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Abstract: One of the key issues when working with formations of spacecraft is how
to reconfigure the formation in order to change its orientation, its pointing or just to
arrive to a given pattern. In this paper we treat these reconfiguration tasks as an opti-
mal problem and set out the problem using the finite element method. Although the
methodology is general, and suits to many different types ofproblems, the examples
that have been considered focus in some basic maneuvers of the TPF and Darwin
missions about the L2 Lagrange point of the Earth-Sun system.
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1 Introduction

In the last few years, the interest in constellations of spacecraft and formation flight has been
increasing. One of the major applications of this techniqueis for remote sensing missions, where
using the formation it is possible to increase the resolution as a virtual antenna, resulting in a
much larger one than using a single spacecraft. Examples of this procedure are missions such as
Darwin of the ESA and TPF of the NASA (see [5, 3]).

Among others, one of the problems one must face when working with formations of space-
craft are the reconfiguration maneuvers. For instance, several situations where the need of recon-
figuration of the formation appears are the following:

• There are some basic maneuvers that a formation must be capable to perform, such as
expansions and contractions, or simply to change the pattern to perform specific tasks.
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Figure 1.1: Two examples of reconfiguration of spacecraft. In the left-hand side, we change the position of
the inner and outer spacecraft of the TPF formation. In the right-hand side we have a constellation pointing
to a certain target and we reconfigure it to point to another one.

• The lifetime of a formation finishes when a spacecraft ends its fuel. Many times will be
mandatory to equilibrate the consume of fuel of all the spacecraft to extend the lifetime
of the formation. An example of this situation is the TPF formation, where the outer
spacecraft consume more fuel than the inner ones. To exchange the position of the inner
and outer spacecraft, as in Figure 1.1 may be a solution to theproblem.

• In interferometry missions, the formation of spacecraft usually will have to point to many
targets. It is necessary to reconfigure the formation in order to point to the next goal as it
is represented in Figure 1.1.

• In some cases, due to the number of spacecraft of the formation, the deployment phase
might follow after a rendezvous of several motherships. Deployments can be treated as
special cases of reconfigurations where the satellites depart from different locations and
configure a final pattern.

The objective of this work is to compute reconfigurations of the spacecraft in a systematic
way and taking into account collision avoidance during the execution of the maneuvers. Ear-
lier approaches with different methodologies can be found in the literature. For instance C.R.
McInnes creates a local topology based on artificial potential functions (see [2]). The method
is also used in the guidance of robots which move avoiding fixed objects or in the guidance of
a robotic arm (see [7]). Singh and Hadaegh also treated the problem as an optimization one,
modeling the trajectory with cubic splines (see [6]). However our proposed research in the use of
finite element methods looks very promising due to the huge amount of knowledge on this area.
The finite element method implements in a systematic and general way giving a full methodo-
logy. There is no need to look or adjust functions or parameters in special situations and different
levels of approximation can be attained. Moreover it has a complete mathematical foundation in
behind assuring nice properties such as convergence to solutions and adaptability.
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2 The methodology

In the results we present, we assume that the spacecraft are in a L2 Halo orbit of 120,000 km
of z-amplitude in the Sun-Earth system. The model we use for the computations is the RTBP,
but the procedure is easily generalized to any other one or tofree space. Since we work with
formations of a diameter of few hundred meters, the size of the formation with respect to the
orbit is very small and it is feasible to use the linearized equations about the nonlinear orbit.

In this paper, the problem we consider is how to reconfigure a formation ofN spacecraft in a
selected timeT . The formation will evolve in the vicinity of a given point onthe halo orbit. Let
us denote byXi the position and velocity of thei-th spacecraft of the formation with respect to
this point on the nominal halo orbit. The governing equations for the formation are:

{

Ẋi(t) = A(t)Xi(t) + Ui(t),
Xi(0) = X0

i , Xi(T ) = XT
i ,

(1)

in the time interval[0, T ], for i = 1 . . .N . HereA(t) is the Jacobian matrix of the equations
of motion about the halo orbit andUi(t) is the control law to be applied to thei-th satellite,
so it is of the formUi(t) = (0, 0, 0, ux

i (t), uy
i (t), uz

i (t))
t. The final goal is to find optimal

controls,U1, . . . , UN , subjected to certain restrictions on mutual distances (i.e. Euclidean norms
in the position components ofXi(t)) or being the satellites on a certain surface, manifold, etc.
Restrictions can be also time dependent.

The finite element method could be applied directly to equations (1), but in order to work
with the simplest equations, we introduce a change of coordinates which castsA(t) into its
Jordan form which is
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This change of variables reduces (1) into a new set of equations each one them of the form






ẍ(t) + λ(t) ẋ(t) + τ(t)x(t) = u(t),
x(0) = x0, x(T ) = xT ,

ẋ(0) = v0, ẋ(T ) = vT .

(2)

whereλ(t) andτ(t) are computed from a correspondingλi(t) set. At this point it is also worth to
mention that if one wants to consider the motion of the formation in free space, which is common
in many studies of formation flight, we need only to takeλ(t) = τ(t) ≡ 0.

Assuming the time interval[0, T ] splitted in a given number,M , of smaller intervals (ele-
ments),t0 = 0, t1, . . . , tM−1, tM = T , we apply the Galerkin finite element method in time to
the equations (2) by means of considering products by weightfunctionsw(t) and the usual weak
form on each element is computed from the expression (see [8]):

∫ tk+1

tk

w(t) (ẍ(t) + λ(t) ẋ(t) + τ(t)x(t))dt =

∫ tk+1

tk

w(t)u(t)dt, k = 0, . . . , M − 1.

As it is well known, depending on the order of the elements used in the procedure one ob-
tains different linear systems of equations associated with them. In case of considering a linear
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element, the system is

(

Kk
11 Kk
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21 Kk
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) (
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=

(

∆vk

∆vk+1

)

,

which essentially states a relation between the nodal valuesxk andxk+1, which are related to the
positions of the reconfiguration trajectory, and the delta-v’s, ∆vk and∆vk+1, applied in the nodal
places of the element. We note that at this momentxk, xk+1, ∆vk and∆vk+1 are unknowns
and theKk

ij are3 × 3 known matrices which are systematically computed following Galerkin’s
method. Finally, assembling the elementary equations we obtain the relations between the all the
nodal positions and delta-v’s. For each one of the spacecraft of the formation(i = 1 . . .N) we
obtain a system of the form
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, (3)

for the interior nodes, while for the boundary ones we incorporate what is known as essential
boundary conditions and results in

∆vi,0 = K0
11 xi,0 + vi,0 + K0

12 xi,1, ∆vi,M = KM−1

21 xi,M−1 + KM−1

2,2 xi,M − vi,T .

From now on we treat the problem as an optimal control problem, where the functional we
minimize is a penalty on the delta-v of the spacecraft. Collision avoidance and any other type of
requirements enters in the method as restriction functionsin thexi,k andvi,k.

The objective function

The solution to our reconfiguration problem must be found attending essentially to the fuel
consumption of the satellites. For this purpose we have selected an objective function of the form

J(∆v1,0, . . . , ∆vN,M ) =
N

∑

i=0

Ji, with Ji(∆vi,0, . . . , ∆vi,M ) =
M
∑

k=0

ρi,k||∆vi,k||
2, (4)

(here|| ∗ || denotes Euclidean norm), because it is directly related with the fuel expenditure,
moreover derivatives are easily computed.

We consider parametersρi,k because in some way can be selected to equilibrate the fuel
consumption of the spacecraft. For instance, incrementingthe values ofρ corresponding to a
particular satellite the penalty function takes into account that for that particular satellite fuel
consumption is more critical. We also note that parametersρ can depend on time (through the
subscriptk), this fact may be used to penalize the delta-v in certain time intervals.
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Collision avoidance and other restrictions

In the reconfiguration planning it is essential to avoid collision between spacecraft. A mini-
mum security distance between them must be required while maneuvering. In our procedure this
distance can be chosen constant for general purpose reconfigurations or variable in time for spe-
cial situations. For instance, during deployment a variable security distance is needed because at
the beginning of the maneuver the satellites are closer thanthe usual safety distance demanded
for reconfigurations.

As we previously stated, collision avoidance enters in the variational method as constraints in
the position coordinates ofXi(t) of (1). Via the change of coordinates used to obtain (2) and the
finite element discretization, the constraints translate into conditions on thexi,k nodal variables.
The finite element discretization is used to compute the distance between each spacecraft on each
element and to check that this distance is greater than the security distance.

In a similar way many other restrictions can be applied (provided that there exist compati-
bility with the requirements). For instance some other cases that we have been studying are the
following

• It is possible to maintain a formation in a region determinedby a geometrical condition,
such as an sphere, a paraboloid or a plane in an optimal way.

• It is also possible to keep the geometrical condition duringa formation reconfiguration.
For instance satellites can be forced to move in a plane or in asphere while maneuvering
for the reconfiguration.

• We can impose that particular spacecraft do not perform maneuvers during certain time
intervals. In this case restrictions are set fixing the values of some∆vi,k (to zero in this
example).

• The procedure can be used to keep the formation pointing continuously to a selected goal.

• Satellites can be restricted to maintain only certain relative distances between them. For
instance to keep an equilateral triangle or tetrahedron. When the relative distances do not
depend on time, the formation will evolve like a solid.

• Moreover in all these cases the final position of the spacecraft of the formation can be
selected fixed (as in the formulation given by equations (1)), restricted to certain conditions
or free.

Computing the initial seed for the iterative procedure

The computation of the optimal value of the objective function (4) involves an iterative pro-
cess which needs an initial seed. In our approach this initial seed is computed using the uncoupled
systems (3) and without taking into account the restrictions. This is, the initial guess does not
have to be compatible with distance requirements between spacecraft or other type of constraints.

We have chosen to minimize the each one of the values given by

J̄i =

M
∑

k=0

||∆vi,k||
2, i = 1 . . .N.

Note that we do not use the parameterρ to find the initial seed. If we denote byK xi +bi = ∆vi,
the system (3) the function̄Ji casts into the form

J̄i = (K xi + bi)
T (K xi + bi) + (∆v0)

2 + (∆v
M

)2.
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Then it is easy to see that the trajectory of thei-th satellite which minimizes̄Ji, and it is repre-
sented by the nodal valuesxi, is obtained solving a linear system

(KT K + Ci)xi + (KT bi + di) = 0,

whereC is an sparse matrix andd is an sparse vector.

Other computational issues

In order to find reconfiguration paths, we have implemented a specific program in C which
returns the optimal trajectory for a given discretization of finite elements in time. The program
obtains the trajectory in an iterative way. Usually we startwith a few number of elements (ty-
pically 6 elements in the first step) and then we refine it by more or less doubling the number of
elements at each iteration.

Using a slow computer such as a Pentium 3, 1.5 GHz, the CPU timeto find the initial optimal
six element trajectory from the initial seed is less than 20 seconds for a formation of 5 or 6
satellites. Doubling the number of elements from 50 to 100 for the same formation requires
less than 40 seconds. Of course these CPU times, specially for the initial iterations, depend
strongly on the characteristics of the reconfiguration demanded, but these ones are in general
good indicators.

In case that problems of convergence had appeared in the firstiterations we could also have
used continuation methods, for instance with respect to thesecurity distance, but it has not been
necessary in all the examples that we have tried.

3 Some examples of reconfigurations

To illustrate the procedure we have selected three examples, two of them related with current
missions of the NASA and ESA agencies. The TPF Mission (Terrestrial Planet Finder) is one
of the masterpieces of the NASA Origins Program. Its goal is the detection and characterization
of Earth-like planets that orbit nearby stars (see [3], [1]). The TPF configuration is currently
considered to be formed by five spacecraft contained in a plane. Four spacecraft are evenly
distributed in a baseline of approximately 100 m. The fifth one, the collector, forms an equilater
triangle with the two interior satellites of the baseline (see Figure 3.1).

The Darwin Mission is a project of the ESA with a similar objective of the TPF Mission. The
Darwin configuration (see [5]) is formed by seven spacecraftcontained in a plane. Six of them
are on the vertices of a regular hexagon of radius about 100 m and the seventh one is located at
the baricenter (see again Figure 3.1).

In the examples, and only for illustration purposes, of we have also computed the delta-v

on/off necessary to reconfigure the formation. We note however that the on/off control does not
take into account collision avoidance which is a major requirement in the following examples,
where the satellites will irremediable collide using the on/off technique.

Changing inner-outer position in the TPF formation

In the TPF formation, the exterior spacecraft have a bigger fuel consumption than the interior
ones (see [4]). To compensate the difference, we can consider changing their position at some
moment in the lifetime of the mission. In Table 3.1 we presentthe cost, in terms of total delta-v

(cm/s), for each satellite to accomplish the task. Relativetrajectories and the profile of delta-v

consumption is represented in Figure 3.2.
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Figure 3.1: Representations of the TPF (left-hand side) and Darwin (right-hand side) configurations.

Satellite 1 2 3 4 5 Total (cm/s)
∆v 1.65 1.63 1.65 1.67 0.19 6.79

∆v on-off 0.23 0.23 0.23 0.23 0.00 0.92

Table 3.1: Change the position of the consecutive interior and exterior spacecraft of TPF in 8 hours. The
formation is considered about a halo orbit of 120000 km ofz-amplitude. The results corresponds to a
discretization of each trajectory in 50 linear elements.

Exchanging positions of several spacecraft

In this example (see Figure 3.3), we have 4 small spacecraft in a square of length 40 meters
and another one in the center of the it. Again the satellites are about a halo orbit of 120000 km
of z-amplitude being the central one on the halo orbit. The example consist in switching the
satellites located in the opposite vertices, while the central one returns to the same place after
letting the other ones pass near the center. Total costs are displayed in Table 3.2.

Rendezvous and formation deployment

We consider the Darwin configuration to perform an example ofrendezvous and deployment.
We start with two groups of 3 and 4 spacecraft separated by a distance of 1000 m. The exam-
ple is again about a halo orbit of 120000 km ofz-amplitude about the L2 Sun-Earth libration
point. It turns out that the optimum place for the rendezvousis the relative point located in the
center of mass of the initial configuration. We show the trajectory and the profiles of the delta-v

expenditures in Figure 3.4. Total amounts of∆v are given in Table 3.3.

Satellite 1 2 3 4 5 Total (cm/s)
∆v 1.17 1.02 1.21 0.93 0.28 4.61

∆v on-off 0.39 0.39 0.39 0.39 0.00 1.56

Table 3.2: Delta-v expenditure to change the position of four satellites located in opposite corners of an
square of 40 m. Reconfiguration time has been set to 8 hours. Inthis example 100 linear elements have
been used.
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Figure 3.2: In the left-hand side plot we have the trajectory obtained when we change the consecutive
interior and exterior spacecraft in the TPF configuration. Satellites are represented in the center of the
collision avoidance spheres which cannot intersect duringthe maneuver (the radius of the sphere is half of
the security distance considered). In the right hand side plot we show the profile of the∆v expenditure for
each satellite. The corresponding total amounts are given in Table3.1

Figure 3.3: In the left-hand side plot we have the trajectory of the spacecraft when we change the position
of the opposite spacecraft in a square. In the right hand sideplot we have the profile of the∆v expenditure
for each spacecraft. Total amounts of∆v are given in Table3.2.
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Figure 3.4: In the left-hand side we plot a snapshot of a rendezvous trajectory for the Darwin mission. In
the right hand side plot we show the profile of the∆v expenditure for each spacecraft. Total amounts of
∆v are given in Table3.3

Satellite 1 2 3 4 5 6 7 Total (cm/s)
∆v 1.83 1.83 1.83 1.33 1.33 1.33 1.33 10.81

∆v on-off 1.32 1.32 1.32 0.99 0.99 0.99 0.99 7.92

Table 3.3: ∆v cost corresponding to the rendezvous example for the Darwinformation. The two groups
of satellites depart from 1000 m apart and perform rendezvous in one day. The example uses 50 linear
elements for each satellite.

4 Conclusions

In this paper we present a technique for reconfigurations of spacecraft formations based in the
use of the finite element method and optimal control. The finite element method provides a
systematic approach to the discretization of the problem which tends to a low thrust continuous
solution when the mesh of elements is refined. This approach has been presented in several
examples concerning the TPF and Darwin missions with satisfactory results but much more
general situations can be dealt using the methodology.
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