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1 Introduction

Synchronization of chaotic oscillations has attracted in recent decades much attention.
Different approaches have been reported in the literature see, e.g. [1-14] and references
therein. This phenomenon is supposed to have interesting applications in secure com-
munications, see for example [14-23]. However, it has been shown [24, 25] that masking
information signals by means of comparatively simple chaos with only one positive Lya-
punov exponent does not ensure a sufficient level of security. In some cases, extracting
of the information can be performed using common signal processing techniques. For
higher security the hyperchaotic systems characterized by more than one positive
Lyapunov exponent are advantageous over “simple” chaotic systems. Two factors
of primordial importance in security considerations related to chaotic communication
systems are:
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i) the dimensionality of the chaotic attractor, and

ii) the effort required to obtain the necessary parameters for the matching of a slave
dynamics.

One way to enhance the level of encryption security of the communication system
consists in applying proper cryptographic techniques to the information signal in com-
bination with chaos [26, 27]. Another way to solve this security problem is to encrypt
the information by using high dimensional chaotic attractors, or hyperchaotic attractors,
which take advantage of the increased randomness and unpredictabilily of the higher di-
mensional dynamics. In such option, one generally encounters multiple positive Lyapunov
exponents. However, hyperchaotic synchronization is a much more difficult problem, see
for example [28-30] and [11] for discrete-time context. Other alternative of synchronize
hyperchaotic dynamics is using delay differential (or difference) equations, such systems
have an infinite-dimensional state space and produce hyperchaos with an arbitrary large
number of positive Lyapunov exponents [22, 23].

On the other hand, most of the previous work done on chaos synchronization has been
concentrated on continuous-time chaotic systems. Discrete-time systems used for chaos
synchronization though, having potential in applications of discrete communications,
have not been thoroughly discussed. While a lot of work is available in the control of
chaotic mappings, only a few works face the problem of synchronization of discrete-time
chaotic systems.

Moreover, parameter uncertainty or unstructured uncertainty in the master dynamics
and coupling signal, noise may appear due to measurement noise or uncertainties in the
dynamics. In this case, synchronization becomes a more difficult problem, certainly no
exact state reconstruction will be possible. Nevertheless, a filtering approach may be
very suitable in this case, see [31] and in the discrete-time context [6, 7].

On the basis of these considerations, the objective of this paper is to extend the
approach developed in [6, 7] to the synchronization of hyperchaotic noisy maps with
noisy coupling signal. Our goal is achieved by designing an EKF as a slave. In this work,
we show that synchronization of discrete-time hyperchaotic systems is indeed suitable
from this viewpoint and, moreover, we proceed to apply this approach to synchronize
two noisy maps as illustrative examples.

The paper is organized as follows. In Section 2 we state the problem under con-
sideration, the noisy synchronization of discrete-time systems. In Section 3, based on
Lyapunov theory, we present an analysis of asymptotic convergence of the EKF. To il-
lustrate the proposed approach, we use in Section 4 an EKF as a slave to synchronize
two noisy hyperchaotic maps. Finally, some conclusions are drawn in Section 5.

2 Problem Statement

We consider noisy master dynamics given by the state equation

x (k + 1) = f (x (k)) + w (k) , x (0) = x0, (1)

with coupling signal
y (k) = h (x (k)) + v (k) . (2)
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In system (1), w (k) represents the noise in the dynamics of the master system, which
is assumed to be a zero mean noise process with E

[

w (k)wT (l)
]

= Qδkl > 0, with δkl the
Kronecker delta function. Also v (k) is a zero mean noise process with E [v (k) v (l)] =
Rδkl > 0; the processes v (k) and w (k) are assumed to be independent.

The EKF that we use as slave dynamics for (1) with noisy coupling signal (2) is
described as follows [32]:
Measurement update equations:

x̂ (k) = x̂ (k/k − 1) + Kx̂ (k) [y (k) − h (x̂ (k/k − 1))] , (3)

where the vector x̂ (k) is referred as the filtered estimate for the master state vector x (k)
at time k. The covariance of the error in x̂ (k) is given by

Px̂ (k) = [I − Kx̂ (k)Hx̂ (k)] Px̂ (k/k − 1) . (4)

Time update equations:
The (one-step ahead) predictor of x̂ (k + 1) is given by

x̂ (k + 1/k) = f (x̂ (k)) , (5)

the covariance matrix of the prediction error is

Px̂ (k + 1/k) = F
x̂
(k)Px̂ (k)FT

x̂
(k) + Q, (6)

where
Kx̂ (k) = Px̂ (k/k − 1)HT

x̂ (k)
[

Hx̂ (k)Px̂ (k/k − 1)HT
x̂ (k) + R

]−1
(7)

is the Kalman gain matrix, and

F
x̂
(k) =

∂ f (x (k))

∂ x (k)

∣

∣

∣

∣

x(k)= x̂(k)

, (8)

Hx̂ (k) =
∂ h (x (k))

∂ x (k)

∣

∣

∣

∣

x(k)= x̂(k/k−1)

.

In this paper, our main objective is: Given a noisy master system, and a noisy
coupling signal; we want to design a suitable EKF for synchronization in the master-
slave framework, such that the following problem is solved.

Definition (Noisy synchronization). The slave dynamics (3)-(8) synchronizes
with the noisy master dynamics (1) with noisy drive signal (2), if

‖x (k) − x̂ (k)‖ ≤ ρ, ∀k ≥ τ, (9)

where ρ should be related to Q and R and is a constant of the synchronization/estimation
error. If for a given ρ there exists a time instant τ (to be called the synchronization
time) such that condition (9) is fulfilled, then the noisy master (1) and the EKF slave
(3)-(8) are approximately synchronized with level ρ.

One might also consider as an adequate condition for approximate (or noisy) syn-
chronization, if there exists a positive constant τ such that

E
{

‖(x (k) − x̂ (k))‖
2
}

≤ ρ, ∀k ≥ τ.
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Figure 2.1: Master-slave coupling scheme for noisy hyperchaotic maps: where x′ = x (k + 1)
is the state master, w and v are independent noise processes, y the coupling signal, and ŷ the
output of EKF.

In particular, this may be a more relevant requirement if w (k) is not necessarily bounded.
Since we will assume that v (k) and w (k) are bounded, then is sufficient to take condi-
tion (9). Figure 2.1 shows the master-slave coupling scheme for approximate (or noisy)
synchronization of maps (1) and (3)-(8) when the noisy drive signal (2) is used. Also, in
all subsequent simulations we check the condition (9) over a long but finite time interval
[0, tf ].

3 Convergence Analysis of the EKF for Synchronization

In this section, based on Lyapunov theory, we make an analysis of the convergence
of the synchronization error. Define the estimation (synchronization) error as

e (k) = x (k) − x̂ (k) , (10)

and the error between the state and the prediction of the estimation as

e (k/k − 1) = x (k) − x̂ (k/k − 1) .

If we assume that f and h are C1 functions, then f can be expanded (using Taylor’s
Theorem) as follows,

f (x) = f (x̂) + F (k) [x (k) − x̂ (k)] + ϕ (x (k) , x̂ (k)) , (11)

where f (x̂) represents the copy of the system f (x), F = ∂f (x) /∂x the first derivative
of f (x), and ϕ (x, x̂) the remainder after the first order expansion of f (x).

The dynamics of the error between the state of the master and the prediction are
given by the equation,

e (k + 1/k) = x (k + 1) − x̂ (k + 1/k)

= f (x (k)) + w (k) − f (x̂ (k))

= F (k) e (k) + ϕ (x (k) , x̂ (k)) + w (k)

and the dynamics of the state estimation (synchronization) error system are governed by
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the following equation

e (k + 1) = x (k + 1) − x̂ (k + 1)

= f (x (k)) + w (k) − f (x̂ (k)) − K (k + 1) [y (k + 1) − Hx̂ (k + 1/k)]

= [I − K (k + 1)H ]F (k) e (k) + [I − K (k + 1)H ]ϕ (x (k) , x̂ (k))

+ [I − K (k + 1)H ]w (k) − K (k + 1) v (k + 1) ,

e (k + 1) = [I − K (k + 1)H ]F (k) e (k) + r (k) + s (k) , (12)

where

r (k) = [I − K (k + 1)H ]ϕ (x (k) , x̂ (k)) ,

s (k) = [I − K (k + 1)H ]w (k) − K (k + 1) v (k + 1) .

Before going to analyze the stability of the error system (12) we make the following
assumptions:

(A1) There exist positive constants f̄ , h̄, p1, and p2 such that the following bounds
hold for all k ≥ 0:

‖F (k)‖ ≤ f̄ , (13)

‖H (k)‖ ≤ h̄, (14)

p1I ≤ P (k) ≤ p2I, (15)

qI ≤ Q, (16)

rI ≤ R. (17)

(A2) F (k) is nonsingular for all k ≥ 0.

(A3) There exist positive constants ǫ and κ such that the function ϕ (x (k) , x̂ (k)) in
(11) is bounded by

‖ϕ (x (k) , x̂ (k))‖ ≤ κ ‖x (k) − x̂ (k)‖
2
,

for x (k) , x̂ (k) ∈ R
n with ‖x (k) − x̂ (k)‖ ≤ ǫ.

In addition to this, we demonstrate the following lemmas to be required to establish
the necessary conditions on stability of the estimation (synchronization) error given by
the EKF.

Lemma 3.1 Under the boundedness conditions (13)-(17) there exists a real number
0 < α < 1 such that P−1 (k) satisfies the inequality

FT (k) [I − K (k + 1)H ]T P−1 (k + 1) [I − K (k + 1)H ]F (k) ≤ (1 − α) P−1 (k)

for all k ≥ 0.

Proof The term P (k + 1) = [I−K (k + 1)H ]
[

F (k)P (k)FT (k) + Q
]

can be rewrit-
ten as follows

P (k + 1) = [I − K (k + 1)H ]F (k)P (k)FT (k) [I − K (k + 1)H ]T (18)

+ [I − K (k + 1)H ]Q[I − K (k + 1)H ]T

+ [I − K (k + 1)H ]
[

Q + F (k)P (k)FT (k)
]

HT KT (k + 1) ,
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where [I − K (k + 1)H ]
[

Q + F (k)P (k)FT (k)
]

is a symmetric matrix. Making use of
the matrix inversion Lemma, we obtain

[I − K (k + 1)H ]
[

Q + F (k)P (k)FT (k)
]

=

[
(

Q + F (k)P (k)FT (k)
)−1

+ HT R−1H ]−1 > 0, (19)

from Eq. (19) it follows that

[I − K (k + 1)H ]
[

Q + F (k)P (k)FT (k)
]

HT KT (k + 1) ≥ 0, (20)

using the condition (20) and eliminating that term of (18), the following inequality holds

P (k + 1) ≥ [I − K (k + 1)H ]F (k)P (k)FT (k) [I − K (k + 1)H ]T

+ [I − K (k + 1)H ] Q [I − K (k + 1)H ]T .

Now, the above inequality can be rewritten as follows

P (k + 1) ≥ [I−K (k + 1)H ]F (k)
[

P (k) + F−1 (k)QF−T (k)
]

FT (k) [I−K (k + 1)H ]T .

Using the conditions (13), (15), and (16), we have that

P (k + 1) ≥ [I − K (k + 1)H ]F (k)

(

I +
qI

f̄2p2

)

P (k)FT (k) [I − K (k + 1)H ]T (21)

and taking the inverse in both sides of inequality (21) and multiplying by FT (k) [I −
K (k + 1)H ]T and [I − K (k + 1)H ]F (k) , we have that

FT (k) [I − K (k + 1)H ]T P−1 (k + 1) [I − K (k + 1)H ]F (k) ≤

(

1 +
q

p2f̄2

)

−1

P−1 (k)

with (1 − α) =
(

1 + q
p2f̄2

)

−1

.

Lemma 3.2 Since conditions (13)-(17) hold. Then, there exist positive constants ǫ
and knom such that

rT (k)P−1 (k) [ 2[I − K (k + 1)H ]F (k) e (k) + r (k) ] ≤ knom ‖e (k)‖
3

holds for all ‖e (k)‖ ≤ ǫ.

Proof Since r (k) = [I − K (k + 1)H ]ϕ (x (k) , x̂ (k)) and by Assumption (A3), we

have that ‖ϕ (x (k) , x̂ (k))‖ ≤ κ ‖e (k)‖2 in addition, considering Q ≤ δ1I it follows that

‖K (k+1)‖ ≤
∥

∥

∥

[

F (k)P (k)FT (k)+Q
]

HT
[

H
[

F (k)P (k)FT (k)+ Q
]

HT +R
]−1

∥

∥

∥

≤
∥

∥

[

F (k)P (k)FT (k)+Q
]∥

∥

∥

∥HT
∥

∥

∥

∥

∥

[

H
[

F (k)P (k)FT (k) + Q
]

HT +R
]−1

∥

∥

∥

≤
∥

∥

[

F (k)P (k)FT (k)+Q
]
∥

∥

∥

∥HT
∥

∥

∥

∥

∥

[

H
[

F (k)P (k)FT (k)+Q
]

HT +R
]−1

∥

∥

∥

≤
(

f̄2p2+δ1

) h̄

r
.
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The term ‖K (k + 1)‖ can be expressed as ‖K (k + 1)‖ ≤ ρ1 + ρ2δ1 with ρ1 = f̄2p2h̄
r and

ρ2 = h̄
r . Therefore, we obtain

‖r (k)‖ ≤ ‖I − K (k + 1)H‖ ‖ϕ (x (k) , x̂ (k))‖

≤ ‖I − K (k + 1)H‖κ ‖e (k)‖
2

≤ [‖I‖ + ‖K (k + 1)H‖] κ ‖e (k)‖
2

≤ [1 + ‖K (k + 1)‖ ‖H‖]κ ‖e (k)‖
2

≤
(

1 + ρ1h̄ + ρ2h̄δ1

)

κ ‖e (k)‖
2

(22)

and making use of inequality (22), we have that

rT (k)P−1 (k) [ 2[I − K (k + 1)H ]F (k) e (k) + r (k)]

≤
∥

∥rT (k)P−1 (k) [ 2[I − K (k + 1)H ]F (k) e (k) + r (k)]
∥

∥

≤
∥

∥rT (k)
∥

∥

∥

∥P−1 (k)
∥

∥ ‖[ 2[I − K (k + 1)H ]F (k) e (k) + r (k)]‖

≤
(

1 + ρ1h̄ + ρ2h̄δ1

)

κ ‖e (k)‖2

(

1

p1

)

×
[

2
(

1 + ρ1h̄ + ρ2h̄δ1

)

f̄ ‖e (k)‖ +
(

1 + ρ1h̄ + ρ2h̄δ1

)

κ ‖e (k)‖
2
]

≤
(

1 + ρ1h̄ + ρ2h̄δ1

)2
κ

(

1

p1

)

(

2f̄ + κǫ
)

‖e (k)‖3

≤ knom ‖e (k)‖
3

with

knom =
(

1 + ρ1h̄ + ρ2h̄δ
)2

κ

(

1

p1

)

(

2f̄ + κǫ
)

and δ = δ1.

Lemma 3.3 Under the boundedness conditions (13)-(17). There exist positive real
numbers ρ3, ρ4, and ρ5 independent of δ, such that

E
{

sT (k)P−1 (k + 1) s (k)
}

≤ ρ3δ
3 + ρ4δ

2 + ρ5δ

holds for some constant δ > 0.

Proof Firstly, we have that

sT (k)P−1(k+1) s (k) = wT (k)[I−K (k+1)H ]T P−1(k+1)[I−K (k + 1)H ]w (k)(23)

− wT (k) [I − K (k + 1)H ]P−1 (k + 1)K (k + 1) v (k)

− vT (k)KT (k + 1)P−1 (k + 1) [I − K (k + 1)H ]w (k)

+ vT (k)KT (k + 1)P−1 (k + 1)K (k + 1) v (k)

since w (k) and v (k) are uncorrelated signals, the expression (23) becomes,

sT (k)P−1 (k + 1) s (k) = wT (k) [I − K (k + 1)H ]T P−1 (k + 1) [I − K (k + 1)H ]w (k)

+ vT (k)KT (k + 1)P−1 (k + 1)K (k + 1) v (k) .

From Lemma 3.2, we have obtained that ‖K (k + 1)‖ ≤ ρ1 + ρ2δ1 with ρ1 = f̄2p2h̄
r and

ρ2 = h̄
r and, considering again that Q ≤ δ1I and R ≤ δ2I, we have

sT (k)P−1(k+1) s (k) ≤
(

1+ρ1h̄ + ρ2h̄δ1

)2 1

p1
wT (k)w (k) + (ρ1 + ρ2δ1)

2 1

p1
vT (k) v (k)

≤
(

1 + ρ1h̄ + ρ2h̄δ1

)2 1

p1
δ2 + (ρ1 + ρ2δ1)

2 1

p1
δ1 (24)
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considering δ1 = δ2 = δ the above inequality can be rewritten as follows,

sT (k)P−1 (k + 1) s (k) ≤ ρ3δ
3 + ρ4δ

2 + ρ5δ

with

ρ3 =
ρ2
2

(

1 + h̄2
)

p1
, ρ4 =

2ρ2

(

h̄ + ρ1h̄
2 + ρ1

)

p1
, ρ5 =

1 + 2ρ1h̄ + ρ2
1h̄

2 + ρ2
1

p1
.

Lemma 3.4 ([35]) Suppose that V (e (k)) is a stochastic process and that exist real
numbers v1, v2, µ > 0, and 0 < α′ ≤ 1 such that:

v1 ‖e (k)‖
2
≤ V (e (k)) ≤ v2 ‖e (k)‖

2
,

E {V (e (k + 1)) /e (k)} − V (e (k)) ≤ µ − α′V (e (k))

hold for all solution of Eq. (12). Then, the stochastic process is exponentially bounded
as follows

E
{

‖e (k)‖2
}

≤
v2

v1
E

{

‖e (0)‖2
}

(1 − α)k +
µ

v1α′
.

In order to prove stability of the estimation (synchronization) error (10), we propose
the following function as a Lyapunov function candidate

V (e (k)) = eT (k)P−1 (k) e (k) (25)

since P (k) is a positive definite matrix, then P−1 (k) is another positive definite matrix,
and therefore V (e (k)) is positive definite, hence Lyapunov function candidate. From
(15), we can obtain

1

p2
‖e (k)‖

2
≤ V (e (k)) ≤

1

p1
‖e (k)‖

2
,

iterating both sides of (25), we have

V (e (k + 1)) = e (k + 1)
T

P−1 (k + 1) e (k + 1)

= eT (k)FT (k) [I − K (k + 1)H ]T P−1 (k + 1) [I − K (k + 1)H ]F (k) e (k)

+ rT (k)P−1 (k + 1) [2[I − K (k + 1)H ]F (k) e (k) + r (k)]

+ 2sT (k)P−1 (k + 1) [[I − K (k + 1)H ]F (k) e (k) + r (k)]

+ sT (k)P−1 (k + 1) s (k) .

Using the Lemma 3.1, we obtain

V (e (k + 1)) ≤ (1 − α)V (e (k))

+ rT (k)P−1 (k + 1) [2[I − K (k + 1)H ]F (k) e (k) + r (k)]

+ 2sT (k)P−1 (k + 1) [[I − K (k + 1)H ]F (k) e (k) + r (k)]

+ sT (k)P−1 (k + 1) s (k) .

Taking the conditional expectation E {V (e (k + 1)) /e (k)} and considering the properties
of the white Gaussian random process, it is not difficult to see that the term

E
{

2sT (k)P−1 (k + 1) [[I − K (k + 1)H ]F (k) e (k) + r (k)] |e (k)
}
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vanishes. Thus, we have that

E {V (e (k + 1)) /e (k)} ≤ (1 − α) V (e (k)) + sT (k)P−1 (k + 1) s (k)

+ rT (k)P−1 (k + 1) [2[I − K (k + 1)H ]F (k) e (k) + r (k)] .

Now, invoking to Lemmas 3.2 and 3.3, we obtain that

E {V (e (k + 1)) /e (k)} ≤ V (e (k))−αV (e (k))+ρ3δ
3 +ρ4δ

2 +ρ5δ+ knom ‖e (k)‖3 (26)

or equivalently,

E {V (e (k + 1)) /e (k)} − V (e (k)) ≤ −
α

p2
‖e (k)‖2 + ρ3δ

3 + ρ4δ
2 + ρ5δ + knom ‖e (k)‖3 .

(27)
The function (27) will be negative semidefinite if satisfies:

knom ‖e (k)‖ ≤
α

2p2
, (28)

ρ3δ
3 + ρ4δ

2 + ρ5δ ≤
α

2p2
‖e (k)‖

2
, (29)

the expression (29) can be replaced by

(

1 + ρ1h̄ + ρ2h̄δ1

)2 1

p1
δ2 + (ρ1 + ρ2δ1)

2 1

p1
δ1 ≤

α

2p2
‖e (k)‖

2
,

if we do not consider δ1 = δ2 = δ. Defining ε = min
(

ǫ, α
2p2knom

)

and using it in (26),

the following inequality

E {V (e (k + 1)) /e (k)} − V (e (k)) ≤ −
α

2
V (e (k)) + ρ3δ

3 + ρ4δ
2 + ρ5δ

holds for all ‖e (k)‖ ≤ ε. Now, invoking to Lemma 3.4 with ‖e (0)‖ ≤ ε, v1 = 1
p2

, v2 = 1
p1

,

α′ = α
2 , and µ = ρ3δ

3 +ρ4δ
2 +ρ5δ to quantify the estimation/synchronization error e (k).

The previous results can be combined to obtain the main result of this paper on the
stability of the estimation (synchronization) error given by EKF, when it is applied to
hyperchaotic synchronization of stochastic discrete-time systems, which is established in
the following theorem.

Theorem 3.1 Consider a stochastic nonlineal system defined by (1) with noisy cou-
pling signal (2). In addition, consider an extended Kalman filter described by (3)-(8).
Assume that Assumptions (A1)-(A3) hold. Then, the estimation (synchronization) error
e (k) given by (10) is exponentially bounded, if the initial error satisfies

‖e (0)‖ ≤ ε,

and the covariance matrices of the noise terms are bounded by

Q ≤ δ1I,

R ≤ δ2I

for some constants δ1, δ2, ε > 0.
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The above result shows that the stability of the estimation (synchronization) error
depends on the nature of the nonlinearities and of the size of the noise in the processes,
thus as of the boundedness of the initial estimation error. Therefore, this result can be
used to design nonlinear filters (EKF) with stability to approximate synchronize noisy
hyperchaotic maps, as will be shown in the next section. In addition to this, we mention
that other bounds on the error dynamics of the EKF can be obtained with a prescribed
degree of stability from [33–35].

4 Synchronization of Noisy Hyperchaotic Maps

Example 1. Consider the following discrete-time system

x1 (k + 1) = x2 (k) + ax1 (k) , (30)

x2 (k + 1) = x1 (k)
2
+ b

with parameter values a = −0.1 and b = −1.7, the map (30) exhibits hyperchaotic
dynamics [12]. Figure 4.1 shows the hyperchaotic attractor generates for the map (30).
In the sequel, based on this mapping, we show approximate synchronization, by using an
EKF as slave dynamics, which will try to estimate the master dynamics (30) corrupted
by noise, described by

x1 (k + 1) = x2 (k) + ax1 (k) + w1 (k) , (31)

x2 (k + 1) = x1 (k)
2
+ b + w2 (k) ,

with output corrupted by noise defined by

y (k) = x1 (k) + v (k) .

The EKF will generate the estate estimates x̂i (k), i = 1, 2 for the master states xi (k).
The state equations of EKF as slave, are described by

x̂1 (k) = x̂1 (k/k − 1) + K1 (k) [y (k) − x̂1 (k/k − 1)] , (32)

x̂2 (k) = x̂2 (k/k − 1) + K2 (k) [y (k) − x̂1 (k/k − 1)] ,

where the Kalman gain (K1 (k) , K2 (k))
T

is given by (7).

For the noisy map (31) with the above parameter values, we obtain that: h̄ = 1,
f̄ = 4, p1 = 4.52 × 10−6, p2 = 5.52 × 10−6, and κ = 2. By computer simulations, we
take δ1 = 0.0005 such that the system remains with hyperchaotic dynamics. In addition,
we propose the values for q and r as q = r = δ1

100 . With previous data and by using
conditions (28) and (29), we obtain the values δ2 = 0.0001 and ‖e (0)‖ ≤ 0.02 which
satisfy the mentioned conditions. In the sequel, we show some computer simulations.

We take x (0) = (0.1, 0.1), P0 = diag {p0i}, p0i
= 5 × 10−6. Figure 4.2 shows the

time evolution of synchronization errors e1 (k) and e2 (k) for x̂ (0) = (0.13, 0.13) for one
realization of the noise, where approximate synchronization is achieved for τ = 0 when
the level of synchronization ρ = 0.06 was considered. While, in Figure 4.3 we can see the
time evolution of synchronization errors e1 (k) and e2 (k) for one realization of the noise,
starting at x̂ (0) = (0.31, 0.31), in this case approximate synchronization is achieved for
τ = 7 when ρ = 0.06 was considered.
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To evaluate the performance of EKF from the point of view of sensitivity to initial
error and noise, twenty different Monte Carlo runs were taken in order to obtain root-
mean-square error statistics. The results are summarized in Table 4.1, where SSEi is
the sum of square errors for each realization of the noise given by

SSEi =

N
∑

k=0

(xi (k) − x̂i (k))
2
, i = 1, 2, ..., n

where xi (k) and x̂i (k) are the true and estimated states, respectively, and N the number
of time steps. So, the mean-square error (MSE i) is obtained as 1

N+1 (SSEi). Therefore,
the Monte Carlo sum of square errors (SSEi)MC is given by

(SSEi)MC =
1

20

20
∑

j=1

(SSEi)j , i = 1, 2, ..., n.

With the purpose of knowing the same statistics, when the transient has died out we
define the truncated mean-square error (TMSEi) for each realization of the noise as

TMSEi =
1

N + 1 − τ

N
∑

k=τ

(xi (k) − x̂i (k))2 , i = 1, 2, ..., n,

so, the Monte Carlo truncated mean-square error is obtained as

(TMSEi)MC =
1

20

20
∑

j=1

(TMSEi)j , i = 1, 2, ..., n,

and the Monte Carlo synchronization time τMC by

τMC =
1

20

20
∑

j=1

max (τi (ρ))j , i = 1, 2, ..., n.

From Table 4.1, it possible to appreciate the suitable performance of the EKF as
slave for the estimation/synchronization of the noisy master (31), when the conditions
e (0) < ε and R < δ1 and Q < δ2 are satisfied. Note that last three lines in Table 4.1,
we take the initial error values e (0) > ε, nevertheless the EKF achieves approximate
synchronization, due to the bounds used are conservatives.

Example 2. Consider the hyperchaotic Rössler map

x1 (k + 1) = αx1 (k) (1 − x1 (k)) − β (x3 (k) + γ) (1 − 2x2 (k)) , (33)

x2 (k + 1) = δx2 (k) (1 − x2 (k)) + ζx3 (k) ,

x3 (k + 1) = η ((x3 (k) + γ) (1 − 2x2 (k)) − 1) (1 − θx1 (k)) ,

with the set of parameter values: α = 3.8, β = 0.05, γ = 0.35, δ = 3.78, ζ = 0.2, η = 0.1,
and θ = 1.9 the Rössler map (33) exhibits hyperchaotic dynamics [12]. Figure 4.4 shows
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Table 4.1: Monte Carlo sum of square errors (SSEi)MC , Monte Carlo truncated
mean-square error (TMSEi)MC , and synchronization time (τMC) for Example 1 with
p0i

= 5×10−6, i = 1, 2, Q = R = 5× 10−5, ρ = 0.06, and N = 100.

e (0) (SSE1)MC (SSE2)MC (TMSE1)MC (TMSE2)MC (τMC)

(0.2, 0.2) 0.0043 0.0595 0.0035 0.0203 2
(0.05, 0.05) 0.0065 0.0235 0.0064 0.0228 0
(0.01, 0.01) 0.0040 0.0219 0.0042 0.0210 1

(−0.01,−0.01) 0.0038 0.0204 0.0042 0.0213 0
(−0.05,−0.05) 0.0065 0.0243 0.0064 0.0262 0
(−0.1,−0.1) 0.0141 0.0319 0.0055 0.0216 2
(−0.2,−0.2) 0.0450 0.0721 0.0042 0.0229 4
(−0.5,−0.5) 0.2676 0.4756 0.0040 0.0214 6

(−1,−1) 1.1183 3.09 0.0052 0.0230 7
(−5,−5) 30.37 544.12 0.0038 0.0194 10

several hyperchaotic attractors generate for the Rössler map (33). Consider the noisy
master map

x1 (k + 1) = αx1 (k) (1 − x1 (k)) − β (x3 (k) + γ) (1 − 2x2 (k)) + w1 (k) , (34)

x2 (k + 1) = δx2 (k) (1 − x2 (k)) + ζx3 (k) + w2 (k) ,

x3 (k + 1) = η ((x3 (k) + γ) (1 − 2x2 (k)) − 1) (1 − θx1 (k)) + w3 (k) ,

and the noisy drive signal
y (k) = x1 (k) + v (k) . (35)

The covariance Q and variance R were fixed at R = Q = 1 × 10−6. The slave system
(EKF) will generate the state estimates x̂i (k), i = 1, 2, 3 for each xi (k), which is designed
as

x̂1 (k + 1) = αx̂1 (k)(1−x̂1 (k))−β (x̂3 (k) + γ)(1 − 2x̂2 (k)) + k1 (k)(y (k)−x̂1 (k)),(36)

x̂2 (k + 1) = δx̂2 (k) (1 − x̂2 (k)) + ζx̂3 (k) + k2 (k) (y (k) − x̂1 (k)) ,

x̂3 (k + 1) = η ((x̂3 (k) + γ) (1 − 2x̂2 (k)) − 1) (1 − θx̂1 (k)) + k3 (k) (y (k) − x̂1 (k)) ,

where (k1 (k) , k2 (k) , k3 (k))T is given by (7).

For noisy Rössler map (34), we obtain that: h̄ = 1, f̄ = 3.84, p1 = 5.5 × 10−3,
p2 = 248, and κ = 7.6. By computer simulations, we take δ1 = 0.00005 such that
the mapping remains with hyperchaotic dynamics. We propose q = r = δ1/1000 and
using (28) and (29), we have that δ2 = 1 × 10−7 and ‖e (0)‖ ≤ 0.03 which satisfy these
conditions. In the following simulations we take x (0) = (0.95, 0.9, 0), P0 = diag {p0i

},
p0i

= 500, i = 1, 2, 3. Figure 4.5 shows the synchronization error evolution between (34)
and (36) for x̂ (0) = (0.9, 0.95, 0.05) for one realization of the noise. We can see, after
some transient behavior, that approximate synchronization is achieved at time τ = 3
when ρ = 0.05 was considered. Tables 4.2 and 4.3 show the suitable behavior of EKF as
a estimator of the state vector of noisy hyperchaotic map (34).
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Table 4.2: Monte Carlo sum of square errors (SSEi)MC and synchronization time
(τMC) for Example 2 with p0i

= 500, i = 1, 2, 3, Q = R = 1×10−6, ρ = 0.05, and N = 100.

e (0) (SSE1)MC (SSE2)MC (SSE3)MC τMC

(0.1, 0.1, 0.1) 0.0100 0.1066 0.0110 6
(0.05, 0.05, 0.05) 0.0025 0.0532 0.0035 5
(0.01, 0.01, 0.01) 1.0095× 10−4 0.0142 0.0010 4

(−0.01,−0.01,−0.01) 1.0100× 10−4 0.0176 0.0011 3

Table 4.3: Monte Carlo truncated mean-square error and synchronization time
(τMC) for Example 2 with p0i

= 500, i = 1, 2, 3, Q = R = 1× 10−6, ρ = 0.05, and N = 100.

e (0) (TMSE1)MC (TMSE2)MC (TMSE3)MC τMC

(0.1, 0.1, 0.1) 1.0205× 10−6 0.0131 9.7194× 10−4 6
(0.05, 0.05, 0.05) 9.6606× 10−7 0.0128 9.7529× 10−4 5
(0.01, 0.01, 0.01) 8.5910× 10−5 0.0117 9.8750× 10−4 4

(−0.01,−0.01,−0.01) 9.5976× 10−5 0.0148 0.0011 3
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Figure 4.1: Hyperchaotic attractor of discrete-time system (30).
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Figure 4.2: Time evolution of synchronization errors e1 (k) and e2 (k) for x̂ (0) = (0.13, 0.13);
τ = 0 when ρ = 0.06 was considered (for one realization of the noise).
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Figure 4.3: Time evolution of synchronization errors e1 (k) and e2 (k) for x̂ (0) = (0.31, 0.31);
τ = 7 when ρ = 0.06 was considered (for one realization of the noise).
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Figure 4.4: Hyperchaotic attractors of Rössler map (33).
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Figure 4.5: Time evolution of the estimation errors ei (k), i = 1, 2, 3 between (34) and (36)
for x̂ (0) = (0.9, 0.95, 0.05) (for one realization of the noise).
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5 Conclusions

In this paper, we have approached the problem of synchronization of discrete-time hy-
perchaotic systems from the perspective of an extended Kalman filter (EKF) designed
as slave. Approximate synchronization was obtained between a noisy master and slave
dynamics when the slave was driven by a noisy drive signal from the master. Based on
Lyapunov theory, we have demonstrated stability of the estimation/synchronization er-
ror, this result provides necessary conditions to achieve approximate synchronization. By
extensive computer simulations, we have shown that the filter/slave is indeed suitable for
synchronization of noisy hyperchaotic maps, it was illustrated by means of two numer-
ical examples. The adopted approach shows great potential for actual communication
systems in which the encoding is required to be secure. In a forthcoming article we will
be concerned with the application to secure communication, and with the quantization
of the degree of safety of the proposal in actual communication systems. Finally, we
comment that this type of approximate synchronization method can be applied to secure
chaotic communication, by using similar idea developed in [6, 7] and for continuous case
in [31].
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tems: Model-matching approach. WSEAS Transactions on Systems 1 (2) (2002) 198–203.

[12] Itoh, M., Yang, T. and Chua, L.O. Conditions for impulsive synchronization of chaotic and
hyperchaotic systems. Int. J. Bifurc. Chaos 11 (2) (2001) 551–560.
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