatlit, Moscow, 2001. [Russian]

[15] Krasnopolskaya, T.S. Independent excitation mechanical oscillations by the electrodynamic
vibrator. Sov. Appl. Mech. 13(2) (1977) 108–113.

[16] Krasnopolskaya, T.S. and Shvets, A.Yu. Chaos in dynamics of machines with a limited
power-supply. In: 8-th World Congr. on the theory of machines and mechanisms. Prague:
Czechoslovak Acad. Sci., Vol. 1, 1991, 181–184.

[17] Krasnopolskaya, T.S. and Shvets, A.Yu. Chaos in vibrating systems with limited power-
supply. Chaos 3 (1993) 387–395.

[18] Krasnopolskaya, T.S. and Shvets, A.Yu. Chaotic surface waves in limited power-supply
cylindrical tank vibrations. J. Fluids and Structures 8 (1994) 1–18.

[19] Krasnopolskaya, T.S. Acoustic chaos caused by Sommerfeld effect. J. Fluids and Structures
8 (1994) 803–815.

[20] Martynyuk, A.A. Stability of Dynamical Systems in Metric Space. Nonlinear Dynamics

and Systems Theory 5 (2005) 157–168.

[21] Neimark, J.I. and Landa, P.S. Stochastic and chaotic oscillations. Nauka, Moscow, 1987.
[Russian]

[22] Rayleigh, W. Theory of Sound. Macmillan, London, 1877.

[23] Perel, V.Y. and Palazotto, A.N. A Nonlinear Model of Composite Delaminated Beam with
Piezoelecric Actuator, with Account of Nonpenetration Constraint for the Delamination
Crack Faces. Nonlinear Dynamics and Systems Theory 4 (2004) 161–194.

[24] Sommerfeld, A. Beitrage zum dynamischen ausbau der festigkeislehre. Zeitschrift des Vere-

ins Deutscher Ingenieure 46 (1902) 391–394.

[25] Timoshenko, S. Vibration Problems in Engineering. Van Nostrand Co., New York, 1928.

[26] Ulitko, A.F. The Conjugate undular processes in piezoceramic skew fields at the electrical
discharge. Acoustical Bull. 2(1) (1999) 60–73. [Russian]

[27] Ulitko, A.F. Vector Decomposition in the Space Theory Elasticities. Akademperiodica, Kiev,
2002. [Russian]

[28] Zharii, O.Yu. Normal mode expansions in dynamic electroelasticity and their application
to electromechanical energy conversion. J. Acoust. Soc. Am. 91(1) (1992) 57–68.





Nonlinear Dynamics and Systems Theory, 6 (4) (2006) 389–400

A Survey on Space Trajectories

in the Model of Three Bodies

A.F.B.A. Prado
∗

Instituto Nacional de Pesquisas Espaciais,
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Abstract: This paper presents a survey on space trajectories in the circular
restricted three-body problem. In this situation, a spacecraft moves under the
gravitational forces of two bodies, which are assumed to be in circular orbits.
First of all, there is a search for orbits that can be used to transfer a spacecraft
from one body back to the same body or to transfer a spacecraft from one
body to the respective Lagrangian points L4 and L5. The method employed
is to solve the Two-Point Boundary Value Problem. The close approach be-
tween the spacecraft and the celestial bodies involved is also studied in the
three-dimensional space. Then, the gravitational capture is studied. It is a
characteristic of some dynamical systems, like the three- or four-body system,
where a hyperbolic orbit around a celestial body can be transformed in an
elliptic orbit without the use of any propulsive system.

Keywords: Astrodynamics; orbital maneuvers; restricted problem; gravitational cap-

ture; swing-by; Lagrangian points.
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1 Introduction

This paper has the goal of making a survey of trajectories to make orbital transfers of
a spacecraft that is travelling in space under the gravitational forces of two bodies. It
presents some results available in the literature, as well as some unpublished results in
the direction.

First of all, it is considered the problem of finding transfer orbits in the restricted
problem. Several situations are studied individually. A family of transfer orbits that
can transfer a spacecraft from the Moon back to the Moon again (passing close to the
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Lagrangian point L3 in most of the cases) with minimum fuel consumption is considered.
The family of transfer orbits from the Moon back to the Moon that requires an impulse
with magnitude lower than the escape velocity from the Moon is studied and explained
separately. Then, an extension is made to study similar trajectories for the Sun-Earth
system, including a new suggestion to build a cycler transportation between the Earth
and the Lagrangian point L4.

After that, a swing-by maneuver in three dimensions is studied. The swing-by ma-
neuver is a very popular technique used to decrease fuel expenditure in space missions.
The most usual approach to study this problem is to divide the problem in three phases
dominated by the “two-body” celestial mechanics. Other models used to study this prob-
lem are the circular restricted three-body problem (see [1 – 3]) and the elliptic restricted
three-body problem [4]. In the present paper, the swing-by maneuvers are also studied
under the model given by the three-dimensional circular restricted three-body problem.
Particular attention is given to study the inclination change due to this maneuver.

Finally, the problem of gravitational capture in the regularized restricted three-body
problem is studied. For gravitational capture it is understood a phenomenon where a
massless particle changes its two-body energy around one of the primaries from positive
to negative. This capture is always temporary and, after some time, the two-body
energy changes back to positive and the massless spacecraft leaves the neighborhood of
the primary. The importance of this temporary capture is that it can be used to decrease
the fuel expenditure for a mission going from one of the primaries to the other, like an
Earth-Moon mission [5]. The goal is to apply an impulse to the spacecraft during this
temporary capture to accomplish a permanent capture. Since the goal of this impulse
is to decrease the two-body energy of the spacecraft, its magnitude will be smaller if
applied during this temporary capture.

2 Mathematical Model

For the research performed in this paper, the equations of motion for the spacecraft
are assumed to be the ones valid for the well-known three-dimensional restricted circular
three-body problem. The standard dimensionless canonical system of units is used, which
implies that: the unit of distance is the distance between M1 and M2; the mean angular
velocity (ω) of the motion of M1 and M2 is assumed to be one; the mass of the smaller

primary (M2) is given by µ =
m2

m1 + m2
(where m1 and m2 are the real masses of M1

and M2, respectively) and the mass of M2 is (1 − µ); the unit of time is defined such
that the period of the motion of the two primaries is 2π and the gravitational constant
is one. There are several systems of reference that can be used to describe the three-
dimensional restricted three-body problem [6]. In this paper the rotating system is used.
In the rotating system of reference, the origin is the center of mass of the two massive
primaries. The horizontal axis (x) is the line that connects the two primaries at any time.
It rotates with a variable angular velocity in such way that the two massive primaries
are always on this axis. The vertical axis (y) is perpendicular to the (x) axis. In this
system, the positions of the primaries are: x1 = −µ, x2 = 1 − µ, y1 = y2 = 0. In this
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system, the equations of motion for the massless particle are [6]:

ẍ − 2ẏ = x − (1 − µ)
x + µ

r3
1

− µ
x − 1 + µ

r3
2

, (1)

ÿ + 2ẋ = y − (1 − µ)
y

r3
1

− µ
y

r3
2

, (2)

z̈ = −(1 − µ)
z

r3
1

− µ
z

r3
2

, (3)

where r1 and r2 are the distances from M1 and M2.

3 Transfer Orbits in the Restricted Problem

The problem considered here is the problem of finding trajectories between two points
that are fixed in the rotating coordinate system. This is the famous TPBVP (two point
boundary value problem). There are many orbits that satisfy this requirement, and the
way used in this research to find families of solutions is to specify a time of flight for
the transfer. Then, the problem becomes the Lambert’s three-body problem, that can
be formulated as: “Find an orbit (in the three-body problem context) that makes a
spacecraft to leave a given point A and go to another given point B, arriving there after
a specified time of flight”. Then, by varying the specified time of flight, it is possible
to find a whole family of transfer orbits and study them in terms of the ∆V required,
energy, etc. The transfers considered here are all restricted to the plane of motion of the
two primaries.

Several families made of different trajectories to make a transfer from M2 back to the
M2 and to the Lagrangian points are shown in [7] for the Earth-Moon system and in [8]
for the Sun-Earth system. A new pair of transfers from the Moon back to the Moon is
showed in Figure 3.1, one involving a hyperbolic transfer (faster) and one involving an
elliptic transfer (slower).

Figure 3.1: Transfer orbits in the Earth-Moon system, as seen in the rotating frame.

An interesting type of transfer was found [7] that requires an impulse with a mag-
nitude lower than the escape velocity from the Moon. This possibility is opened by
the restricted three-body problem model. It uses the perturbation of the third-body



392 A.F.B.A. PRADO

(the Earth in this case) to help the massless particle to escape from the Moon (the
first body), and it decreases the ∆V required for the maneuver. Remember that the
escape velocity is defined as the velocity required to escape one celestial body consid-
ering the system governed by the “two-body” celestial mechanics. Figure 3.2 shows
one of those transfers. The initial conditions in canonical units for this trajectory
are: x = 0.987871437, y = −0.004786681, ẋ = 2.220000000, ẏ = 0.000000000,
Vesc = 2.251139608, ∆V − Vesc = −0.031139608, where Vesc is the escape velocity
from the Moon.

Figure 3.2: Transfer from the Moon back to the Moon with ∆V − Vesc < 0.

Figure 3.3 shows a transfer from the Moon to the Lagrangian points and back to
the Moon, also from [7]. This trajectory pass twice by the Lagrangian points visited.
The initial conditions in canonical units for this trajectory are: x = 0.987871437, y =
−0.004500000, ẋ = −0.100000000, ẏ = −3.063600000, Vesc = 2.321739099, ∆V −Vesc =
0.743349025.

Figure 3.3: Transfer from the Moon to the Lagrangian points.

Several trajectories to transfer a spacecraft between the Earth and the Lagrangian
points with minimum ∆V are shown in [8]. In the present paper one of them is shown
in details, because it generates results for the construction of a cycler transportation
between the triangular Lagrangian points and the Earth. The spacecraft leaves the
Earth and visits the Lagrangian points in the order L4 (in 1.81 years), L3 (in 5.49 years),
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L5 (in 9.20 years) and then it returns to the Earth’s neighborhood (in 11.00 years).
Figure 3.4 shows the first two revolutions of this trajectory. The particular important
point of this orbit is that after the close approach with the Earth (in the end of the
first revolution) the spacecraft starts a new tour to the Lagrangian points, in the reverse
order. Integrating this trajectory for a longer time it is possible to see that the first five
revolutions have alternating directions of motion.

Figure 3.4: Trajectory linking the Earth and the Lagrangian points.

The “swing-by” that reverses the direction of motion discovered in this trajectory can
be used to build a cycler transportation system between the Earth and the Lagrangian
point L5 as shown in [8]. In the present paper, an extension is made to build a cycler
system for the Lagrangian point L4, by using the mirror image theorem [9]. It is necessary
to find the mirror image of the trajectory linking the Earth and the Lagrangian point
L5. Figure 3.5 shows this trajectory.

Figure 3.5: The cycler system between the Earth and L4.

Note that the mirror image of the legs for an Earth-bound trip in now a L4-bound trip
and the mirror image of the L5-bound leg is now the Earth-bound leg. The time-line for
a complete cycler is: t = 0: The spacecraft leaves L4 from rest (as seen in the rotating
frame) with an impulse of ∆V = 0.0274 (816 m/s); t = 5.82 years: The spacecraft
arrives at the Earth, makes a swing-by to reverse the sense of motion and it starts going
back to L4; t = 7.62 years: The spacecraft arrives at L4. A new impulse of ∆V = 0.0377
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(1003.8 m/s) is applied to send it back to the Earth and to start the cycler again.

4 The Swing-By in Three Dimensions

The three dimensional swing-by maneuver consists of using a close encounter with a
celestial body to change the velocity, energy, and angular momentum of a smaller body
(a comet or a spacecraft). Figure 4.1 shows the sequence for this maneuver and some
important variables.

Figure 4.1: The swing-by in three dimensions.

It is assumed that the system has three bodies: a primary (M1) and a secondary
(M2) body with finite masses that are in circular orbits around their common center of
mass and a third body with negligible mass (the spacecraft) that has its motion governed
by the two other bodies. The spacecraft leaves the point A, passes by the point P (the
periapsis of the trajectory of the spacecraft in its orbit around M2) and goes to the
point B. The points A and B are chosen in a such way that the influence of M2 at
those two points can be neglected and, consequently, the energy can be assumed to remain
constant after B and before A (the system follows the two-body celestial mechanics). The
initial conditions are clearly identified in Figure 4.1: the periapsis distance rp (distance
measured between the point P and the center of M2), the angles α and β and the velocity
Vp. The distance rp is not to scale, to make the figure easier to understand.

The result of this maneuver is a change in velocity, energy, angular momentum and
inclination in the Keplerian orbit of the spacecraft around the central body. A numerical
algorithm to solve the problem has the following steps:

(1) Arbitrary values for the parameters rp, Vp, α, β and γ are given.

(2) With these values the initial conditions in the rotating system are computed. The
initial position is the point (Xi, Yi, Zi) and the initial velocity is (Vxi, Vyi, Vzi),
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where:

Xi = 1 − µ + rp cos(β) cos(α), (4)

Yi = rp cos(β) sin(α), (5)

Zi = rp sin(β), (6)

Vxi = −Vp sin(γ) sin(β) cos(α) − Vp cos(γ) sin(α) + rp cos(β) sin(α), (7)

Vyi = −Vp sin(α) sin(γ) cos(α) + Vp cos(γ) sin(α) − rp cos(β) sin(α), (8)

Vzi = Vp cos(β) sin(γ). (9)

(3) With these initial conditions, the equations of motion are integrated forward in
time until the distance between M2 and the spacecraft is larger than a specified
limit d. At this point the numerical integration is stopped and the energy (E+)
and the angular momentum (C+) after the encounter are calculated.

(4) Then, the particle goes back to its initial conditions at the point P , and the equa-
tions of motion are integrated backward in time, until the distance d is reached
again. Then the energy (E−) and the angular momentum (C−) before the en-
counter are calculated.

An interesting question that appears in this problem is what happens to the inclina-
tion of the spacecraft due to the close approach. Some results regarding this question
for the Earth-Moon system are shown in [10]. To investigate this fact the inclination
of the trajectories were calculated before and after the closest approach. To obtain the
inclinations the equation cos(i) = Cz/C is used, where Cz is the Z-component of the
angular momentum and C is the magnitude of the total angular momentum. Figure 4.2
shows some new results for the case γ = 0 in the Sun-Jupiter system. This constraint
is assumed, because it is the most usual situation in interplanetary research, since the
planets have orbits that are almost coplanar. The horizontal axis represents the angle α,
and the vertical axis represents the angle β. The variation in inclination is shown in the
contour plots. All the angles are expressed in degrees.

Several conclusions come from those results:

(i) when β = 0◦ (planar maneuver) the variation in inclination can have only three
possible values: ±180◦, for a maneuver that reverse the sense of its motion, or 0◦

for a maneuver that does not reverse its motion. Those numerical results agree
with the physical-model, since the fact that β = 0◦ implies in a planar maneuver
that does not allow values for the inclination other than 0◦ or 180◦;

(ii) when β = ±90◦ the variation in inclination is very close to zero;

(iii) when α = 0◦ or α = 180◦ there is no change in the inclination. This is in agreement
with the fact that a maneuver with this geometry does not change the trajectory
at all;

(iv) when the periapsis distance or the velocity at periapsis increases, the effects of the
swing-by in the maneuver are reduced. In the plots shown, this can be verified by
the fact that the area of the regions where the variation in inclination is close to
zero increases.
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Figure 4.2: Inclination change resulted from a close approach in the Sun-Jupiter system.
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5 The Gravitational Capture

Then, attention is given to the problem of gravitational capture. For gravitational capture
it is understood a phenomenon where a massless particle changes its two-body energy
around one of the primaries from positive to negative. This capture is always temporary
and, after some time, the two-body energy changes back to positive and the massless
spacecraft leaves the neighborhood of the primary. Studies related to this problem are
available in [5] and [12 – 16]. The importance of this temporary capture is that it can be
used to decrease the fuel expenditure for a mission going from one of the primaries to
the other, like an Earth-Moon mission. The goal is to apply an impulse to the spacecraft
during this temporary capture to accomplish a permanent one. Since the impulse decrease
the two-body energy of the spacecraft, its magnitude will be smaller if applied during
this temporary capture. An important application of this technique can be found in
trajectories to the Moon with fuel consumption smaller than the fuel required by the [17]
transfer [18 – 21, 5]. In this paper the main concern is to study the forces involved in
this maneuver. The main force is the gravitational force due to the central body, in this
case, the Moon. The others forces are perturbations on the movement of the massless
particle. So, to understand the behavior of the perturbing forces, an analysis was made
by measuring the components of each force. The chosen components are in the radial,
transversal and in the direction of motion of the massless particle. In the radial direction,
the positive sign means that the force is acting opposite to the direction of the body.
In the transversal direction, the positive sign indicates that the force is acting in the
counter-clockwise direction. In the direction of motion, the force is positive when it is
being applied in the direction of the movement of the particle.

Figure 5.1 shows one of those trajectories and the forces acting in the spacecraft in
every moment of time. The curves are:

(1) gravitational radial force;

(2) gravitational transversal force;

(3) centripetal radial force;

(4) centripetal transversal force;

(5) resultant radial force;

(6) resultant transversal force;

(7) gravitational force in the direction of motion;

(8) centripetal force in the direction of motion;

(9) resultant force in the direction of motion.

In the radial direction the force due to the Earth has a negative sign. This means that
the force is pushing the spacecraft to an opposite direction to the Moon. So, it is slowing
down the object. In the transversal direction, this force is also negative, which means that
it is accelerating the spacecraft in the clock-wise direction. In the direction of motion
the sign is also negative, breaking the spacecraft all the time. The centripetal force
acts in an opposite direction from the gravity force due to the Earth, but with smaller
absolute values. So the net result is due to the gravity force of the Earth, which makes
the vehicle to reduce its velocity. The resultant on the transversal direction accelerates
the spacecraft in the clock-wise direction. It is visible that the components radial and in
the direction of motion of the forces are very close to each other. This is a consequence
of the fact that the trajectory is close to radial in most of the trajectory.

The most relevant component is in the direction of motion. This component of the
resulting forces shows that, independent of where the particle came, it is breaking the
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Figure 5.1: Trajectory with C3 = −0.2e, α = 0◦ at perilune and the forces.

particle all the time. The transversal component ever tries to pull the particle to the
Earth-Moon axis. The radial component of the resultant force has the same effect of the
component in the direction of motion. It also shows that the particle is loosing radial
velocity when approaching the central body. These forces slow down the spacecraft
working opposite to the movement of the spacecraft. This is equivalent of applying a
continuous propulsion force against the motion of the spacecraft. In the radial direction
the gravitational force due to the Earth and the centripetal force tends to equilibrium,
but ever rest some work against the movement. This is also true for the component in
the direction of motion. In the transversal direction the forces pull the particle to the
Earth-Moon axis. Understanding these behaviors explains why a particle with a velocity
slower than the escape velocity can escape from the Moon. It is the opposite case for the
capture and it happens for all the cases studied. Some analytical results with respect to
this problem are available in [22].

6 Conclusions

In this paper, trajectories in the planar restricted three-body problem with near-zero
∆V to move a spacecraft between any two points in the group formed by the Earth and
the Lagrangian points L3, L4, L5 in the Earth-Moon and Earth-Sun systems are found.
It is shown how to apply these results to build a cycler transportation system to link
all the points in this group. For the Sun-Earth system, it is also shown how to use one
or more “swing-by” with the Earth to build a cycler transportation system between the
Earth and the Lagrangian points L4 and L5, with small ∆V required for maneuvers in
nominal operation.

Looking at the results for the Earth-Moon system, we can conclude that:

(i) there are trajectories with ∆V near the escape velocity to move a spacecraft from
the Moon back to the Moon in the Earth-Moon system, using the restricted three-
body problem as a model;

(ii) there is a new type of trajectory for this transfer that requires a ∆V under the
escape velocity;
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(iii) there are trajectories connecting the Moon and the Lagrangian points L3, L4

and L5;

(iv) there are trajectories that make consecutive close approaches with the Earth and
the Moon.

Those orbits are shown in this paper and they can be used in three situations:

(a) to transfer a spacecraft from the Moon back to the Moon;

(b) to transfer a spacecraft from the Moon to the respective Lagrangian points L3, L4

and L5;

(c) to transfer a spacecraft to an orbit that passes close to the Moon and to the Earth
several times, with the goal of building a transportation system between these two
celestial bodies.

The three-dimensional restricted three-body problem is also used to study the swing-
by maneuver. The effects of the close approach in the inclination of the spacecraft is
studied and the results show several particularities, like: β = 0◦ allows only ±180◦, and
0◦ for ∆i, β ± 90◦ or α = 0◦ or 180◦ implies in ∆i = 0◦, etc.

Some particularities of the gravitational capture problem are also studied and the
forces acting are also shown. This study answers some questions about the phenomena.
Two of the forces are relatively weak, and they act as disturbing forces: the gravitational
force due to Earth and the centrifugal force. These forces working together slow down
the spacecraft with a force in the opposite direction of the spacecraft’s motion. This is
equivalent of applying a continuous propulsion force against the motion of the spacecraft.
In the radial direction the gravitational force due to Earth and the centripetal force tends
to equilibrium, but ever rest some work against the gravitation of the central body. It is
also true for the components in the direction of motion for these forces. In the transversal
direction, the forces pull the particle to the Earth-Moon axis. The understandings of
these behaviors explain why a particle with a velocity slower than the escape velocity
can escape from the Moon. It is the opposite case for the capture and it happens for all
the cases studied.
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Abstract: The coordination and control of a constellation of spacecraft, flying
a few meters from one another, dictates several interesting design requirements,
including efficient architectures and algorithms for formation acquisition, reori-
entation and resizing. The spacecraft must perform these transitions without
interfering or colliding into each other. Furthermore position keeping is funda-
mental for formation efficiency. This paper presents an optimal deployment of
the DARWIN formation using the potential function control technique in the
vicinity of the Sun-Earth L2 point. The method hinges on defining a potential
function from the geometric configuration of the constellation together with
any collision avoidance requirement. A review of the fundamentals of relative
motion and dynamics is presented before describing the features of the differ-
ent control algorithms and validating the method using Lyapunov’s theorem.
The potential function method has been used to control both translational and
rotational control. Obstacles, in the shape of other satellites and constrained
payload pointing directions have been included. Finally it will be shown that
the attitude control algorithm can be successfully used to avoid plume impinge-
ment that can have catastrophic consequences for the mission.
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1 Introduction

Over the past decade, the introduction of cost reduction policy by the major space agen-
cies caused a paradigm shift in the design of scientific satellites, as the primary metric
by which spacecraft were judged switched from purely performance to specific perfor-
mance or performance per unit cost [Cyrus and Miller, 1997]. Several new technologies,
including multifunctional structures, micro-electro-mechanical systems, nano-technology
and distributed satellite systems, have the potential to revolutionise the field of satellite
design. In particular in the field of distributed satellite systems, that is systems based
on dividing the tasks among several light and small satellites, two approaches exist: con-
stellations and formations. The difference between the two methods lies in the relative
positioning between satellites. Constellations are positioned relative to an object, such
as the Earth, while in formations spacecraft are positioned relative to each other. Each
satellite communicates with the others and shares the processing, communications, and
payload or mission functions. Thus the cluster of satellites forms a “virtual satellite”.
This concept promises many benefits, including greater utility and flexibility by allow-
ing the cluster to reconfigure and optimise its geometry for a given mission, enhanced
survivability, and increased reliability.

In general terms, the formation-flying approach has the following advantages: the
opportunity of completing space observation missions without large and expensive ground
infrastructures, reducing operational costs. The deeper covering of the phenomena under
observation, since different instruments, under different points of view, inspect it at the
same time. By substituting one large complex satellite with a group of small satellites,
a better flexibility is achieved, with the chance of reconfiguring the system in case of
malfunction, thus avoiding the mission failure. The failure of one spacecraft will not
compromise the mission. The employment of identical platforms within the constellation
allows a standardisation of the manufacturing, thus reducing production costs. The
system functionality is not extremely dependent from technology: it is possible to launch
a temporary formation with state-of-the-art instruments and later increasing the system
performance by adding one or more spacecraft to the formation. On the other hand, the
development of formation-flying presents the following technological challenges: accurate
sensors are needed to allow a precise determination of the state of the system in order
to control the formation. High precision in spacecraft coordination is indispensable in
order to avoid troubles linked with the reciprocal distances among the elements of the
formation, most of all collisions between the satellites.

Current studies in spacecraft formation control vary from individual satellite control
to the use of stochastic algorithms [Gurfil et al., 2002]. The main problem to be addressed
in formation control is that of workload. For small, Earth centred formations, individual
control is a viable options. As the satellite number and operational distance from Earth
increase, methods that automate the control processes become a necessity. The method
proposed here aims, to drastically reduce the workload required to control the formation.
The potential function control method represents a means of both estimating the desired
states of a spacecraft’s location, and autonomously correct and control these states. It
is based on Lyapunov’s method for stability analysis and its efficiency in the problem of
collision avoidance is due to the fact that it aims to avoid a particular condition rather
than to reach a state of equilibrium.
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2 Formation Flight Dynamics

We will now introduce the model used for formation dynamics, including the simplifica-
tions used. We assume that the Sun-Earth system is not disturbed by the inclusion of a
third infinitively small body. The whole system rotates with a constant angular velocity
ω, about the baricentre G, the position of which is a function of the Earth mass mE and
the Sun mass mS as shown in Figure 2.1. The Earth is in a circular orbit around the
Sun at distance RES. Additionally, Sun and Earth are supposed to be perfect spherical
bodies.

The acceleration of a spacecraft M in the inertial frame R0 is:

aM/R0
= aM/R + aM∈R/R0

+ 2ΩR/R0
× vM/R ,

where a denotes an acceleration, v a velocity and Ω an angular velocity. In the local
frame the acceleration becomes:

aM/R0
=





ẍ
ÿ
z̈



 − ω2





RGL2 + x
0
z



 − 2ω





ż
0
−ẋ



 , (1)

where RGL2 is the distance from G to L2.

Figure 2.1: Geometric Configuration.

The forces f acting on the spacecraft are gravitational attraction and non-Newtonian.
Because of the small size of satellites we confuse their centre mass with their gravitational
centre. Therefore the equations of motion of a satellite are:

aM/R0
= −µE

r1

‖r1‖
3
− µS

r2

‖r2‖
3

+ f ,

where µE and µS are respectively the earth and the sun gravitational constants. In
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component form the equations of motion become:

ẍ − 2ωż − ω2(RGL2 + x) +
µE(REL2 + x)

r3
1

+
µS(RSL2 + x)

r3
2

= fx,

ÿ +

(

µE

r3
1

+
µS

r3
2

)

y = fy,

z̈ + 2ωẋ − ω2z +

(

µE

r3
1

+
µS

r3
2

)

z = fz,

(2)

where REL2 and RSL2 respectively the distances from the Earth and the Sun to the L2
point.

It is clear that these equations are non-linear as r1 and r2 hinge on the satellite
position into the local frame. Moreover, the x and z variables are coupled whereas y is
independent [Alfriend et al., 2002]. The majority of studies dealing with formation flying
adopt linear equations of motion. The linearisation is very accurate since the distances
of the satellites from the L2 point are very small compared to the distances between the
L2 point and the Earth and the Sun [Hamilton et al., 2002]. The linearisation yields:

ẍ − 2ωż − (ω2 + 2µ2
0)x = fx,

ÿ + µ2
0y = fy,

z̈ + 2ωẋ + (µ2
0 − ω2)z = fz,

(3)

with

µ2
0 =

µS

R3
SL2

+
µE

R3
EL2

.

Equation (3) will be used to model the relative motion of each satellite from the reference
orbit.

3 The Potential Function Control Method

A dynamical system is stable in the sense that it returns to equilibrium after any per-
turbation, if and only if, there exists a Lyapunov function; some scalar function V (x) of
the state with the following properties.

Let ẋ = f(x), f(0) = 0 and 0 ∈ Ω ⊂ ℜ
n. If there exists a C1 function V : Ω → ℜ

such that:

(1) V (0) = 0;

(2) V (x) > 0 ∀x ∈ Ω, x 6= 0;

(3) V̇ (x) ≤ 0 ∀x ∈ Ω,

than x = 0 is locally stable. Furthermore, if

(4) V̇ (x) < 0 ∀x ∈ Ω, x 6= 0,

then x = 0 is locally asymptotically stable. This theorem can be easily modified by
replacing (3) by V̇ (x) ≥ 0 for limited times, which implies that V̇ (x) ≤ 0 after a certain
time and then the initial theorem is fulfilled.
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The method then consists in controlling V to fulfil Condition 3 of Lyapunov’s theorem.
The time derivative of V is:

V̇ = ∇f · v,

where v is the velocity of the spacecraft. The velocity of the spacecraft will be controlled
as:

vdesired = −k
∇V

‖∇V ‖

,

where ∇V
‖∇V ‖

is the unit vector normal to the isopotential surface and k is a shaping

parameter which regulates the amplitude of vdesired, which is then analytic. When the
control is switched on, the time derivative of the potential function is forced to be equal
to:

V̇ = − k ‖∇V ‖,

which is non-positive thus fulfilling Lyapunov’s theorem. Thus the cluster converges to
the goal position avoiding collisions. Through the desired velocity, the path followed by
the satellite is completely defined by the potential function. To optimise the time of the
deployment and the fuel consumption this function must be shaped cleverly. Also, the
velocity desired must be obtained efficiently despite of bounded thrusters and imperfect
sensors.

3.1 Translational control

The component that controls the spacecraft translations will guide towards the goal
positions while avoiding collisions. The attractive component, Va Trans is a function of
the distance between the current spacecraft position and the desired final position while
the repulsive component, Vrep Trans is a function of the current spacecraft position and
the obstacle position:

Va Trans = 1
2 (r − rf )

2 Vrep Trans = AT e−BT(r−robs)
2

. (4)

With r the current spacecraft position, rf the final position robs the obstacle position and
AT and BT shaping parameters. One of the weak points of the potential function control
method is the presence of saddle points in the potential function. The main problem
consists in dimensioning the function around these points so that the satellites behave
correctly there. We therefore develop a repulsive component that always maintains the
same width. The parameter that controls the amplitude of the repulsive component now
hinges on the distance from the target, rtarget, as well as the width of the obstacle dobs:

AT =
1

2

eBTd2

obs

BTdobs

(

rtarget +
1

2BTdobs

)

.

3.2 Rotational control

The component that controls the spacecraft rotation will guide towards the desired at-
titude while avoiding any constrained directions. The attractive component, Va Rot is
a function of the angular distance between the current spacecraft attitude and the de-
sired final attitude while the repulsive component, Vrep Rot is a function of the current
spacecraft attitude and the obstacle location:

Va Rot = 1
2 γ2 Vrep Rot = AR e−BRδ2

. (5)
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Figure 3.1: Translational Manoeuvre.

With AR and BR are shaping parameters and:

γ = arccos(np · nf), δ = arccos(np · nobs), (6)

where np is the unit vector along the payload axis, nf is the target unit vector and nobs

is the unit vector along any avoidance directions. Once again we develop a repulsive
component that always maintains the same width. The parameter that controls the am-
plitude of the repulsive component now hinges on the distance from the angular distance
from the target, γtarg, as well as the angular width of the obstacle δobs:

AR =
1

2

eBRδ2

obs

BRδobs

(

γtarg +
1

2BRδobs

)

.

In Figure 3.1 we see the avoidance action taken by two spacecraft on a colliding trajectory,
while in Figure 3.2 we can see how the payload follows a trajectory from a random initial
position to a desired target attitude, avoiding a constrained direction.

3.3 The potential function

We are now able to construct a Lyapunov function for each spacecraft that will guide
them to their goal positions while avoiding collisions and avoiding restricted pointing
directions. This function V consists of two components: attractive Va and repulsive Vrep.
Moreover, as we have seen the attractive and repulsive components will be made up of
two parts each to account for the positional and attitude requirements. The potential
function therefore will be:

V =
1

2
(r − rf )

2 +
1

2
γ2 + AT e−BT(r−robs)

2

+ AR e−BRδ2

.

4 Plume Impingement Avoidance

Spacecraft thrusters send gas streams of various species onto spacecraft surfaces. The
plume of gas particles emitted by thrusters may cause contamination, degradation or



NONLINEAR DYNAMICS AND SYSTEMS THEORY, 6(4) (2006) 401–409 407

Figure 3.2: Rotational Manoeuvre.

damage to surface and can either directly or indirectly cause localized heating and con-
tamination. Plumes and the resultant impingement phenomena are currently not well
understood. Simple engineering models are used conservatively to estimate plume effects.
The problem of plume impingement is a major concern for a cluster of spacecraft with
close relative motion. The problem is compounded by the fact that when approaching
each other, the spacecraft will have to fire the thrusters towards the incoming satellite
to manoeuvre away from it. We intend to use the potential function method introduced
earlier to address and solve this problem. The idea is to impart an attitude to the satel-
lite that places the other spacecraft in a cone, where there are no exhaust particles, as
shown in Figure 4.1.

Figure 4.1: Plume Impingement Avoidance Cone.

To achieve this we make use of the potential method, and in particular the attitude con-
trol component explained in the previous section. We consider two unit vectors, nt and
rs, the first directed along the plume direction the second directed along the avoidance
cone.
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Figure 4.2: Plume impingement during deceleration phase.
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Figure 4.3: Plume impingement during avoidance phase.



NONLINEAR DYNAMICS AND SYSTEMS THEORY, 6(4) (2006) 401–409 409

The thrusters will then fire, if and only if, the plume lies outside the avoidance cone.
In Figure 4.2 and 4.3 we can see that the method appears to be effective in avoiding plume
impingement. At first two colliding spacecraft, decelerate their velocities, in Figure 4.2,
before performing the avoidance manoeuvre, in Figure 4.3.

5 Conclusions

In this paper we have proposed some corrections to the traditional potential function
control method. The strategies address the main drawback of such method, the presence
of local minima. The methodology has been applied to a formation of spacecraft placed
at the Sun-Earth L2 libration point. The control has been implemented for both transla-
tional and rotational movements, ensuring that the spacecraft reach the desired position
with the required attitude. Obstacles, in the shape of other spacecraft or avoidance pay-
load pointing areas have been accounted for in developing the potential function. Finally,
the method has been used to avoid the possibility of plume impingement with promising
results.
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Abstract: Relative motion between two or more satellites has been studied
for a long time, as the works of W.H. Clohessy and R.S. Wiltshire, dated 1960,
or the studies of J. Tschauner, dated 1967, can testify. Not only these early
works are milestones for the relative motion modelling, as they provide linear
models whose accuracy in terms of motion prediction is granted in the sim-
plified assumption of pure Keplerian motion, but they are also powerful tools
to gain insight into the complex dynamical properties of this type of motion.
These models supply conditions on the initial relative position and velocity
that allow the relative orbits to be periodic, that is closed orbits. When per-
turbations, such as Earth oblateness and air drag effects, or even the simple
nonlinearities of the keplerian gravitational attraction are taken into account
in the model, an analytical solution appears more and more complicated to
be derived, if not impossible. Simple relations on the initial conditions lead-
ing to periodic orbits, such as those that are well known when considering
Hill-Clohessy-Wiltshire (HCW) equations, are not to be expected without in-
troducing some simplifications. In these cases a numerical approach could still
be able to locate the exact conditions that result in a minimum drift per orbit.
This work investigates the possibility of using a global optimization technique
to locate the initial conditions resulting into minimal drift per orbit. Before us-
ing this approach in the nonlinear problem, the methodology is tested on Hill’s
and Tschauner-Hempel’s models, where an analytical solution is well known.
The global optimizer is essentially a genetic algorithm that considers the initial
relative velocities between the satellites as the chromosomes of the individuals
of the population, the initial relative position is considered as given. This not
only reduces the number of variables the GA has to optimize, but it also allows
to search for closed relative orbits of a predefined dimension. Results show
that the methodology is returning the analytical results with a satisfactorily
precision and that is able to locate bounded motion also when nonlinearities
become important.
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Nomenclature

LVLH = Local Horizontal Local Vertical
x, y, z = relative position in LVLH frame
ẋ, ẏ, ż = relative velocity in LVLH frame
subscript i= values at the initial time
subscript f = values at the final time
f = fitness function
ω0 = angular velocity of the circular orbit
a = semi-major axis
e = eccentricity
i = inclination
Ω= RAAN
ω = argument of perigee
n = mean motion.

1 Introduction

Many efforts have been made in the last years on modelling and controlling satellites
relative dynamic. In [7] conditions for relative orbits invariant with respect to the J2
perturbation are given in terms of mean orbital elements. In literature several linear
models of relative dynamics including the second harmonic of the gravitational field,
eccentricity and the air drag can be found (see [4, 6, 8]) but nor the analytical solution
neither the initial conditions for periodic relative orbits are obtainable in most of these
cases. The use of evolutionary/genetic approaches in the aerospace research, especially
in mission analysis and design phase, is quite recent [5]. The difficulties encountered
when using genetic algorithm in this field stand in the strong dependence that conver-
gence speed shows upon the choice of the fitness function, the mutation and crossover
probabilities, the population size and the number of generations. There is not a rigorous
mathematical rule to choose these parameters in the best possible way, many times con-
vergence can be achieved only after trial and error adjustment of the parameters with
respect to the particular problem. For these reasons many think that global optimization
using stochastic algorithms is more art than science. The benefits of these techniques are,
though, huge. Stochastical global optimizers may approach many problems, otherwise
unsolvable. A review on the use of global optimization techniques in problems related to
Mission Analysis and System Design may be found in some recent studies funded under
the European Space Agency ARIADNA scheme (see [2]).
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2 Genetic Algorithms

Genetic Algorithms (GA) are stochastic global search methods that are based on the
principle of natural selection and evolution of the species. These kinds of algorithms
result to be effective for optimization problems containing different local optima with
discontinuous parts between them. In these cases the calculus-based methods can con-
verge to a local optimum rather then to the desired one. In the present paper a genetic
algorithm is applied to minimize the drift per orbit in the simple case of two different
linearized keplerian dynamic models. The first model of dynamics (HCW) considers a
reference orbit without eccentricity (Hill-Clohessey-Wiltshire equations, [10]), the sec-
ond model (TH) takes into account the eccentricity (Tschauner-Hempel equations [8]
and [11]). After showing the convergence of the method to the well-known analytical
conditions that exist for these simple dynamics, the algorithm is run with the nonlinear
keplerian relative motion equations and considering an eccentricity value of e = 0.3.
The relative motion is shown in the LVLH frame. The objective function chosen and
maximized by the genetic algorithm has the following form

f(x, y, z) = −

√

(xf − xi)2 + (yf − yi)2 + (zf − zi)2 (1)

representing the error in relative position between the initial conditions and those ob-
tained at the end of the integration. The integration is performed over one orbital period
in the linearized cases. For the nonlinear model five periods have been used to make the
algorithm converge in a satisfying manner.

If a non linear dynamic, that takes into account all the possible perturbative effects,
is considered, there is no clear argument that tells us information on the convexity of
the objective function. On the other hand, in the Hill and T.-H. models, the objective
function is expected to be convex in the [e, ẏ, f ] space. The software used for the numer-
ical search is the online PIKAIA freely available tool (see [1]). PIKAIA uses a decimal
alphabet made of 10 simple integers (0 through 9) for encoding the chromosome (ẋ, ẏ, ż).
The mutation and crossover characteristic are the default PIKAIA’s ones (see [1]).

3 Validation of the GA

3.1 Using the genetic algorithm to find analytical Hill’s solutions

Considering the simple HCW equations to describe the relative dynamic between two
orbiting objects we have that the analytical condition,

ẏ0

x0
= −2ω0 (2)

on the relative initial conditions, assures a periodic motion. If we now perform some
numerical simulations considering a circular orbit with semimajor axis of 7000 km for
which the above relation returns a ratio of ẏ0

x0

= −2.156E − 3s−1 we get the results
contained in Table 3.1. The optimizer is able to converge to the global minimum that,
in this case, is also the only minimum of the problem.

3.2 Using genetic algorithm to find analytical Tschauner-Hempel’s solutions

As soon as we consider also the effect of the eccentricity on the relative satellite motion,
the linear equations become with time periodic coefficients (Tschauner, 1967, [8]). In this
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Individuals Generations ẏ0

x0

pikaia Fitness function

20 50 -2.154459E-3 -2.721005E-2
20 100 -2.154459E-3 -2.721005E-2
50 100 -2.155201E-3 -1.425242E-2
100 100 -2.155892E-3 -2.164824E-3
100 500 -2.155892E-3 -2.164824E-3
100 1000 -2.155892E-3 -2.164824E-3

Table 3.1: Convergence of the GA increasing generations and population size.

case the relations between the initial conditions in order to obtain a periodic orbit are
dependent on the true anomaly of the reference orbit and are quite complicated (Inalhan
et al., 2002, [3]). When the true anomaly is zero, though, it is possible to write a simple
analytical relation shown in Equation (3) (Inalhan et al., 2002, [3]):

ẏ0

x0
= −

n(2 + e)

(1 − e)
3

2 (1 + e)
1

2

. (3)

To perform the numerical simulations 100 individuals and 100 generations have been
used. Higher values do not improve the quality of the solution.

Eccentricity ẏ0

x0

eq.(1) ẏ0

x0

pikaia Percentage difference Fitness function

e = 0 -2 -1.999999 -0.00005% -3.4e-10
e = 0.1 -1.9091 -1.90899 -0.0058% -5.2e-8
e = 0.2 -1.8333 -1.83339 0.00491% -6.9e-8
e = 0.3 -1.7692 -1.76920 -0.000056% -2.9e-8
e = 0.4 -1.7143 -1.714199 -0.005892% -8.9e-7
e = 0.5 -1.6667 -1.666599 -0.006060% -1.2e-6
e = 0.6 -1.625 -1.624998 -0.000123% -3.3e-10
e = 0.7 -1.58823 -1.58819 -0.002519% -4.9e-6
e = 0.8 -1.55556 -1.555599 0.002507% -6.4e-5
e = 0.9 -1.526315 -1.526399 0.005503% -1.6e-5

Table 3.2: GA restitution of the analytical TH conditions for different eccentricities.

The results in Table 3.2 are plotted in Figure 3.1.
As it was expected, the behaviour of the fitness function indicates an infinite number

of minima but located in agreement to the Equation (3) (the real fitness has opposite
sign with respect to the one here reported as the minima shown in Figure 3.2 are optimal
maximum for the GA).

4 Searching Closed Relative Orbits for the Nonlinear Dynamic

When applying the above presented methodology to find the formations with minimal
drift per orbit in a non linear dynamic case, problems arises in the propagation scheme
that introduces difficulties in the calculation time and in the accuracy of the solution.
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Figure 3.1: TH analytical solution vs. TH solution with GA.

Figure 3.2: Fitness value vs. eccentricity and ẏ.
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Subtracting directly the Cartesian coordinates of the two satellites can easily degrade
the quality of the relative position obtained, as it subtract two very close values. In [9]
an approach based on a geometric method (called unit sphere projection) is proposed.
Integrating the relative dynamic in terms of orbital elements (for the Keplerian case just
the true anomaly has to be used, see [9]) and subsequently translate the differences in
terms δx, δy, δz is numerically more accurate and the computation time is dramatically
reduced. This approach has been used here. In Table 4.1 the used genetic parameters
are reported.

Crossover probability Mutation rate
initial minimum maximum

0.85 0.005 0.0005 0.25

Table 4.1: Genetic parameters for nonlinear approach.

After numerous trials the number of generations has been set to 500 with a population
of 100 individuals and simulations have been performed for different relative orbit sizes.
The initial dimension of these orbits increase from a 2 km relative position on the three
axes to a 500 km one.

Figure 4.1:
ẏ0

x0

ratio compared for the linearized and the nonlinear models (logarithmic scale
on x axis).

Comparing the analytical relation of TH with the ẏ0

x0

rate obtained trough the GA
it is easy to notice how the linear condition loses its capability to produce bounded
orbits as the formation dimension increase. Figure 4.1 shows the comparison between
the results given by Equation (3) and the one given by the genetic algorithm. As the size
increases the ratio ẏ0

x0

, as obtained from our numerical simulations, decreases drastically.
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As expected the relation given in Equation (3) allows to obtain closed orbit only for
small formations. The GA approach is therefore suitable to get the condition of periodic
motion in these cases. In Figure 4.2 and Figure 4.3 a plot of ten orbits is shown as
obtained propagating the initial conditions given by Equation (3) and by the GA and for
two different formations of different sizes: a small one (2 km) ad a larger one (200 km).

Figure 4.2: 10 orbits (TH vs. nonlinear) for low size (2 km).

Figure 4.3: 110 orbits (TH vs. nonlinear) for high size (200 km).

As an additional proof of the GA convergence to a satisfying solution the orbital
parameters of the two spacecrafts are calculated and compared in Table 4.2.

The only parameter that clearly maintains its value unchanged (considering the nu-
merical errors) is the semi-major axis a. This result coincides with the only constrain to
close a relative orbit in a Keplerian motion: the equality of the semi-major axis. In this
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Vehicle N1 Vehicle N2 % difference
a 7000 km a 7000.124 km 0.0018 %
e 0.3 e 0.2928 2.4 %
i 35 i 35.012 0.034%
Ω 35 Ω 33.99 2.9%
ω 35 ω 1.405 95.99 %

Table 4.2: Orbital parameters comparison.

way the two orbits have the same orbital period T and obviously the relative position is
repeated every T seconds.

5 Conclusion

The GA strategy here used resulted to be a valid instrument to analyze the behavior of
the nonlinear relative dynamics between two satellites in Keplerian orbit. After having
re-obtained the Hill’s and T.-H.’s solutions for bounded trajectories to check the validity
of the algorithm, the GA has been run for the complete mathematical model of relative
motion in Keplerian orbit. Considering the numerical approach and the limitations in
terms of accuracy for the solutions, the matching period condition have been obtained
for closing the relative orbit. The initial velocities generated with the genetic calculation
match the analytic relation for T.-H. demonstrating the validity of the linear approach
for low dimensions orbits. Increasing size results in a obliged switching to the conditions
obtained numerically. Future developments of this new approach to the formation flying
problem include the analysis of J2 and drag effects. The present paper represents an
introduction and a validation work for the authors whose aim is to apply and study the
possibilities given by the genetic algorithm to the most complete as possible model of
the relative dynamics of satellites.
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Modern stability theory, oscillations and optimization of nonlinear systems developed in
respond to the practical problems of celestial mechanics and engineering has become an
integral part of human activity at the end of XX century.

If, for a process or a phenomenon, for example, atom oscillations or a supernova
explosion, a mathematical model is constructed in the form of a system of differential
equations, the investigation of the latter is possible either by a direct (numerical as a
rule) integration of the equations or by its analysis by qualitative methods.

In XX century the fundamental works by Euler (1707 – 1783), Lagrange (1736 – 1813),
Poincaré (1854 – 1912), Lyapunov (1857 – 1918) and others have been thoroughly devel-
oped and applied in stability and oscillations investigation of nature phenomena and
solution of many problems of technical progress.

In particular, the problems of piloted space flights and those of astrodynamics were
solved due to modern achievements of stability theory and motion control. The Poincaré
and Lyapunov methods of qualitative investigation of solutions to nonlinear systems of
differential equations in macro-world study have been refined to a great extend though
not completed. On the other hand modeling and establishing stability conditions for
micro-processes are still on the stage of accumulating ideas and facts and forming the
principles. One of the examples is the fact that the stability problem of thermonuclear
synthesis has not been solved yet.

Obviously, this is one of the areas for application of stability and control theory in
XXI century. For the development of efficient methods and algorithms in this area the
interaction and spreading of the ideas and results of various mathematical theories will
be necessary as well as the co-operation of scientists specializing in different fields.

The mathematical theory of optimal control (of moving objects, water resources,
global process in world economy, etc.) is being developed in terms of basic ideas and
results obtained in 1956 – 1961 and formulated in the Pontryagin’s principle of optimality
and Bellman’s principle of dynamical programming. Considering manufacturing and pro-
duction engineering activities, due to the difficulties of description of discrete events and
hybrid processes, various heuristic and soft computing approaches have been developed
for solving optimization problems. The efforts of many scholars and engineers in the
framework of these ideas resulted in the efficient methods of control for many concrete
systems and technological processes.
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