
Nonlinear Dynamics and Systems Theory, 6 (4) (2006) 389–400

A Survey on Space Trajectories

in the Model of Three Bodies

A.F.B.A. Prado∗

Instituto Nacional de Pesquisas Espaciais,
São José dos Campos, 12227-010, Brazil

Received: January 12, 2004; Revised: Revised: April 4, 2005

Abstract: This paper presents a survey on space trajectories in the circular
restricted three-body problem. In this situation, a spacecraft moves under the
gravitational forces of two bodies, which are assumed to be in circular orbits.
First of all, there is a search for orbits that can be used to transfer a spacecraft
from one body back to the same body or to transfer a spacecraft from one
body to the respective Lagrangian points L4 and L5. The method employed
is to solve the Two-Point Boundary Value Problem. The close approach be-
tween the spacecraft and the celestial bodies involved is also studied in the
three-dimensional space. Then, the gravitational capture is studied. It is a
characteristic of some dynamical systems, like the three- or four-body system,
where a hyperbolic orbit around a celestial body can be transformed in an
elliptic orbit without the use of any propulsive system.
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1 Introduction

This paper has the goal of making a survey of trajectories to make orbital transfers of
a spacecraft that is travelling in space under the gravitational forces of two bodies. It
presents some results available in the literature, as well as some unpublished results in
the direction.

First of all, it is considered the problem of finding transfer orbits in the restricted
problem. Several situations are studied individually. A family of transfer orbits that
can transfer a spacecraft from the Moon back to the Moon again (passing close to the
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Lagrangian point L3 in most of the cases) with minimum fuel consumption is considered.
The family of transfer orbits from the Moon back to the Moon that requires an impulse
with magnitude lower than the escape velocity from the Moon is studied and explained
separately. Then, an extension is made to study similar trajectories for the Sun-Earth
system, including a new suggestion to build a cycler transportation between the Earth
and the Lagrangian point L4.

After that, a swing-by maneuver in three dimensions is studied. The swing-by ma-
neuver is a very popular technique used to decrease fuel expenditure in space missions.
The most usual approach to study this problem is to divide the problem in three phases
dominated by the “two-body” celestial mechanics. Other models used to study this prob-
lem are the circular restricted three-body problem (see [1 – 3]) and the elliptic restricted
three-body problem [4]. In the present paper, the swing-by maneuvers are also studied
under the model given by the three-dimensional circular restricted three-body problem.
Particular attention is given to study the inclination change due to this maneuver.

Finally, the problem of gravitational capture in the regularized restricted three-body
problem is studied. For gravitational capture it is understood a phenomenon where a
massless particle changes its two-body energy around one of the primaries from positive
to negative. This capture is always temporary and, after some time, the two-body
energy changes back to positive and the massless spacecraft leaves the neighborhood of
the primary. The importance of this temporary capture is that it can be used to decrease
the fuel expenditure for a mission going from one of the primaries to the other, like an
Earth-Moon mission [5]. The goal is to apply an impulse to the spacecraft during this
temporary capture to accomplish a permanent capture. Since the goal of this impulse
is to decrease the two-body energy of the spacecraft, its magnitude will be smaller if
applied during this temporary capture.

2 Mathematical Model

For the research performed in this paper, the equations of motion for the spacecraft
are assumed to be the ones valid for the well-known three-dimensional restricted circular
three-body problem. The standard dimensionless canonical system of units is used, which
implies that: the unit of distance is the distance between M1 and M2; the mean angular
velocity (ω) of the motion of M1 and M2 is assumed to be one; the mass of the smaller

primary (M2) is given by µ =
m2

m1 + m2

(where m1 and m2 are the real masses of M1

and M2, respectively) and the mass of M2 is (1 − µ); the unit of time is defined such
that the period of the motion of the two primaries is 2π and the gravitational constant
is one. There are several systems of reference that can be used to describe the three-
dimensional restricted three-body problem [6]. In this paper the rotating system is used.
In the rotating system of reference, the origin is the center of mass of the two massive
primaries. The horizontal axis (x) is the line that connects the two primaries at any time.
It rotates with a variable angular velocity in such way that the two massive primaries
are always on this axis. The vertical axis (y) is perpendicular to the (x) axis. In this
system, the positions of the primaries are: x1 = −µ, x2 = 1 − µ, y1 = y2 = 0. In this
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system, the equations of motion for the massless particle are [6]:
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ÿ + 2ẋ = y − (1 − µ)
y

r3
1

− µ
y

r3
2

, (2)

z̈ = −(1 − µ)
z

r3
1

− µ
z

r3
2

, (3)

where r1 and r2 are the distances from M1 and M2.

3 Transfer Orbits in the Restricted Problem

The problem considered here is the problem of finding trajectories between two points
that are fixed in the rotating coordinate system. This is the famous TPBVP (two point
boundary value problem). There are many orbits that satisfy this requirement, and the
way used in this research to find families of solutions is to specify a time of flight for
the transfer. Then, the problem becomes the Lambert’s three-body problem, that can
be formulated as: “Find an orbit (in the three-body problem context) that makes a
spacecraft to leave a given point A and go to another given point B, arriving there after
a specified time of flight”. Then, by varying the specified time of flight, it is possible
to find a whole family of transfer orbits and study them in terms of the ∆V required,
energy, etc. The transfers considered here are all restricted to the plane of motion of the
two primaries.

Several families made of different trajectories to make a transfer from M2 back to the
M2 and to the Lagrangian points are shown in [7] for the Earth-Moon system and in [8]
for the Sun-Earth system. A new pair of transfers from the Moon back to the Moon is
showed in Figure 3.1, one involving a hyperbolic transfer (faster) and one involving an
elliptic transfer (slower).

Figure 3.1: Transfer orbits in the Earth-Moon system, as seen in the rotating frame.

An interesting type of transfer was found [7] that requires an impulse with a mag-
nitude lower than the escape velocity from the Moon. This possibility is opened by
the restricted three-body problem model. It uses the perturbation of the third-body
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(the Earth in this case) to help the massless particle to escape from the Moon (the
first body), and it decreases the ∆V required for the maneuver. Remember that the
escape velocity is defined as the velocity required to escape one celestial body consid-
ering the system governed by the “two-body” celestial mechanics. Figure 3.2 shows
one of those transfers. The initial conditions in canonical units for this trajectory
are: x = 0.987871437, y = −0.004786681, ẋ = 2.220000000, ẏ = 0.000000000,
Vesc = 2.251139608, ∆V − Vesc = −0.031139608, where Vesc is the escape velocity
from the Moon.

Figure 3.2: Transfer from the Moon back to the Moon with ∆V − Vesc < 0.

Figure 3.3 shows a transfer from the Moon to the Lagrangian points and back to
the Moon, also from [7]. This trajectory pass twice by the Lagrangian points visited.
The initial conditions in canonical units for this trajectory are: x = 0.987871437, y =
−0.004500000, ẋ = −0.100000000, ẏ = −3.063600000, Vesc = 2.321739099, ∆V −Vesc =
0.743349025.

Figure 3.3: Transfer from the Moon to the Lagrangian points.

Several trajectories to transfer a spacecraft between the Earth and the Lagrangian
points with minimum ∆V are shown in [8]. In the present paper one of them is shown
in details, because it generates results for the construction of a cycler transportation
between the triangular Lagrangian points and the Earth. The spacecraft leaves the
Earth and visits the Lagrangian points in the order L4 (in 1.81 years), L3 (in 5.49 years),
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L5 (in 9.20 years) and then it returns to the Earth’s neighborhood (in 11.00 years).
Figure 3.4 shows the first two revolutions of this trajectory. The particular important
point of this orbit is that after the close approach with the Earth (in the end of the
first revolution) the spacecraft starts a new tour to the Lagrangian points, in the reverse
order. Integrating this trajectory for a longer time it is possible to see that the first five
revolutions have alternating directions of motion.

Figure 3.4: Trajectory linking the Earth and the Lagrangian points.

The “swing-by” that reverses the direction of motion discovered in this trajectory can
be used to build a cycler transportation system between the Earth and the Lagrangian
point L5 as shown in [8]. In the present paper, an extension is made to build a cycler
system for the Lagrangian point L4, by using the mirror image theorem [9]. It is necessary
to find the mirror image of the trajectory linking the Earth and the Lagrangian point
L5. Figure 3.5 shows this trajectory.

Figure 3.5: The cycler system between the Earth and L4.

Note that the mirror image of the legs for an Earth-bound trip in now a L4-bound trip
and the mirror image of the L5-bound leg is now the Earth-bound leg. The time-line for
a complete cycler is: t = 0: The spacecraft leaves L4 from rest (as seen in the rotating
frame) with an impulse of ∆V = 0.0274 (816 m/s); t = 5.82 years: The spacecraft
arrives at the Earth, makes a swing-by to reverse the sense of motion and it starts going
back to L4; t = 7.62 years: The spacecraft arrives at L4. A new impulse of ∆V = 0.0377
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(1003.8 m/s) is applied to send it back to the Earth and to start the cycler again.

4 The Swing-By in Three Dimensions

The three dimensional swing-by maneuver consists of using a close encounter with a
celestial body to change the velocity, energy, and angular momentum of a smaller body
(a comet or a spacecraft). Figure 4.1 shows the sequence for this maneuver and some
important variables.

Figure 4.1: The swing-by in three dimensions.

It is assumed that the system has three bodies: a primary (M1) and a secondary
(M2) body with finite masses that are in circular orbits around their common center of
mass and a third body with negligible mass (the spacecraft) that has its motion governed
by the two other bodies. The spacecraft leaves the point A, passes by the point P (the
periapsis of the trajectory of the spacecraft in its orbit around M2) and goes to the
point B. The points A and B are chosen in a such way that the influence of M2 at
those two points can be neglected and, consequently, the energy can be assumed to remain
constant after B and before A (the system follows the two-body celestial mechanics). The
initial conditions are clearly identified in Figure 4.1: the periapsis distance rp (distance
measured between the point P and the center of M2), the angles α and β and the velocity
Vp. The distance rp is not to scale, to make the figure easier to understand.

The result of this maneuver is a change in velocity, energy, angular momentum and
inclination in the Keplerian orbit of the spacecraft around the central body. A numerical
algorithm to solve the problem has the following steps:

(1) Arbitrary values for the parameters rp, Vp, α, β and γ are given.

(2) With these values the initial conditions in the rotating system are computed. The
initial position is the point (Xi, Yi, Zi) and the initial velocity is (Vxi, Vyi, Vzi),
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where:

Xi = 1 − µ + rp cos(β) cos(α), (4)

Yi = rp cos(β) sin(α), (5)

Zi = rp sin(β), (6)

Vxi = −Vp sin(γ) sin(β) cos(α) − Vp cos(γ) sin(α) + rp cos(β) sin(α), (7)

Vyi = −Vp sin(α) sin(γ) cos(α) + Vp cos(γ) sin(α) − rp cos(β) sin(α), (8)

Vzi = Vp cos(β) sin(γ). (9)

(3) With these initial conditions, the equations of motion are integrated forward in
time until the distance between M2 and the spacecraft is larger than a specified
limit d. At this point the numerical integration is stopped and the energy (E+)
and the angular momentum (C+) after the encounter are calculated.

(4) Then, the particle goes back to its initial conditions at the point P , and the equa-
tions of motion are integrated backward in time, until the distance d is reached
again. Then the energy (E−) and the angular momentum (C−) before the en-
counter are calculated.

An interesting question that appears in this problem is what happens to the inclina-
tion of the spacecraft due to the close approach. Some results regarding this question
for the Earth-Moon system are shown in [10]. To investigate this fact the inclination
of the trajectories were calculated before and after the closest approach. To obtain the
inclinations the equation cos(i) = Cz/C is used, where Cz is the Z-component of the
angular momentum and C is the magnitude of the total angular momentum. Figure 4.2
shows some new results for the case γ = 0 in the Sun-Jupiter system. This constraint
is assumed, because it is the most usual situation in interplanetary research, since the
planets have orbits that are almost coplanar. The horizontal axis represents the angle α,
and the vertical axis represents the angle β. The variation in inclination is shown in the
contour plots. All the angles are expressed in degrees.

Several conclusions come from those results:

(i) when β = 0◦ (planar maneuver) the variation in inclination can have only three
possible values: ±180◦, for a maneuver that reverse the sense of its motion, or 0◦

for a maneuver that does not reverse its motion. Those numerical results agree
with the physical-model, since the fact that β = 0◦ implies in a planar maneuver
that does not allow values for the inclination other than 0◦ or 180◦;

(ii) when β = ±90◦ the variation in inclination is very close to zero;

(iii) when α = 0◦ or α = 180◦ there is no change in the inclination. This is in agreement
with the fact that a maneuver with this geometry does not change the trajectory
at all;

(iv) when the periapsis distance or the velocity at periapsis increases, the effects of the
swing-by in the maneuver are reduced. In the plots shown, this can be verified by
the fact that the area of the regions where the variation in inclination is close to
zero increases.
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Figure 4.2: Inclination change resulted from a close approach in the Sun-Jupiter system.
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5 The Gravitational Capture

Then, attention is given to the problem of gravitational capture. For gravitational capture
it is understood a phenomenon where a massless particle changes its two-body energy
around one of the primaries from positive to negative. This capture is always temporary
and, after some time, the two-body energy changes back to positive and the massless
spacecraft leaves the neighborhood of the primary. Studies related to this problem are
available in [5] and [12 – 16]. The importance of this temporary capture is that it can be
used to decrease the fuel expenditure for a mission going from one of the primaries to
the other, like an Earth-Moon mission. The goal is to apply an impulse to the spacecraft
during this temporary capture to accomplish a permanent one. Since the impulse decrease
the two-body energy of the spacecraft, its magnitude will be smaller if applied during
this temporary capture. An important application of this technique can be found in
trajectories to the Moon with fuel consumption smaller than the fuel required by the [17]
transfer [18 – 21, 5]. In this paper the main concern is to study the forces involved in
this maneuver. The main force is the gravitational force due to the central body, in this
case, the Moon. The others forces are perturbations on the movement of the massless
particle. So, to understand the behavior of the perturbing forces, an analysis was made
by measuring the components of each force. The chosen components are in the radial,
transversal and in the direction of motion of the massless particle. In the radial direction,
the positive sign means that the force is acting opposite to the direction of the body.
In the transversal direction, the positive sign indicates that the force is acting in the
counter-clockwise direction. In the direction of motion, the force is positive when it is
being applied in the direction of the movement of the particle.

Figure 5.1 shows one of those trajectories and the forces acting in the spacecraft in
every moment of time. The curves are:

(1) gravitational radial force;

(2) gravitational transversal force;

(3) centripetal radial force;

(4) centripetal transversal force;

(5) resultant radial force;

(6) resultant transversal force;

(7) gravitational force in the direction of motion;

(8) centripetal force in the direction of motion;

(9) resultant force in the direction of motion.

In the radial direction the force due to the Earth has a negative sign. This means that
the force is pushing the spacecraft to an opposite direction to the Moon. So, it is slowing
down the object. In the transversal direction, this force is also negative, which means that
it is accelerating the spacecraft in the clock-wise direction. In the direction of motion
the sign is also negative, breaking the spacecraft all the time. The centripetal force
acts in an opposite direction from the gravity force due to the Earth, but with smaller
absolute values. So the net result is due to the gravity force of the Earth, which makes
the vehicle to reduce its velocity. The resultant on the transversal direction accelerates
the spacecraft in the clock-wise direction. It is visible that the components radial and in
the direction of motion of the forces are very close to each other. This is a consequence
of the fact that the trajectory is close to radial in most of the trajectory.

The most relevant component is in the direction of motion. This component of the
resulting forces shows that, independent of where the particle came, it is breaking the
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Figure 5.1: Trajectory with C3 = −0.2e, α = 0◦ at perilune and the forces.

particle all the time. The transversal component ever tries to pull the particle to the
Earth-Moon axis. The radial component of the resultant force has the same effect of the
component in the direction of motion. It also shows that the particle is loosing radial
velocity when approaching the central body. These forces slow down the spacecraft
working opposite to the movement of the spacecraft. This is equivalent of applying a
continuous propulsion force against the motion of the spacecraft. In the radial direction
the gravitational force due to the Earth and the centripetal force tends to equilibrium,
but ever rest some work against the movement. This is also true for the component in
the direction of motion. In the transversal direction the forces pull the particle to the
Earth-Moon axis. Understanding these behaviors explains why a particle with a velocity
slower than the escape velocity can escape from the Moon. It is the opposite case for the
capture and it happens for all the cases studied. Some analytical results with respect to
this problem are available in [22].

6 Conclusions

In this paper, trajectories in the planar restricted three-body problem with near-zero
∆V to move a spacecraft between any two points in the group formed by the Earth and
the Lagrangian points L3, L4, L5 in the Earth-Moon and Earth-Sun systems are found.
It is shown how to apply these results to build a cycler transportation system to link
all the points in this group. For the Sun-Earth system, it is also shown how to use one
or more “swing-by” with the Earth to build a cycler transportation system between the
Earth and the Lagrangian points L4 and L5, with small ∆V required for maneuvers in
nominal operation.

Looking at the results for the Earth-Moon system, we can conclude that:

(i) there are trajectories with ∆V near the escape velocity to move a spacecraft from
the Moon back to the Moon in the Earth-Moon system, using the restricted three-
body problem as a model;

(ii) there is a new type of trajectory for this transfer that requires a ∆V under the
escape velocity;
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(iii) there are trajectories connecting the Moon and the Lagrangian points L3, L4

and L5;

(iv) there are trajectories that make consecutive close approaches with the Earth and
the Moon.

Those orbits are shown in this paper and they can be used in three situations:

(a) to transfer a spacecraft from the Moon back to the Moon;

(b) to transfer a spacecraft from the Moon to the respective Lagrangian points L3, L4

and L5;

(c) to transfer a spacecraft to an orbit that passes close to the Moon and to the Earth
several times, with the goal of building a transportation system between these two
celestial bodies.

The three-dimensional restricted three-body problem is also used to study the swing-
by maneuver. The effects of the close approach in the inclination of the spacecraft is
studied and the results show several particularities, like: β = 0◦ allows only ±180◦, and
0◦ for ∆i, β ± 90◦ or α = 0◦ or 180◦ implies in ∆i = 0◦, etc.

Some particularities of the gravitational capture problem are also studied and the
forces acting are also shown. This study answers some questions about the phenomena.
Two of the forces are relatively weak, and they act as disturbing forces: the gravitational
force due to Earth and the centrifugal force. These forces working together slow down
the spacecraft with a force in the opposite direction of the spacecraft’s motion. This is
equivalent of applying a continuous propulsion force against the motion of the spacecraft.
In the radial direction the gravitational force due to Earth and the centripetal force tends
to equilibrium, but ever rest some work against the gravitation of the central body. It is
also true for the components in the direction of motion for these forces. In the transversal
direction, the forces pull the particle to the Earth-Moon axis. The understandings of
these behaviors explain why a particle with a velocity slower than the escape velocity
can escape from the Moon. It is the opposite case for the capture and it happens for all
the cases studied.
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