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Abstract: New models and properties of piezoceramic transducer due to the
interaction with the excitation device of limited power-supply are built and
investigated in details. The special attention is given to examination of ori-
gin and development of the deterministic chaos in this system. It is shown,
that a major variety of effects typical for problems of chaotic dynamics is in-
herent in the system. The presence of several types of chaotic attractors is
established and the existence of hyper-chaos is revealed. Various scenarios of
passage from the regular regimes to chaotic are explored. Explicitly phase por-
traits and Poincaré sections and maps of of chaotic attractors are investigated.
Their spectral densities and distributions of invariant measures are obtained
and explored.
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1 Introduction

Functioning of many important and mission-critical devices of various engineering ma-
chines, including transformers, is based on the effect of coupling of mechanical and elec-
trical fields in piezoceramic media [2, 3, 8, 26, 27, 28, 23]. Hence, creation of a general
mathematical theory of electroelastic processes in such media under arbitrary conditions
of mechanical and electrical loading is important, both in scientific and applied aspects.
Such theory for many piezoceramic devices and constructions is created by A.F. Ulitko
and his school [3, 8, 26, 27, 28]. However, in these theories, and in other publications,
a problem of behaviour of electroelastic fields is considered only for conditions of forced
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and free oscillations, when the piezoelectric ceramics is under the action of applied me-
chanical and electrical fields of given values. Thus a problem of influence of dissipation
and radiation of energy under oscillations of coupled fields of the device remains outside
of many considerations. If the transducer with electroelastic coupled field is mounted in
a medium with resistance, as happens in operation of sound emitters, then radiation of
energy changes an electric field in the power generator, as opposed to the “ideal” case
when no losses occur happen. This adjustment can be essential and lead to unexpected
dynamic conditions or be negligibly small — it depends on outer power of the gener-
ator compared as with an emitting power. Examination of new effects in dynamics of
piezoceramic coupled fields and in functioning of the power generator, which are caused
by “sensitivity” of cumulative systems to radiation of energy is, without a doubt, of
significant scientific interest. This is a case of so-called limited or non-ideal excitation
[12, 24, 25] when supply power is of the same order as the power consumed by a loading
piezoceramic transducer. In this case the electric generator is said to have limited power,
i.e. a power comparable with the power radiated or consumed by piezoceramic coupled
field. The present paper is devoted to the analysis of interaction effects, collectively called
the effect of Sommerfeld–Kononenko [12, 13, 15, 16, 17, 18, 19, 24, 25], in oscillations of
the piezoceramic transducer and in the mechanism of its excitation — the generator of
the electric current of limited power-supply. A new mathematical model of interaction
of the generator and the piezoceramic transducer submerged in a hydromedium with
resistance is constructed. The coupling of processes in the transformer and the energy
source (the generator) leads to the qualitatively new effects in their dynamics that can-
not be seen using a model of the problem with unlimited or so-called “ideal” excitation
— primarily the possibility of appearance of deterministic chaotic regimes, which are
theoretically impossible in a problem with ideal excitation (when corresponding math-
ematical models of such a problem have dimensionality of phase spaces equal to two, a
possibility of chaos origination is excluded).

2 Construction of a mathematical model

Let us consider a piezoceramic rod transducer, which is loaded on the acoustic medium
and to which electrodes the electrical voltage is affixed, raised by the LC–generator
(Figure 2.1). The selection of the generator of such type is caused by the renaissance of
its application observable now in the up-to-date technique. This is related with facts that
the electrovacuum-tube (analogue) devices ensure higher metrological characteristic on
to comparison with the numeral devices. The origin of the Cartesian coordinate system
is in the middle of the rod; from its surfaces S− and S+, which are perpendicular to axis
oz, acoustic signals radiate into the medium. We will examine the longitudinal vibrations
of a round rod of length 2h and cross-sectional area S, with longitudinal polarization.

According to the theory of longitudinal deformations [8, 27] the piezoeffect constitu-
tive relations have the form

ǫz = s33σz + d33Ez, Dz = ǫ33E,z +d33σz , (1)

where ǫz is a longitudinal deformation; σz is the mechanical stress; Ez is the intensity of
the electric field; Dz is an induction of this field; and s33, d33, ǫ33 are constants.

When studying the acoustic frequency region, we used the equations of a quasistatic
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Figure 2.1: Scheme of viewed system.

field. Here, they could be written as

∂Dz

∂z
= 0, Ez = −

∂Ψ

∂z
, (2)

where Ψ is an electrical potential.

We shall add to equations (1)–(2) the Cauchy relation ǫz =
∂u

∂z
and the equation of

the rod vibrations
∂σz

∂z
= ρ

∂2u

∂t2
, (3)

where u = u(z, t) is the longitudinal displacement of the rod, ρ is its density.
The boundary conditions, when the rod is under an acoustic load impedance η0, are

as follows

σz = −η0
∂u

∂t
, Ψ = ±V (t), z = ±h. (4)

The voltage in the electrodes of the rod is 2V (t). It is a known function of time in
the problem of “forced” vibrations of the transducer and “unlimited” power from the
generator. The system of equations (1)–(4) represents a complete description of “forced”
vibrations with ideal excitation, when 2V (t) is a harmonic function of time. But 2V (t)
is the voltage in a real physical circuit and a current

i = −
∂(Sz)

∂t

flows through the rod. The current i of the transformer with the rod is related with a
current of the generator i2 + i3 according to the differential equation

2V + L
di

dt
= M

d(i2 + i3)

dt
. (5)
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For comparison we may present this relation for the case of the absence of the rod, namely

L
di

dt
= M

d(i2 + i3)

dt
.

So, the presence of the rod in the circuit changes the disturbance to the voltage in every
part of the circuit. The addition of a rod is like the addition of some capacity (the input
electrical impedance at the rod transducer can be calculated to some approximation from
so - called geometrical capacity) [2]. We must have a different value i for the circuit with

the transducer as compared with that without it. If i is small and 2V ≫ L
di

dt
(in this

case, 2V ≈ M
d(i2 + i3)

dt
) then we have an ideal excitation of the transducer. When

2V is comparable with L
di

dt
, the statement does a given value of 2V (t) not hold about,

because i will also influence regimes of the generator through a transformer (i influences
the current i2 + i3).

A vacuum-tube generator is the classical example of a self-exciting system [21]. Let
us write Kirchhoff’s equations for each branch of the tube generator current [13, 15].
First of all we assume, that the generator works in the soft condition, i.e.

ia = I0 + I1(eg + Dea) − I3(eg + Dea)3, (6)

where ia is the anode current, eg is the tube grid voltage; ea is the anodic voltage; D is
the penetration factor of the tube; I0, I1, I3 are constant parameters of the tube.

The equations of currents of the generator are

ia = i1 + i2 + i3, ea − Ea + Rai1 = 0, eg + Eg − Mc
di2
dt

= 0,

Lc
di2
dt

+ Rci2 =
1

Cc

∫

i3 dt,

ea + Lc
di2
dt

+ Rci2 + L1
d(i2 + i3)

dt
= 0.

(7)

The system of equations (6)–(7) describes interior processes in a vacuum-tube generator.
These equations are nonlinear with respect to eg ( usually D is a small value), we can
reduce them to a single equation. Introducing a new variable

φ(t) =

∫ t

0

(eg − Eg)dt (8)

(here −Eg is the constant component of the voltage eg), we obtained the following non-
linear equation for the function φ

d2φ

dt2
+ ω2

0φ = a1
dφ

dt
+ a2

(

dφ

dt

)2

− a3

(

dφ

dt

)3

, (9)

where

a1 =
Mc

LcCc

[

I1 −
RcRaCc − Lc

Ra(Mc − DLc)
+

RcL1

R2
aMc

− 3I3(Eg)
2

]

, a2 = 3
McI3Eg

LcCc
, a3 =

McI3

LcCc
.
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Besides

ω2
0 =

Ra + Rk

RaLkCk

and ω0 is a frequency of the generator in the linear theory.
If the generator is connected to the electric circuit of the transformer, the last equation

of the system (7) changes to the following

ea + Lc
di2
dt

+ Rci2 + L1
d(i2 + i3)

dt
= M

di

dt
. (10)

Now for inner processes in the generator a such new equation for the function φ should
be fulfilled

φ̈ + ω2
0φ = a0φ̇ + a2φ̇

2 − a3φ̇
3 − a4V (t), (11)

where

a0 = a1 −
M2Rc

LcCcLR2
a

, a4 =
2MMc

LRaLcCc
.

Thus, the operation of the generator and the creation of a voltage 2V (t) are described
not by the equation (9), but by the system of fourth order equations (11) and (5), where
the value of i depends on the mechanical deformations of the rod.

For such deformations and the electric field we have the following system of equations

c2 ∂2u

∂z2
=

∂2u

∂t2
,

∂2Ψ

∂z2
=

k2

d33(1 − k2)

∂2u

∂z2
, (12)

where c = [ρs33(1 − k2)]−1/2 is a velocity of longitudinal conjugate waves in the rod;
k = d33(ǫ33s33)

−1/2.
Let’s present longitudinal oscillations of the rod in the form of the sum of eigenmodes,

namely [22]

u(z, t) =

N
∑

i=1

fi(t) sin µiz. (13)

Here µi is a solution of the equation µih cosµih − k2 sinµih = 0.
In this case for the voltage Ψ we shall have [2]

Ψ(z, t) = f(t)z +
k2

d33(1 − k2)

N
∑

i=1

fi(t) sin µiz. (14)

Thus the current i, flowing through the rod is equal to

i = −
∂(SDz)

∂t
= Sǫ33(1 − k2)ḟ = Sǫ33

(1 − k2)

h

[

V̇ −
k2

d33(1 − k2)

N
∑

i=1

ḟi sin µih

]

. (15)

Using boundary conditions (4), we obtain the following relations for eigenmodes of oscil-
lations

−
s33hη0

d33

N
∑

i=1

ḟi(t) sin µih = V (t) (16)

and

i =
Sǫ33(1 − k2)

h
V̇ (t) +

ǫ33k
2

h2η0
V (t). (17)



372 T.S. KRASNOPOLSKAYA AND A.YU. SHVETS

Substituting these expressions in (5), we find that voltage 2V (t), applied to the elec-
trodes of the transducer should be determined as the solution of the system of equations

φ̈ + ω2
0φ = a1φ̇ + a2φ̇

2 − a3φ̇
3 − a4V (t),

V̈ (t) + ω2
1V (t) = a5φ + a6φ̇ − a7V̇ (t).

(18)

Here

ω2
1 =

2h

LSǫ33(1 − k2)
, a5 = −

Mω2
1Rc(Ra + Rc)

2McRaLc
, a6 = −

Mω2
1Rc

2McRa
, a7 =

k2

η0hS(1 − k2)
.

After the determination of V (t), longitudinal oscillations of the rod u(t) =
N

∑

i=1

fi(t) sin µiz are defined by the following equation

∂2u

∂t2
= c2 ∂2u

∂z2
−

d33

s33hρ
V (t)δ(z − h) +

d33

s33hρ
V (t)δ(z + h), (19)

where δ(z) is the delta-function.
If we neglect the inverse influence of transducer oscillations (mechanical and electrical)

on functioning of the generator (a4 = 0), in other words, if we neglect the effect of
Sommerfeld - Kononenko, the system of equations (18) breaks up into two equations,
each of which has dimension of a phase space equal to two. First of them is the self-
exciting equation and can be solved irrespectively of the second. The second equation,
featuring vibrational processes in the rod, is linear. In this case possible attractors
of the system of equations (18) always are the regular one. Therefore, in this situation
functioning of the generator and radiation of waves by the transducer in acoustic medium
correspond to regular (probably complex enough) processes.

If a4 6= 0, dimension of a phase space of the equation system (18) is equal to four. In
this case in the system both regular, and chaotic attractors can exist [14, 21, 20]. Thus,
the basic possibility of existence of chaotic regimes in the generator and excitation of
chaotic waves in acoustic medium is caused by the effect of Sommerfeld–Kononenko.

3 Investigation of the steady-state regimes of interaction

For determination of the possible steady-state regimes of interaction in the system (18)
we use the dimensionless variables

ξ =
φω0

Eg
,

dξ

dτ
= ζ, β =

V

Eg
,

dβ

dτ
= γ, τ = ω0t. (20)

Then the system of equations (18) can be written in the form

dξ

dτ
= ζ,

dζ

dτ
= −ξ + α1ζ + α2ζ

2 − α3ζ
3 + α4β,

dβ

dτ
= γ,

dγ

dτ
= α5ξ + α6ζ − α0β − α7γ,

(21)

where the coefficients are equal to

α0 =
ω2

1

ω2
0

, α1 =
a0

ω0
, α2 =

a2Eg

ω0
, α3 =

a3E
2
g

ω0
,

α4 = −
a4

ω0
, α5 =

a5

ω3
0

, α6 =
a6

ω2
0

, α7 =
a7

ω0
.
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First of all we investigate equilibrium states of the system (21). All of them are defined
as solutions of non-linear algebraic coupled equations

ζ = 0, −ξ + α1ζ + α2ζ2 − α3ζ3 + α4β = 0,

γ = 0, α5ξ + α6ζ − α0β − α7γ = 0.
(22)

At realization of the requirement α0 = α4α5 this system has the infinite set of solutions
which are defined by the formulas

ζ = 0, ξ = α4β, γ = 0, β = r,

where r is any real number not equal to zero. At realization of the requirement

α0 6= α4α5 (23)

the system (22) has the single trivial solution ξ = 0, ζ = 0, β = 0, γ = 0. This
solution corresponds to the zero equilibrium state, which at realization of a requirement
(23), will be a single equilibrium state of the system.

According to the criterion of Hurwitz, sufficient conditions for asymptotic stability of
a zero equilibrium state can be written in the form

α7 − α1 > 0, (24)

1 + α0 − α1α7 > 0, (25)

α7 − α4α6 − α0α1 > 0, (26)

α6 − α4α5 > 0, (27)

(α7 − α1)(1 + α0 − α1α7)(α7 − α4α6 − α0α1)

− (α7 − α4α6 − α0α1)
2 − (α7 − α1)

2(α6 − α4α5) > 0.
(28)

Thus, at realization of the requirement (23) and not realization of at least one of
inequalities (24)–(28) single equilibrium state of system (21) is unstable. In this case all
trajectories of the system starting from a neighborhood of an origin of coordinate phase
spaces, eventually abandon this neighborhood and due to dissipativity of the system,
aspire to some limiting sets — attractors, which, as we shall see in the following, can be
both regular and chaotic.

As the system of equations (21) is a non-linear system of the fourth order differential
equations, all its further examinations will be done by means of numerical methods. The
basic method of determination of solutions of the system (21) is the fourth or fifth order
method of Runge–Kutta with the application of correcting procedure of Dormand–Prince
[9], which ensures precision of the order O(10−8) – O(10−15). In the construction of phase
portraits of the steady-state regimes the special attention was given to non-admission
of their contortions by trajectories of transients process. For calculation of a spectrum
of Lyapunov characteristic exponents (LCE) of attractors the algorithm of Benettin,
etc. [4, 14, 21, 11] was applied. The influence of atypical trajectories on quantities
of Lyapunov characteristic exponents was excluded. For construction of the Poincaré
sections and mappings for attractors of the system the method of Hénon [10, 14] was
applied, and for calculation of spectral densities the method of Filon was used [7].

Extensive numerical experiments were carried out with the purpose of finding the
regions of exsistence of chaotic solutions. We assume that the generator works with the
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following parameters:

Eg = 700V, Ea = 2000V, I1 = 6.5 × 10−5A/V, I3 = 5.184× X×10−9A/V 3,

D = 0.015, Ra = 160Ω, Rc = 10Ω, Lc = 0.094H,

Cc = 1.0465 mmF, Mc = 0.275H, M = 1H, L = 100H.
(29)

Here X is the dimensionless bifurcation parameter.
In this case the coefficients of system (21) are equal to

α0 = 0.995, α1 = 0.0535, α2 = 0.63 × X, α3 = 0.21 × X,

α4 = −0.103, α5 = −0.0604, α6 = −0.12, α7 = 0.01.
(30)

We want to underline especially, that the values of parameters in formulas (29 - 30)
correspond to real characteristics of LC-generators and piezoceramic transducers [2, 28].
For the chosen parameters of the system (21) it has a single zero equilibrium state which
is unstable in the sense of Lyapunov.

Let’s determine divergence (div F ) of the system (21). It is obvious, that it can be
found using the formula

div F = α1 + 2α2ζ − 3α3ζ
2 − α7. (31)

As is seen from the formula (31) in a general case divergence will be a sign-alternating
quantity. Taking into account parameters of system (30) it is possible to write the
expression for divergence as

div F = 0.63Xζ(2 − ζ) + 0.0435. (32)

If the parameter X is positive then, up to 0.0435, divergence of system will be positive
during those moments of time, when the phase variable ζ satisfies the inequality 2 >
ζ > 0. Therefore, in cotrast to systems with a constant negative divergence, the question
about local change in time of the phase volume of the system near a particular solution
demands additional explanations. As is known [1], the given phase volume changes in
time according to the expression

V (t) = V (t0)e
(div F )t = V (t0)e

(λ1+λ2+λ3+λ4)t, (33)

where V (t) is the phase volume, λi is a Lyapunov characteristic exponent of an attractor,
and in expression div F the line denotes averaging in time. The carried out calculations
have shown that the sum of Lyapunov characteristic exponents for all (examined further
in the article) regular and chaotic attractors of system (21) will be negative. Therefore,
negative will be averaged in time divergence of the system, though at some intervals
of time it can be positive. It means, that all attractors of the systems (21) have zero
limiting volumes.

Let’s consider the bifurcations which are taking place in the system (21), when the
parameter X is changing. We shall give special attention to the origin of chaotic attrac-
tors, their detailed exposition and scenarios of transitions from the regular regimes to the
chaotic one. As is known, the basic practical criterion of existence of a chaotic attractor
is the presence in a spectrum of LCE of at least one of the positive exponent [21, 14].
In Figure 3.1 a dependence of the maximal, distinct from zero, Lyapunov characteris-
tic exponent on the parameter X is shown. Referring to Figure 3.1, there is a series
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Figure 3.1: Dependence of the maximal Lyapunov characteristic exponent λ on X.

of X intervals in which the maximal Lyapunov exponent is positive. Hence, in these
intervals there are chaotic attractors. Intersection points of this diagram with horizontal
coordinate axis correspond to bifurcation values of parameter X .

In Figure 3.2 the phase-parametric characteristic of system (so-called bifurcation
tree) is given. This characteristic is constructed as a function of coordinate ξ. Phase-
parametric characteristics regarding other coordinates of the system are qualitatively
similar to given in Figure 3.2. The light sites of this tree “crone” correspond to periodic
regimes of the steady-state oscillations of the system (21), and densely blacked out - to
chaotic. Points of a bifurcation, at which transition from regular periodic regime to the
nonregular chaotic one occurs are precisely visible.

Let’s now consider these changes of regimes in more details. At changing of the
parameter X value in a segment 9.3 ≥ X ≥ 9.01 in the system there is a stable limit
cycle with the signature of a LCE spectrum which looks like (“0′′, “ −′′, “ −′′, “ −′′).
That is, the maximal Lyapunov exponent of the cycle is zero, and three others are
negative. A three-dimensional projection of the phase portrait of this cycle, its Poincaré
section by the plane β = 0 and the spectral density constructed in logarithmic scale, are
given, accordingly, in Figure 3.3.a-b, Figure 3.4.a. The given figures are constructed at
the value X = 9.01. Poincaré section and the spectral density have a structure typical
for the regular regimes. A signal sent by the transducer to the medium in this case is
periodic.

At X = 9.005 instead of a limit cycle as a result a saddle-knot or the tangen-
tial bifurcation a chaotic attractor arises in the system. In the signature of the LCE
spectrum of the attractor the positive maximal exponent appears and it becomes:
(“ +′′, “0′′, “ −′′, “ −′′). In Figures 3.4.b, 3.5.a-b, 3.6.a the three-dimensional projec-
tion of the attractor phase portrait , its Poincaré section and mapping and the spectral
density (Fourier spectrum) constructed at the value X = 8.955 are given, accordingly.
Transition from the regular attractor to chaotic is carried out through an intermittency
of the first type in the sense of Pomeau–Manneville [5]. When we move to a point of a
bifurcation, the unstable cycle comes nearer to the limit cycle. In a point of bifurcations
both cycles merge and disappear. Trajectories of system leave for remote fields of a
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Figure 3.2: Phase-parametric characteristic of the system.

a b

Figure 3.3: Projection of the phase portrait (a) and Poincaré section by the plane β = 0 (b)
at X = 9.01.
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a b

Figure 3.4: Spectral density at X = 9.01 (a) and the projection of the phase portrait at
X = 8.955 (b).

a b

Figure 3.5: Poincaré section by the plane β = 0 (a) and mapping (b) at X = 8.955.

phase space. Then, because the system (21) is stable in the sense of Lagrange (by its
dissipativity) and in the sense of Poisson (as a regime is steady-state) and is unstable in
the sense of Lyapunov (a positive Lyapunov exponent exists), a process of reinjections
happens, when returnings of trajectories to neighborhood of the vanished limit cycle hap-
pen, then again they leave and return end so on. Laminar phase of this intermittency
is the motion in enough small neighborhood of the vanished limit cycle, and turbulent
phase is unpredictable roamings around the coils of a spiral chaotic attractor (see Figu-
re 3.4.b). Transition to chaos through an intermittency is also testified by the structure
of a bifurcation tree in a neighbourhood of the point X = 9.01.

Poincaré section and mapping represent some chaotic point sets, which are grouped
inside of several domains having quasiribbon structure. The view of Poincaré mapping
shows, that the system (21) can be roughly enough approximated by means of the one-
dimensional mapping that will essentially simplify its investigation. The view of this
mapping (which can be substituted by a set of one-dimensional parabolic and horseshoe-
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a b

Figure 3.6: Spectral density at X = 8.955 (a) and a projection of a phase portrait at X = 8.41
(b).

shaped lines) is one more proof that the system has a chaotic regime [14]. A spectrum
of an attractor is continuous, but with apparent enough peaks. A continuity of Fourier
spectrum also testifies a chaotic character of the given attractor. Chaotic attractors of
such type exist in the system (21) at 9.005 ≥ X ≥ 8.645. A signal generated by the
transducer to the medium at such X will be chaotic.

Now consider several types of the attractors existing in the system (21). At 8.645 >
X ≥ 8.41 a stable limit cycle exists in the system. A projection of a phase portrait of
such cycle is given in Figure 3.6.b. This cycle has more complex structure, than the cycle
given in Figure 3.3.a. Besides it has approximately six times larger period, than a cycle
given in Figure 3.3.a. At the value X ≃ 8.405 this cycle disappears, due to a tangent
bifurcation, and the chaotic attractor of new type is born (whose projection of the phase
portrait is constructed at value X = 8.25 and is given in Figure 3.7.a). Transition
from the regular attractor to the chaotic one, as before, is carried out through the first
type intermittency in the sense of Pomeau–Manneville according to the described above
scenario. However, unlike the previous described chaotic attractor (Figure 3.4.b), here
we have a more continuous covering by turbulent splashes of an attractor trajectories of
its phase volume. The signature of the LCE spectrum of this chaotic attractor looks like:
(“+”, “0”, “−”, “−”).

In Figure 3.7.b Poincaré section of this attractor is shown. It represents a chaotic
point set the number of which constantly increases with the time of numerical integration
time of the system. However for this type of chaotic attractors its Poincaré section loses
quasiribbon structure.

In Figure 3.8.a one more important characteristic of chaotic attractors is shown,
namely a distribution of an invariant measure of Krylov–Bogolyubov on the attractor
phase portrait. The given figure is constructed by so-called technique of coding by grey
color tones as stated in [14]. The invariant measure is a quantitative characteristic of
the residence time of a representation point of attractor trajectories in the given region
of the phase volume. More dark parts in the figure correspond to regions in which
representation point of trajectories spends a majority of time. As is apparentl from
Figure 3.8.a, the trajectories spend the largest part of time in the neighborhoods of
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a b

Figure 3.7: Projection of the phase portrait (a) and Poincaré section by the plane β = 0 (b)
at X = 8.25.

a b

Figure 3.8: Distribution of an invariant measure at X = 8.25 (a) and projection of the phase
portrait at X = 7.85 (b).
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a b

Figure 3.9: Poincaré section by the plane β = 0 (a) and mapping (b) at X = 7.85.

the vanished limit cycle that is the testimony of larger duration of laminar phases in
comparison with the turbulent ones. Moreover, this figure is one more verification of
realization of the intermittency scenario at transition from the regular regime to chaotic.

At the value X = 7.86 an extremely interesting bifurcation of a type “chaos–chaos”
happens, when as a result of the complex mechanisms of interactions of a chaotic attractor
with the saddle limiting cycles existing in pool of its attraction, in the system (21) an
attractor arises whose signature of LCE spectrum looks like (“+”, “+”, “0”, “−”). This
attractor has two positive Lyapunov exponents. Such attractor is called hyper-chaotic
[14]. Such type attractors exist only in dynamic systems, dimensionality of which in
phase space is more or equal to four, and are characterized by the presence in LCE
spectrum of not less than two positive Lyapunov exponents. Presence of two positive
exponents indicates the existence in a phase space of two directions in which the close
phase trajectories of an attractor diverge. All above-considered chaotic attractors have
only one direction of divergence of the close phase trajectories. In Figure 3.8.b the
projection of a phase portrait of a hyper-chaotic attractor is shown for X = 7.85. A
phase portrait of such attractor has a “hole” in its lower ring spirals.

In Figures 3.9.a-b the Poincaré section and mapping of a hyper-chaotic attractor are
shown. As can be seen the observed structures have more complicated chaotic point sets
than those in (Figures 3.5.a-b and Figure 3.7.b). The one-dimensional approximation of
mapping of Poincaré ia out of the question. Further in Figures 3.10.a-b the distribution
of invariant Krylov-Bogolyubov’s measure and the spectral density of the hyper-chaotic
attractor are given, accordingly. As is apparent from Figure 3.10.a, now the hyper-chaotic
attractor possesses more uniform distribution of invariant measure than the attractor
existing at X = 8.25. Distribution of the spectral density of the hyper-chaotic attractor
is , as before, continuous, however in it separate peaks practically disappear. Hyper-
chaotic attractors exist in rather small interval of changing of the parameter X , namely,
7.86 ≥ X ≥ 7.745. At the further decreasing of X they disappear and in the system a
stable limit cycle arises again.

As can be seen in Figure 3.1, there are some more intervals of the parameter X
changing in which chaotic attractors exist. The further examinations made possible
to find out still some more transitions from the regular motions to chaotic through
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a b

Figure 3.10: Distribution of an invariant measure (a) and a spectral density (b) at X = 7.85.

intermittency. Besides, transitions to chaos have been discovered through cascade of
bifurcations of doubling of a period [6].

Let’s consider one more type of the chaotic attractor discovered in system (21). At-
tractors of such type exist in system at 4.325 ≥ X ≥ 4.115. Transition from the regular
condition to chaotic here, as well as in several previous cases, is carried out under the
scenario of an intermittency of the first type. The signature of LCE spectrum of such
attractor looks like: (“ +′′, “0′′, “ −′′, “ −′′). In Figures 3.11.a-b, 3.12.a-b the three-
dimensional projection of the attractor phase portrait, its Poincaré section by the plane
β = 0, Poincaré mapping and a spectral density constructed at the value X = 4.255are
shown respectively . As can be seen from these figures, the phase portrait of a chaotic
attractor has varied noticeably, on which merging of rings of its spirals has happened.
Amplitudes of oscillations of phase variables have decreased. But, at the same time, as
is apparent from Figure 3.1, the maximal Lyapunov characteristic exponent for this at-
tractor is approximately twice as large as corresponding exponents for the above chaotic
attractors. It testifies to much greater velocity of divergence of the close phase trajecto-
ries. Disposition of points in Poincaré cross-section has considerably varied, however, it
is still some chaotic point set. Mapping of coordinate ξ vaguely resemble corresponding
mapping, given in Figure 3.5.b, however, a disposition of points on mapping, given in
Figure 3.12.a, testifies about impossibility of any one-dimensional approximation in this
case. Fourier spectrum of an attractor (Figure 3.12.b) has continuous structure and is
characterised by the absence of peaks.

The comparative analysis of behaviour of the system “generator – transducer” in the
case of an ideal excitation, when we neglect influence of a transducer on functioning of
the generator, attracts a significant interest. This is the case of zero coefficient α4 in
the system of equations (21). In Figure 3.13.a-b phase portraits are given for attrac-
tors of the systems (21) constructed at α4 = 0, X = 8.25 (Figure 3.13.a) and α4 = 0,
X = 7.85 (Figure 3.13.b). In both cases attractors of system are limit cycles. Meanwhile
under the nonideal excitation, which always takes place by virtue of the law of conser-
vation of energy, the system will be in chaotic (at X = 8.25) or in hyper-chaotic (at
X = 7.85) regimes. Moreover, the case of an ideal excitation is characterised by appre-
ciable diminution of vibration amplitudes of phase variables, especially of the variables
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a b

Figure 3.11: Projection of a phase portrait (a) and Poincaré section by the plane β = 0 (b)
at X = 4.255.

a b

Figure 3.12: Poincaré mapping (a) and spectral density (b) at X = 4.255.
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a b

Figure 3.13: Projection of a phase portrait at X = 8.25, α4 = 0 (a) and projection of a phase
portrait at X = 7.85, α4 = 0 (b).

β, γ which describe oscillations of the transducer. Thus, the neglection of nonidealness of
excitation leads to the significant errors in exposition of process of interaction of trans-
ducer and generator both quantitative, and, what is more essential, qualitative. For
example, instead of expected periodic regimes of interaction the system actually will be
in a hyper-chaotic regime.

Further an examination of the bifurcations which are taking place at a changing
of parameter α4 (which, as it has just been noted, characterizes interaction between
transducer and generator) has been carried out. In the computer experiments values of
parameters of system were defined by formulas (30) except for the parameter α4 which
was taken as bifurcation one and was variable. For parameter X it was supposed, that
X = 7.82. Such value of parameter X previously corresponded to the case of hyper-chaos
in the system.

In Figure 3.14 dependence of the maximal, distinct from zero, Lyapunov character-
istic exponent of the system λ on the values α4 is given. As is apparent from the figure,
there are intervals of α4 in which values of λ will be positive. In these intervals the
system has chaotic attractors. At α4 = 0 the system (21) has stable limited cycle, whose
phase portrait practically coincides with phase portrait of a cycle given in Figure 3.13.b.
However, already at very small changing of α4 value, namely at α4 = −0.004, the max-
imal Lyapunov characteristic exponent becomes positive, that testifies about origin of
the chaotic attractor. As we see, even very small interaction between subsystems, the
generator and the transducer, leads to occurrence of chaos.

Let’s consider the bifurcations happening in the system (21) at increasing of α4. At
α4 = −0.138 in system a stable limit cycle exists. Further, at increase of value α4, on very
small interval (−0.138,−0.13515) in the system there is a cascade of bifurcations of period
doubling, which comes to an end with origin of a chaotic attractor at α4 = −0.1351. A
projection of a phase portrait of this attractor, its Poincaré section and mapping, and also
distribution of the spectral density, constructed at α4 = −0.135, are given respectively
in Figures 3.15.a–b, 3.16a–b.

Here the transition from the regular regime to chaotic here is carried out in correspon-
dence with Feigenbaum’s scenario [6]. We would like to emphasize, that this attractor is
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Figure 3.14: Dependence of the maximal Lyapunov characteristic exponent λ on the parameter
α4.

a b

Figure 3.15: Projection of a phase portrait (a) and Poincaré section by the plane β = 0 (b)
at α4 = −0.135.
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a b

Figure 3.16: Mapping (a) and spectral density (b) at α4 = −0.135.

a b

Figure 3.17: Projection of a phase portrait (a) and Poincaré section by the plane β = 0 (b)
at α4 = −0.025.
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hyper-chaotic as it has two positive Lyapunov characteristic exponents. Phase portrait
of this attractor noticeably differs from the hyper-chaotic attractor considered above. At
the same time Poincaré section and mapping possess some qualitative simularity with the
cases of hyper-chaos shown in Figure 3.9 a–b. Essential differences are found in Fourier
spectrum of the given attractor. It is continuous, but, at the same time, the spectrum
peaks are precisely pronounced. They are “the memories” about harmonics of vanished
limit cycles. This the hyper-chaotic attractor exists in system in the very small interval
(−0.1351,−0.1348) of α4. Then in the system there is “a window of periodicity” which
again is replaced by hyper-chaotic attractor at α4 = −0.1344. Arising attractor is qual-
itatively similar to a hyper-chaotic attractor, given in Figure 3.8.b. Further increase of
α4 leads to the bifurcation “hyper-chaos — chaos”, as a result of which, at α4 = −0.058,
a chaotic attractor arises. The signature of LCE spectrum of given attractor looks like:
(“+”, “0”, “−”, “−”). In Figure 3.17.a a projection of a phase portrait and Poincaré
section of attractors of this type constructed at value α4 = −0.025 are given, accord-
ingly. Chaotic attractors similar to that given in Figure 3.17 exist in the system (21) at
−0.058 ≤ α4 ≤ −0.004. Then, at α4 > −0.004, the regular attractor — a limit cycle
arises again in the system.

4 Conclusion

Thus, in the present work a series of new effects has been discovered, caused by pro-
cess of interaction of oscillation regimes in piezoceramic transducer and setting electric
generator, and obtained on the basis of the constructed new mathematical model.

In the given deterministic system some types of chaotic attractors were revealed,
including the hyper-chaotic one. It is shown, that the system possesses a significant
variety of existing in it steady-state regimes of interaction, their properties, and also
scenarious of transition from the regular conditions to chaotic. It was established that
existence of the deterministic chaos in the system is caused only by interaction between
subsystems (generator and transducer), instead of their independent properties.

These effects are applicable at the analysis of the regular and chaotic regimes of func-
tioning of electrodynamic, electromagnetic and piezoceramic vibrators with the limited
excitation.
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[11] Khaki–Sedigh, A., Ataei, M., Lohmann, B. and Lucas, C. Adaptive Calculation of Lyapunov
Exponents from Time Series Observations of Chaotic Time Varying Dynamical Systems.
Nonlinear Dynamics and Systems Theory 4 (2004) 145–159.

[12] Kononenko, V.O. Vibrating systems with a limited power supply. Iliffe Books, London, 1969.

[13] Kononenko, V.O. and Krasnopolskaya, T.S. The vacuum tube generator in to system of
excitation of mechanical oscillations. Vibrotechnics 28 (4) (1977) 105–120. [Russian]

[14] Kouznetsov, S.P. Dynamic chaos. Physmatlit, Moscow, 2001. [Russian]

[15] Krasnopolskaya, T.S. Independent excitation mechanical oscillations by the electrodynamic
vibrator. Sov. Appl. Mech. 13(2) (1977) 108–113.

[16] Krasnopolskaya, T.S. and Shvets, A.Yu. Chaos in dynamics of machines with a limited
power-supply. In: 8-th World Congr. on the theory of machines and mechanisms. Prague:
Czechoslovak Acad. Sci., Vol. 1, 1991, 181–184.

[17] Krasnopolskaya, T.S. and Shvets, A.Yu. Chaos in vibrating systems with limited power-
supply. Chaos 3 (1993) 387–395.

[18] Krasnopolskaya, T.S. and Shvets, A.Yu. Chaotic surface waves in limited power-supply
cylindrical tank vibrations. J. Fluids and Structures 8 (1994) 1–18.

[19] Krasnopolskaya, T.S. Acoustic chaos caused by Sommerfeld effect. J. Fluids and Structures
8 (1994) 803–815.

[20] Martynyuk, A.A. Stability of Dynamical Systems in Metric Space. Nonlinear Dynamics
and Systems Theory 5 (2005) 157–168.

[21] Neimark, J.I. and Landa, P.S. Stochastic and chaotic oscillations. Nauka, Moscow, 1987.
[Russian]

[22] Rayleigh, W. Theory of Sound. Macmillan, London, 1877.

[23] Perel, V.Y. and Palazotto, A.N. A Nonlinear Model of Composite Delaminated Beam with
Piezoelecric Actuator, with Account of Nonpenetration Constraint for the Delamination
Crack Faces. Nonlinear Dynamics and Systems Theory 4 (2004) 161–194.

[24] Sommerfeld, A. Beitrage zum dynamischen ausbau der festigkeislehre. Zeitschrift des Vere-
ins Deutscher Ingenieure 46 (1902) 391–394.

[25] Timoshenko, S. Vibration Problems in Engineering. Van Nostrand Co., New York, 1928.

[26] Ulitko, A.F. The Conjugate undular processes in piezoceramic skew fields at the electrical
discharge. Acoustical Bull. 2(1) (1999) 60–73. [Russian]

[27] Ulitko, A.F. Vector Decomposition in the Space Theory Elasticities. Akademperiodica, Kiev,
2002. [Russian]

[28] Zharii, O.Yu. Normal mode expansions in dynamic electroelasticity and their application
to electromechanical energy conversion. J. Acoust. Soc. Am. 91(1) (1992) 57–68.




