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Abstract: One of the key issues when working with formations of spaaft@s how
to reconfigure the formation in order to change its orieatatits pointing or just to
arrive to a given pattern. In this paper we treat these regorgtion tasks as an opti-
mal problem and set out the problem using the finite elemetti@de Although the
methodology is general, and suits to many different typgsroblems, the examples
that have been considered focus in some basic maneuvers dith and Darwin
missions about thed | agrange point of the Earth-Sun system.
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1 Introduction

In the last few years, the interest in constellations of speaft and formation flight has been
increasing. One of the major applications of this technigder remote sensing missions, where
using the formation it is possible to increase the resafutis a virtual antenna, resulting in a
much larger one than using a single spacecraft. Exampléssgbtocedure are missions such as
Darwin of the ESA and TPF of the NASA (see [5, 3)).
Among others, one of the problems one must face when workitigfermations of space-

craft are the reconfiguration maneuvers. For instanceralksituations where the need of recon-
figuration of the formation appears are the following:

e There are some basic maneuvers that a formation must beleapaberform, such as
expansions and contractions, or simply to change the patigrerform specific tasks.
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Figure 1.1 Two examples of reconfiguration of spacecraft. In the leftdhside, we change the position of
the inner and outer spacecraft of the TPF formation. In tietsihand side we have a constellation pointing
to a certain target and we reconfigure it to point to another on

e The lifetime of a formation finishes when a spacecraft erslfuigl. Many times will be
mandatory to equilibrate the consume of fuel of all the speafeto extend the lifetime
of the formation. An example of this situation is the TPF fation, where the outer
spacecraft consume more fuel than the inner ones. To exehlhegosition of the inner
and outer spacecraft, as in Figure 1.1 may be a solution tprttgem.

¢ In interferometry missions, the formation of spacecrattally will have to point to many
targets. It is necessary to reconfigure the formation inrai@eoint to the next goal as it
is represented in Figure 1.1.

e In some cases, due to the number of spacecraft of the formadtie deployment phase
might follow after a rendezvous of several motherships. |IBgpents can be treated as
special cases of reconfigurations where the satellitesrd&pen different locations and
configure a final pattern.

The objective of this work is to compute reconfigurationstaf spacecraft in a systematic
way and taking into account collision avoidance during thecation of the maneuvers. Ear-
lier approaches with different methodologies can be foumthé literature. For instance C.R.
Mclnnes creates a local topology based on artificial paaéhfiinctions (see [2]). The method
is also used in the guidance of robots which move avoidingifodgiects or in the guidance of
a robotic arm (see [7]). Singh and Hadaegh also treated thi@lggn as an optimization one,
modeling the trajectory with cubic splines (see [6]). Hoaewur proposed research in the use of
finite element methods looks very promising due to the hugeusrnof knowledge on this area.
The finite element method implements in a systematic andrgeway giving a full methodo-
logy. There is no need to look or adjust functions or paramsétespecial situations and different
levels of approximation can be attained. Moreover it hasmapete mathematical foundation in
behind assuring nice properties such as convergence tiiosdand adaptability.
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2 The methodology

In the results we present, we assume that the spacecrafi arézi Halo orbit of 120,000 km
of z-amplitude in the Sun-Earth system. The model we use for ¢dhepatations is the RTBP,
but the procedure is easily generalized to any other one fsre¢éospace. Since we work with
formations of a diameter of few hundred meters, the size effthmation with respect to the
orbitis very small and it is feasible to use the linearizedatmpns about the nonlinear orbit.

In this paper, the problem we consider is how to reconfiguogrmétion of N spacecraftin a
selected tim&". The formation will evolve in the vicinity of a given point dhe halo orbit. Let
us denote byX; the position and velocity of theth spacecraft of the formation with respect to
this point on the nominal halo orbit. The governing equatifor the formation are:

{ X;(t) = A@®)X,(t) + Us(t), 1)
X;(0) = X2, X,(T)=X],

in the time interval0, 7], fori = 1... N. Here A(t) is the Jacobian matrix of the equations
of motion about the halo orbit and;(¢) is the control law to be applied to theth satellite,
so it is of the formU;(¢) = (0,0,0,u¥(t),u?(t),ui(t))!. The final goal is to find optimal
controls,Uy, ..., Uy, subjected to certain restrictions on mutual distances Huclidean norms
in the position components df;(¢)) or being the satellites on a certain surface, manifold, etc
Restrictions can be also time dependent.

The finite element method could be applied directly to equti(1), but in order to work
with the simplest equations, we introduce a change of coatds which castsl(t) into its

Jordan form which is

()
—Au(t)
0 ()
)0
0 s(t)
()0

This change of variables reduces (1) into a new set of equeéiach one them of the form

E(t) + A(@) 2(t) + 7(¢) z(t) = u(t),
SC(O) = To, I(T) =T, (2)
%(0) = vy, z(T) = vr.

where(t) andr(¢) are computed from a correspondikgt) set. At this pointitis also worth to
mention that if one wants to consider the motion of the foramaih free space, which is common
in many studies of formation flight, we need only to tal¢) = 7(¢) = 0.

Assuming the time intervdD, T splitted in a given number)/, of smaller intervals (ele-
ments)to = 0, t1,...,tp—1,t = T, we apply the Galerkin finite element method in time to
the equations (2) by means of considering products by wéigittionsw(¢) and the usual weak
form on each element is computed from the expression (sge [8]

tht1

/ T w() () + D) B () + () 2(8))dt = / wt)u(t)dt, k=0,...,M—1.

ty ty

As it is well known, depending on the order of the elementsiusehe procedure one ob-
tains different linear systems of equations associateld thigm. In case of considering a linear
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element, the system is

Kfl K{CQ Tl o Avk
(kb &k (o) -(an )
which essentially states a relation between the nodal salyandz 1, which are related to the
positions of the reconfiguration trajectory, and the del$aAv;, andAvy, 1, applied in the nodal
places of the element. We note that at this momentry 1, Av, and Avg; are unknowns
and therj are3 x 3 known matrices which are systematically computed follav@alerkin’s
method. Finally, assembling the elementary equations wsothe relations between the all the

nodal positions and deltals. For each one of the spacecraft of the formatiors- 1... N) we
obtain a system of the form

0 1 1
Kzz +1K11 1K12 ) 02 Zi,1
K21 Kzz + Ku K12 Li,2
- . : +
M-3 M-3 M—2 M—2
K% K22 Kj/;ffu KMfz{f_ KZ\/I—I i:ﬁ:i
21 22 11
K;:ZTLO A’UiJ
0 AULQ
e ©
0 Av; pr—2
Kdei,T Avi a1

12

for the interior nodes, while for the boundary ones we inooage what is known as essential
boundary conditions and results in

0 0 M-1 M-1
Avio = K3y Tio +vio + Kiaxi1, Avin =Ky Tim—1+ Kyy  @im —vir.

From now on we treat the problem as an optimal control problghere the functional we
minimize is a penalty on the deltaef the spacecraft. Collision avoidance and any other type of
requirements enters in the method as restriction funciiotie z; ;, andwv; .

The objective function

The solution to our reconfiguration problem must be foundrating essentially to the fuel
consumption of the satellites. For this purpose we havetl@an objective function of the form

J(A’Ul_’(), ceey A’UN,M) =

N
=0

M
Ji, with Ji(Aviyo,...,Avin) :Zpi,kHAvi,kHQ, (4)

k=0
(here|| * || denotes Euclidean norm), because it is directly relatetd wie fuel expenditure,
moreover derivatives are easily computed.

We consider parameteys , because in some way can be selected to equilibrate the fuel

consumption of the spacecraft. For instance, incremerntiagzalues ofp corresponding to a
particular satellite the penalty function takes into actdihat for that particular satellite fuel

consumption is more critical. We also note that parameteran depend on time (through the
subscriptk), this fact may be used to penalize the delta-certain time intervals.
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Collision avoidance and other restrictions

In the reconfiguration planning it is essential to avoidis@h between spacecraft. A mini-
mum security distance between them must be required whiteemeering. In our procedure this
distance can be chosen constant for general purpose reaatitms or variable in time for spe-
cial situations. For instance, during deployment a vaeiaelcurity distance is needed because at
the beginning of the maneuver the satellites are closerttimnsual safety distance demanded
for reconfigurations.

As we previously stated, collision avoidance enters in eiméational method as constraintsin
the position coordinates d¢,(¢) of (1). Via the change of coordinates used to obtain (2) aad th
finite element discretization, the constraints translate conditions on the;; ;, nodal variables.
The finite element discretization is used to compute thadcst between each spacecraft on each
element and to check that this distance is greater than theisedistance.

In a similar way many other restrictions can be applied (jutes that there exist compati-
bility with the requirements). For instance some other sdisat we have been studying are the
following

e Itis possible to maintain a formation in a region determibgda geometrical condition,
such as an sphere, a paraboloid or a plane in an optimal way.

e It is also possible to keep the geometrical condition dudrfgrmation reconfiguration.
For instance satellites can be forced to move in a plane osphare while maneuvering
for the reconfiguration.

e We can impose that particular spacecraft do not perform masre during certain time
intervals. In this case restrictions are set fixing the valiesomeAw; 5, (to zero in this
example).

e The procedure can be used to keep the formation pointingrzanisly to a selected goal.

e Satellites can be restricted to maintain only certain redadistances between them. For
instance to keep an equilateral triangle or tetrahedroretthe relative distances do not
depend on time, the formation will evolve like a solid.

e Moreover in all these cases the final position of the spaftesfahe formation can be
selected fixed (as in the formulation given by equations (&¥fricted to certain conditions
or free.

Computing the initial seed for the iterative procedure

The computation of the optimal value of the objective fumiet{4) involves an iterative pro-
cess which needs an initial seed. In our approach thisliegizd is computed using the uncoupled
systems (3) and without taking into account the restrictionhis is, the initial guess does not
have to be compatible with distance requirements betwesrespaft or other type of constraints.

We have chosen to minimize the each one of the values given by

M
Ji =Y |lAvi|?, i=1...N.
k=0

Note that we do not use the parametéo find the initial seed. If we denote by z; +b; = Av;,
the system (3) the functios; casts into the form

ji = (K x; + bZ)T(K x; + bl) + (A'UO)2 + (A’UM)Q.
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Then it is easy to see that the trajectory of ikt satellite which minimized;, and it is repre-
sented by the nodal values, is obtained solving a linear system

(KTK + C))a; + (KTb; +d;) = 0,
whereC' is an sparse matrix antlis an sparse vector.

Other computational issues

In order to find reconfiguration paths, we have implementegegific program in C which
returns the optimal trajectory for a given discretizatidrinite elements in time. The program
obtains the trajectory in an iterative way. Usually we staith a few number of elements (ty-
pically 6 elements in the first step) and then we refine it byerasrless doubling the number of
elements at each iteration.

Using a slow computer such as a Pentium 3, 1.5 GHz, the CPUdirfired the initial optimal
six element trajectory from the initial seed is less than @€osds for a formation of 5 or 6
satellites. Doubling the number of elements from 50 to 100tlfie same formation requires
less than 40 seconds. Of course these CPU times, specialtiiddnitial iterations, depend
strongly on the characteristics of the reconfiguration deded, but these ones are in general
good indicators.

In case that problems of convergence had appeared in thédieions we could also have
used continuation methods, for instance with respect te¢learity distance, but it has not been
necessary in all the examples that we have tried.

3 Some examples of reconfigurations

To illustrate the procedure we have selected three exammlesof them related with current
missions of the NASA and ESA agencies. The TPF Mission (Stiie¢ Planet Finder) is one
of the masterpieces of the NASA Origins Program. Its godiésdetection and characterization
of Earth-like planets that orbit nearby stars (see [3],.[IThe TPF configuration is currently
considered to be formed by five spacecraft contained in aepldfour spacecraft are evenly
distributed in a baseline of approximately 100 m. The fifte ghe collector, forms an equilater
triangle with the two interior satellites of the baselined$-igure 3.1).

The Darwin Mission is a project of the ESA with a similar olijee of the TPF Mission. The
Darwin configuration (see [5]) is formed by seven spacea@ftained in a plane. Six of them
are on the vertices of a regular hexagon of radius about 100chttee seventh one is located at
the baricenter (see again Figure 3.1).

In the examples, and only for illustration purposes, of weehalso computed the delia-
on/off necessary to reconfigure the formation. We note hewthat the on/off control does not
take into account collision avoidance which is a major regjaient in the following examples,
where the satellites will irremediable collide using théadftechnique.

Changing inner-outer position in the TPF formation

In the TPF formation, the exterior spacecraft have a biggerdonsumption than the interior
ones (see [4]). To compensate the difference, we can cardidaging their position at some
moment in the lifetime of the mission. In Table 3.1 we predbatcost, in terms of total delta-
(cm/s), for each satellite to accomplish the task. Reldtiagctories and the profile of delta-
consumption is represented in Figure 3.2.
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Figure 3.1 Representations of the TPF (left-hand side) and Darwim{iigind side) configurations.

Satellite | 1 2 3 4 5  Total (cm/s)
Av 165 163 165 1.67 0.19 6.79
Avon-off | 0.23 0.23 0.23 0.23 0.00 0.92

Table 3.1 Change the position of the consecutive interior and extepacecraft of TPF in 8 hours. The
formation is considered about a halo orbit of 120000 kmx-@mplitude. The results corresponds to a
discretization of each trajectory in 50 linear elements.

Exchanging positions of several spacecraft

In this example (see Figure 3.3), we have 4 small spacecrafsijuare of length 40 meters
and another one in the center of the it. Again the satellitesabout a halo orbit of 120000 km
of z-amplitude being the central one on the halo orbit. The exarmpnsist in switching the
satellites located in the opposite vertices, while the reémine returns to the same place after
letting the other ones pass near the center. Total costssplayked in Table 3.2.

Rendezvous and formation deployment

We consider the Darwin configuration to perform an examplenflezvous and deployment.
We start with two groups of 3 and 4 spacecraft separated bgtardie of 1000 m. The exam-
ple is again about a halo orbit of 120000 kme&mplitude about the 4 Sun-Earth libration
point. It turns out that the optimum place for the rendez\suke relative point located in the
center of mass of the initial configuration. We show the tritjey and the profiles of the delta-
expenditures in Figure 3.4. Total amountsXf are given in Table 3.3.

Satellite | 1 2 3 4 5  Total (cm/s)
Av 1.17 102 1.21 0.93 0.28 4.61
Avon-off | 0.39 0.39 0.39 0.39 0.00 1.56

Table 3.2 Deltawv expenditure to change the position of four satellites ledah opposite corners of an
square of 40 m. Reconfiguration time has been set to 8 hourthisiexample 100 linear elements have
been used.
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Figure 3.2 In the left-hand side plot we have the trajectory obtaine@&mvive change the consecutive
interior and exterior spacecraft in the TPF configuratiorateflites are represented in the center of the
collision avoidance spheres which cannot intersect dutiegnaneuver (the radius of the sphere is half of
the security distance considered). In the right hand sidevpe show the profile of thé\v expenditure for

L. GARAA AND J. J. MASDEMONT

Ll
AN
&
iy
Wi
L2l

0,06

0,05

0,04

0,03

0,02

0,01

0

2,19142, 0, 0244080

each satellite. The corresponding total amounts are giv@ahle3.1

File Options  Optimize

L

o
=
b

Roty

Figure 3.3 In the left-hand side plot we have the trajectory of the spafewhen we change the position
of the opposite spacecraft in a square. In the right handg@aeve have the profile of thAv expenditure
for each spacecraft. Total amounts/®f are given in Tabl&.2
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Figure 3.4 In the left-hand side we plot a snapshot of a rendezvousctajefor the Darwin mission. In
the right hand side plot we show the profile of the expenditure for each spacecraft. Total amounts of
Awv are given in Table3.3

Satellite | 1 2 3 4 5 6 7  Total (cm/s)
Av 183 183 183 133 133 1.33 1.33 10.81
Avon-off | 1.32 1.32 1.32 099 0.99 0.99 0.99 7.92

Table 3.3 Aw cost corresponding to the rendezvous example for the Deammation. The two groups
of satellites depart from 1000 m apart and perform rendezvwowne day. The example uses 50 linear
elements for each satellite.

4 Conclusions

In this paper we present a technique for reconfigurationpaéecraft formations based in the
use of the finite element method and optimal control. Theedfisiement method provides a
systematic approach to the discretization of the problenclvtends to a low thrust continuous
solution when the mesh of elements is refined. This approashbleen presented in several
examples concerning the TPF and Darwin missions with satisfy results but much more
general situations can be dealt using the methodology.
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