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Abstract: Several currently planned space missions consist of a set of satellites
flying in formation. While increasing the functionality, this concept introduces
several new challenges with respect to the design of the mission. The topol-
ogy of the sensing or communication network among the satellites can be a
bottleneck in the operation because the transmission of information and the
coordination of the formation relies on it. Here we study the robustness of the
formation dynamics with respect to changes in the communication topology
(like the failure of some communication links). Moreover, we propose a special
variant of the notion of stability radius in order to measure the robustness of
a certain topology.
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1 Introduction

Space missions with several spacecraft flying in formation have received a lot of attention
recently. Increased functionality and robustness of the mission are two key characteristics
of this approach. Several currently planned space missions consist of a set of satellites
flying in formation, like, e.g., the NASA mission Terrestrial Planet Finder (TPF) and
the ESA mission Darwin. In both missions, a network of formation flying spacecraft
builds up an infrared interferometer in order to detect and study planets in outer space.

One key challenge in the design of these missions is the question on how to efficiently
attain and accurately maintain the desired formation. In [1, 5] it has been shown that
formation-stabilizing control laws can be derived for the individual spacecraft that rely
on local information only. The key idea is that, together with the stability properties
of the dynamics of the individual spacecraft, the spectrum of the Laplacian associated
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to the graph that describes which spacecraft communicate with which other spacecraft
plays a crucial role in the design of this control law.

In this paper, by means of a network of six spacecraft with simple linear dynamics,
we study the robustness of certain communication graphs with respect to the removal of
edges (i.e. the failure of some communication links). Based on stabilizability statements
from [1, 5] we analyse how many communication links can fail before the dynamics of
the overall system becomes unstable. For more complicated situations we propose an
adapted version of the concept of stability radius of a linear system in order to measure
this robustness.

2 Model

In the current mission design for Darwin and TPF it is planned to inject the spacecraft
into a Libration orbit around the Lagrange point L2. Close to this orbit, a time-dependent
linear model may be used in order to describe the motion of the spacecraft [4]. For the
purposes of this paper we restrict ourselves to a time-independent model as used in [5],
i.e. we model the dynamics of each of the N vehicles by

ẋi = Axi + Bui, i = 1, . . . , N, (1)

where xi ∈ R6 is the state and ui ∈ Rp for some p is the control of vehicle i and A
and B are real matrices of appropriate size. As shown in [5], a linear local feedback can
be designed which drives the system asymptotically into a prescribed formation, i.e. the
vehicles attain prescribed distances relative to each other as well as the same velocity.
We follow [5] in the following description.

The feedback law is local in the sense that each vehicle i can generate its own control
ui from the determination of its state relative to the states of some subset Si ⊂ {1, . . . , N}
of all vehicles (obtained, e.g., by communicating with the vehicles in Si). The i-th vehicle
computes

zi = (xi − hi) −
1

|Si|

∑

j∈Si

(xj − hj), (2)

where hi ∈ R6 is some reference state for the i-th vehicle, and sets ui = Fzi for some
feedback matrix F .

Viewing the system as an undirected graph G = (V, E), where the set of nodes
V = {1, . . . , N} represent the vehicles and the set of edges E represent communication
links (i.e. E = {(i, j) : j ∈ Si}), one can compactly write the system in the form

ẋ = Âx + B̂F̂ L̂(x − h). (3)

Here x = (x1, . . . , xN ) ∈ R6N , Â = IN ⊗A, B̂ = IN ⊗B, F̂ = IN ⊗F , h = (h1, . . . , hN )
and L̂ = L ⊗ I6, with L being the Laplacian of the graph G, i.e.

Lij =











1 : i = j,

−
1

|Si|
: j ∈ Si,

0 : j /∈ Si.

(4)
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3 Robustness of Communication Topologies

In [5] it is shown that the vehicles are in formation if and only if L̂(x−h) = 0 and (under
certain assumptions) that if the matrix A+λBF is stable for each nonzero eigenvalue λ
of L, then L̂(x(t)−h) → 0 as t → ∞, i.e. the vehicles asymptotically attain the desired
formation. For a given communication graph, this result thus gives a criterion on how
to design the feedback matrix F . In fact, under certain assumptions on the uncontrolled
dynamics of a single system, i.e. on the matrix A, one can show that for every connected
graph one can find a feedback matrix F which renders the closed loop system stable
([5], Proposition 4.4). What is more, under these assumptions, feedback matrices can in
fact be constructed which render the system stable regardless of how the communication
graph is chosen — as long as it is connected.

However, the choice of the feedback matrix F will depend on the single system dynam-
ics (i.e. the matrix A) and, in particular in our application context, in a non-autonomous
setting it may happen that A is changing in such a way that the overall system dynamics
becomes unstable. In this case, the question arises which communication topology is best
suited in the sense that it will ensure stability of the formation for the largest “range”
of single system dynamics. What is more, taking into account that communication links
may fail, the question is which topology is most robust with respect to such failures, i.e.
ensures stability of the system even when a certain number of links fail.

In order to make these considerations more precise we focus on the following basic
setting from [5]: we assume that each coordinate of the system is modelled by the same
second order dynamics, i.e. we have

A = I3 ⊗

(

0 1
0 a22

)

and B = I3 ⊗

(

0
1

)

.

Using F = I3⊗(f1 f2) as the feedback matrix, our goal will thus be to render the matrix

Hλ =

(

0 1
0 a22

)

+ λ

(

0 0
f1 f2

)

stable for each nonzero eigenvalue λ of the Laplacian L. This matrix will be stable if and
only if

a22 + λf2 < 0 and λf1 < 0,

i.e. f1 has to be chosen negative (since λ ∈ [0, 2] for all eigenvalues of L). If the single
system dynamics is unstable, i.e. a22 > 0, then the eigenvalue λ of L which is closest to
zero determines how f2 has to be chosen in order to render the overall system stable.

Since we are assuming that all vehicles have identical dynamics and communication
capabilities, it seems natural to restrict the choice of communication graphs to regular
ones. Figure 3.1 shows all non-isomorphic connected regular (undirected) graphs with
six nodes (see e.g. [6]). In the first column of Table 3.1 we list the corresponding
minimal nonzero eigenvalues of the Laplacians (except for the 2-regular graph which
becomes disconnected as soon as more than one edge is removed). The other columns
show how these eigenvalues change when removing a certain number of edges from the
corresponding graph (where we minimized over all possible removals).

From these values, the choice of the full graph appears to be the best one (as one
might have expected), since it features the largest minimal nonzero eigenvalue (and thus,
for a fixed f2, allows for the largest value for a22).
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Figure 3.1: All non-isomorphic connected regular undirected graphs with six nodes.

graph \ # of edge failures 0 1 2 3 4
3 regular (1) 0.6670 0.4226 0.2047 0.1960 0.1910
3 regular (2) 1.0000 0.6670 0.5286 0.2929 0.1910

4 regular 1.0000 0.8104 0.6670 0.4610 0.2727
5 regular 1.2000 1.0000 0.8911 0.8104 0.7180

Table 3.1: The minimal nonzero eigenvalues for the communication graphs under consideration
in dependence of the number of edge failures.

The full graph is also optimal if we choose f2 dependent on the graph and ask for
maximal robustness with respect to communication link failures, since the absolute de-
crease of the minimal nonzero eigenvalue is smallest for this graph. This fact is also
visualized in Figure 3.2.

Figure 3.2: The plot of normalized λmin.
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4 Conclusion and Outlook

Stability radius. In the preceding section we have been considering a simple model
in order to analyse robustness properties of certain communication topologies. In a more
general setting it will be necessary to approach this question in a more systematic way.
To this end, we propose to use the concept of the stability radius from control theory,
see [3].

We denote by Un the set of unstable real n × n matrices:

Un = {U ∈ Rn×n : σ(U) ∩ C+ 6= ∅}, (5)

where C+ is the closed right half complex plane. For a general matrix A ∈ Rn×n, the
stability radius measures the distance r(A) of A from the set Un of unstable matrices,

r(A) = inf
U∈Un

‖A − U‖. (6)

Proposition 4.1 ([2]) Let A ∈ Rn×n be stable and normal with eigenvalues λj =
−αj ± iωj, α1 ≥ · · · ≥ αn > 0, then r(A) = αn.

This proposition shows that for normal matrices A, the distance of A from the set
of unstable matrices is given by the distance of its spectrum from the imaginary axis.
If A is not normal, then the distance of σ(A) from the imaginary axis can be a very
misleading indicator of the “robustness” of A.

Motivated by an adaptation of this notion to structured systems [2] we we propose
the following definition which is adapted to our context. Let L(G) be the Laplacian
associated with a given communication graph G = (V, E) and let L(G) be the set of
Laplacians associated with those graphs which result from G by removing some edges,
i.e.

L(G) = {L(G′) : G′ = (V, E′), E′ ⊂ E}.

For some Laplacian L′ = L(G′) ∈ L(G) with G′ = (V, E′) let

d(L′) = |E| − |E′|

be the number of communication link failures. We define the stability radius
r(A, B, F, G) of a given system (A, B, F, G) as the minimum number of edges failures
such that the system is unstable, i.e.

r(A, B, F, G) = min
L∈L(G)

{d(L) : σ(Â + B̂F̂ L̂) ∩ C+ 6= ∅} . (7)

In future work we will explore the usefulness of this concept for the analysis of the
robustness of certain communication topologies within systems with more complicated
dynamics.

Conclusion. Using a simple linear model, we explored the robustness of different com-
munication graphs with respect to failures of communication links. We introduced a
variant of the notion of the stability radius of a given system as a means of system-
atically measuring the robustness for more complicated systems. It remains to explore
this concept in an application scenario as well as to analyse nonautonomous systems like
motivated by missions with formation flying spacecraft on Libration orbits.
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