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Abstract: Based on a newly developed canonical dual transformation method-
ology, this paper presents a potentially useful duality theory and method for
solving fully nonlinear distributed-parameter control problems. The extended
Lagrange duality and the interesting triality theory proposed recently in finite
deformation theory are generalized into nonconvex dissipative Hamiltonian sys-
tems. It is shown that in canonical dual phase space, the solutions of chaotic
systems form an invariant set. Thus, an important bifurcation criterion is
proposed, which leads to an effective dual feedback control against chaotic vi-
brations. Applications are illustrated by a large deformation “smart” beam
structure with both shear/damping actuators, and a dissipative Duffing sys-
tem.
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1 Problems and Motivations

We shall study a duality approach for solving the following very general abstract dis-
tributed parameter problem ((P) for short),

(P) : ρ(u,tt + νu,t) + A(u, µ) = 0 ∀u ∈ Uk, (1)

where the feasible space Uk is a convex, non-empty subset of a reflexive Banach space U
over an open space-time domain Ωt = Ω × (0, tc) ⊂ Rn × R+, in which certain essential
boundary-initial conditions are prescribed. We assume that for a given distributed pa-
rameter control field µ(x, t) over Ωt, the mapping A(u, µ) is a potential operator from
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Uk into its dual space U∗, i.e., there exists a Gâteaux differentiable potential functional
Pµ(u) = P (u; µ), such that the directional derivative of Pµ at ū ∈ Uk in the direction δu
can be written as

δPµ(ū; δu) = 〈DPµ(ū), δu〉 ∀δu ∈ Uk,

where the operator DPµ(ū) = A(ū, µ) is the Gâteaux derivative of Pµ at the point ū;
the bilinear form 〈·, ·〉 : U × U∗ → R places U and U∗ in duality. By nonlinear operator
theory we know that the mapping A : Uk → U∗ is monotone if P is convex on Uk.

The problem (P) is said to be exactly controllable if for certain given initial data
(u0(x), v0(x)) in Uk and the final state (ūc(x), v̄c(x)) there exists suitable control function
µ(x, t) such that the solution u(x, t) of the problem (P) satisfies

u(x, tc) = ūc(x), u,t(x, tc) = v̄c(x) ∀x ∈ Ω. (2)

Dually, the problem (P) is said to be observable if, for certain given input control
µ(x, t), there exists an output function h(u) such that the initial state (u0(x), v0(x)) can
be uniquely determined from the output h(u(x, t)) over any interval 0 < t < tc. These
dual concepts play a crucial role in many control system design methodologies that have
evolved since the early 1960’s, such as pole placement, LQG (H2), H∞ and minimum
time optimization, realization theory, adaptive control, and system identification.

The abstract form of problem (P) covers a great variety of situations. Very often,
the total potential Pµ(u) can be written as

Pµ(u) = Φµ(u, Λ(u)) = Wµ(Λ(u)) − Fµ(u),

where Λ is a Gâteaux differentiable operator from U into another Banach space E ; the
functional Wµ(ξ) is the so-called stored (or internal) potential; while the functional Fµ(u)
represents the external potential of the system.

In convex Hamiltonian systems, the total potential Pµ(u) is convex and its Gâteaux
derivative A(u, µ) = DPµ(u) is usually an elliptic operator in conservative problems. In
linear field theory of mathematical physics, Λ is usually a gradient-like operator, say
Λ = grad, and Wµ(ξ) is a quadratic functional, for example,

Pµ(u) =

∫

Ω

1

2
a(x)|∇u|2 dΩ − Fµ(u),

where a(x) > 0 ∀x ∈ Ω. In this case, the governing equation (1) reads

ρ(u,tt + νu,t) = ∇ · (a(x)∇u) + DFµ(u) ∀(x, t) ∈ Ωt. (3)

It is a linear wave equation if Fµ(u) is a linear functional, say Fµ(µ) = 〈u , u∗(µ)〉, where
u∗(µ) is a given function of the input control field µ(x, t). If Fµ(u) is nonlinear, then
the governing equation (3) is semi-linear. Due to the efforts of more than thirty years
research by many well-known mathematicians and scientists, the mathematical theory
for distributed-parameter control systems have been well-established for convex Hamil-
tonian systems governed by partial differential equations with substantial applications
in mechanics and structures (see, for examples, Lasiecka and Triggiani, 1999). In linear
systems, there exists a very elegant duality relationship between the controllability and
observability (see Dolecki and Russell, 1977).

Duality is a fundamental concept that underlies almost all natural phenomena. In
classical optimization and calculus of variation, duality methods possess beautiful theo-
retical properties, potentially powerful alternative performances and wonderful relation-
ships to many other fields. The associated theory and extremality principles have been
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well studied for convex static and Hamiltonian systems (cf. e.g., Toland, 1978, 1979;
Auchmuty, 1983-2000; Strang, 1986; Rockafellar and Wets, 1997). There is a rapidly
growing interest in studying and applications of convex duality theory in optimal control
(cf., e.g., Mossino (1975), Chan and Ho (1979), Chan (1985), Chan and Yung (1987), Bar-
ron (1990), Tanimoto (1992), Lee and Yung (1997), Bergounioux et al. (1999), Arada
and Raymond (1999) and many others). The interesting one-to-one analogy between
the optimal control and engineering structural mechanics was discussed by Zhong et al.
(1993, 1999). Recently, the so-called primal-dual interior-point (PDIP) method has been
considered as a revolution in linear constrained optimization problems (cf. e.g., Gay et
al., 1998; Wright, 1998). It was shown by Helton et al. (1998) that the fundamental H∞

optimization problem of control can be naturally treated with the PDIP methods.
However, the beautiful duality relationship in convex Hamiltonian systems is broken

in nonconvex problems. In many applications of engineering and sciences, the total
potential of system is usually nonconvex and even nonsmooth. The exact controllability
and stability for nonconvex/nonsmooth systems are fundamentally difficult. For example,
in the shear-damping control of large deformed beam structures, the actuators could
be certain piezoelectric materials attached to the upper and lower beam surfaces, or
distributed “smart” dampers (see Figure 1.1). The external signals effect changes of the
properties of these actuators in such way that they produce shear forces µ±(x, t) and
damping force νw,t. Thus, µ±(x, t) and ν are, in effect, the applied distributed-control,
and the composite beam/actuator system is then an instance of an active, or “smart”
structure.
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Figure 1.1. Large deformed beam with shear actuators and dampers.

Since the repeated operation of these actuator devices results large shear deforma-
tions, the traditional Timoshenko beam model can not be used to the study of these
phenomena because it assumes that the shear deformation is a function of x and t alone
and does not vary in the lateral beam direction. In order to study control problems
of smart structures, several extended beams models have been proposed recently (see
Gao et al., 1997-2000), where the state variable space U = C1(Ωt; R

2) is a displace-
ment space over the space time domain Ωt = (0, ℓ) × (−h, h) × (0, tc). The element
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u = {χ(x, y, t), w(x, t)} ∈ U is a continuous, differentiable vector in R2 with domain Ωt,
where χ(x, y, t) measures the shear deformation of the beam at the point (x, y), while
w(x, t) is the deflection of the beam. In the case that the elastic beam subjected to the
transverse load f(x, t) undergone moderately large deformation, the total potential is a
nonconvex functional (Gao, 2000a)

Pµ(χ, w) =
1

2

∫

Ω

[(χ2
,x +

1

2
αw2

,x − λ)2 + β(χ,y + w,x)2] dΩ

−

∫ ℓ

0

(µ+(x, t)χ(x, h, t) + µ−(x, t)χ(x,−h, t) + f(x, t)w) dx.

If the beam is clamped at x = 0, simply supported at x = ℓ, and is subjected to a
compressive load at x = ℓ, the kinematical admissible space Uk ⊂ U can be defined as

Uk =

{(

χ
w

)

∈ U

∣

∣

∣

∣

w(0, t) = w(ℓ, t) = 0, χ(0, y, t) = χ,x(ℓ, y, t) = 0;
(χ, w) = (χ0, w0), (χ,t, w,t) = (χ̇0, ẇ0) at t = 0

}

,

where (χ0, w0) and (χ̇0, ẇ0) are initial conditions. In this case, the abstract governing
equation (1) is a coupled nonlinear partial differential system

ρ(w,tt + νw,t) =
(

3α2

2 w2
,x + β − λα

)

w,xx + β
2h |χ,x|±h + f ∀(x, t) ∈ (0, ℓ) × (0, tc),

χ,xx + βχ,yy = 0, ∀(x, y, t) ∈ Ωt,

χ,y(x,±h, t) + w,x(x, t) = ±µ±(x, t), ∀(x, t) ∈ (0, ℓ) × (0, tc),

(4)

where α, β > 0 are given material constants, λ ∈ R represents the axial load, and
|χ,x|±h = χ,x(x, h, t) − χ,x(x,−h, t) is the difference of the top and bottom shear dis-
placements. This coupled nonlinear partial differential system is a typical example in
finite deformation mechanics. Since the total potential of this system is nonconvex,
the system is very sensitive to initial conditions, driving forces and numerical methods
adopted. If the shear deformation can be ignored, the total potential can simply be
written as

P (w) =

∫

I

1

2

(

1

2
w2

,x − λ

)2

dx −

∫

I

fw dx. (5)

Clearly, if the beam is subjected to extension, then λ < 0 and the total potential P (w)
is strictly convex (see Figure 1.2 a). It possesses at most one global minimizer. In this
case, the system is stable. However, for compressive axial load, λ > 0, the total potential
P (w) is a so-called double-well energy (see Figure 1.2 b). In static buckling problem, this
nonconvex potential has three critical points: two local minimizers, corresponding to two
possible stable buckled states, and one local maximizer, corresponding to an unstable
buckled state. The global minimizer depends on the lateral load f .

If the compressed beam is subjected to a periodically dynamical load f(x, t), the
two local minimizers of Pµ become extremely unstable, and the beam is in dynami-
cal post-buckling state. If the deflection w(x, t) can be separated variables such that
w(x, t) = u(t)v(x), this post-buckling dynamical beam model leads to the well-known
Duffing equation

u,tt + νu,t = au(λ −
1

2
u2) + µ(t), (6)
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Figure 1.2. Convex and double-well potentials.

where a > 0 is a parameter. It is known that this equation is extremely sensitive to the
initial conditions. For certain given parameters λ, ν, and driving force µ(t), this equation
possesses the so-called chaotic solutions. Figure 5.4 shows that even for the same given
data, different numerical methods produce totally different results.

Control theory in finite deformation mechanics has emerged as the most challenging
and active research field in recent years. Mathematically speaking, the total potentials
of large deformed structures are generally nonconvex, or even nonsmooth. Very small
perturbations of the system’s initial conditions and parameters may lead the system to
different operating points with significantly different performance characteristics. This is
the one of main reasons why the traditional perturbation analysis, the direct approaches
and many standard control techniques cannot successfully be applied to nonconvex sys-
tems. Based upon these observations and in order to handle the nonlinear problem, a
school of new techniques has been developed (see, e.g., Fowler, 1989; Ott et al., 1990;
Chen and Dong, 1993; Ogorzalek, 1993; Antoniou et al., 1996; Ghezzi and Piccardi, 1997;
Koumboulis and Mertzios, 1996, 2000).

Duality theory in fully nonlinear variational problems was originally studied by Gao
and Strang (1989) for large deformation nonsmooth mechanics. In order to recover
the broken symmetry in fully nonlinear systems (see Definition 2.2), a so-called com-
plementary gap function was introduced. It was realized in post-buckling analysis of
nonlinear beam theory (Gao, 1997) that this function recovered the duality gap be-
tween the nonconvex primal problems and the Fenchel-Rockafellar dual problems. A
self-contained comprehensive presentation of the mathematical theory in general non-
convex systems was given recently by Gao (2000d), wherein, a so-called canonical dual
transformation method and associated triality theory have been proposed for solving
nonconvex/nonsmooth variational-boundary value problems. Recent results show that
certain very difficult constrained nonconvex problems in global optimization can be
solved completely by this method (see Gao, 2003, 2005). Compared with the traditional
analytic methods and direct approaches, the main advantages of this canonical dual
transformation method are the following:

(1) it converts nonconvex/nonsmooth constrained variational problems into smooth
unconstrained dual problems;

(2) it transforms certain fully nonlinear partial differential equations into algebraic
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systems;

(3) it provides powerful and efficient primal-dual alternative approaches.

The aim of the present article is to generalize the author’s previous results on non-
convex variational problems into nonconservative distributed-parameter control systems.
The rest of this paper is divided into four main sections. The next section set up notations
used in the paper. A general framework in fully nonlinear systems are discussed. Sec-
tion 3 presents an extended Lagrangian critical point theorem and the associated triality
theory in general nonconvex, nonconservative dynamical systems. The critical points in
fully nonlinear systems are classified. Section 4 is devoted mainly to the construction of
dual action in nonconvex dissipative Hamiltonian systems. The tri-duality proposed in
static boundary value problems is generalized into control problems. Section 5 discusses
application in dissipative Duffing system. A bifurcation criterion is proposed which can
be used for feedback controlling against chaotic vibrations.

2 Framework for Canonical Systems and Classification

Let U and U∗ be two real linear spaces, placed in duality by a bilinear form 〈u, u∗〉 :
U × U∗ → R. Let P : Us → R be a given functional, well-defined on a convex domain
Us ⊂ U such that for any given u ∈ Us, P (u) is Gâteaux differentiable. Thus, the Gâteaux
derivative DP of P at u ∈ Us is a mapping from Us into U∗. Let U∗

s ⊂ U∗ be the range
of the mapping DP : Us → U∗. If the relation u∗ = DP (u) is reversible on Us, then for
any given u∗ ∈ U∗

s , the classical Legendre conjugate functional P ∗ : U∗
s → R of P (u) is

defined by

P ∗(u∗) = {〈u, u∗〉 − P (u)| u∗ = DP (u)}.

The conjugate pair (u, u∗) is called the canonical duality pair on Us ×U∗
s ⊂ U ×U∗ if and

only if the equivalent relations

u∗ = DP (u) ⇔ u = DP ∗(u∗) ⇔ P (u) + P ∗(u∗) = 〈u, u∗〉. (7)

hold on Us × U∗
s .

The following notations and definitions, used in Gao (2000c,d), will be of convenience
in nonconvex control problems.

Definition 2.1 The set of functionals P : U → R which are either convex or concave
is denoted by Γ(U). In particular, let Γ̌(U) denote the subset of functionals P ∈ Γ(U)
which are convex and Γ̂(U) the subset of P ∈ Γ(U) which are concave.

The canonical functional space ΓG(Us) is a subset of functionals P ∈ Γ(Us) which are
Gâteaux differentiable on Us ⊂ U , such that the relation u∗ = DP (u) is reversible for
any given u ∈ Us. ♦

Clearly, if P ∈ ΓG(Us) and U∗
s is the range of the mapping DP : Us → U∗, then the

canonical duality relations (7) hold on Us × U∗
s .

Let (E , E∗) be an another pair of real linear spaces paired in duality by the second
bilinear form 〈· ; ·〉 : E × E∗ → R. The so-called geometrical operator Λ : U → E is a
continuous, Gâteaux differentiable operator such that for any given u ∈ Ua ⊂ U , there
exists an element ξ ∈ Ea ⊂ E satisfying the geometrical equation

ξ = Λ(u).
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The directional derivative of ξ at ū in the direction u ∈ U is then defined by

δξ(ū; u) := lim
θ→0+

ξ(ū + θu) − ξ(ū)

θ
= Λt(ū)u, (8)

where Λt(ū) = DΛ(ū) : U → E denotes the Gâteaux derivative of the operator Λ at ū.
For a given ξ∗ ∈ E∗, GΛ(u) = 〈Λ(u) ; ξ∗〉 is a real-valued functional of u on U . Its
Gâteaux derivative at ū ∈ U in the direction u ∈ U reads

δGΛ(ū; u) = 〈Λt(ū)u ; ξ∗〉 = 〈u , Λ∗
t (ū)ξ∗〉,

where Λ∗
t (ū) : E∗ → U∗ is the adjoint operator of Λt associated with the two bilinear

forms.
Let V and V∗ be velocity and momentum spaces, respectively, placed in duality by

the third bilinear form 〈∗ , ∗〉 : V × V∗ → R. For Newtonian systems, the kinetic energy
K : V → R and its Legendre conjugate K∗ : V∗ → R are quadratic forms

K(v) =

∫

Ω

1

2
ρv2 dΩ, K∗(p) =

∫

Ω

1

2
ρ−1p2 dΩ.

Thus the canonical physical relations between V and V∗ are linear:

p = DK(v) = ρv ⇔ v = DK∗(p) = ρ−1p.

Let Va ⊂ V be an admissible velocity space, in which certain essential initial/boundary
conditions are given, say

Va = {v ∈ V| v(x, 0) = v0 ∀x ∈ Ω}. (9)

Finally, we let M be an admissible control space over Ωt. For any given µ ∈ M, we
assume that there exists a Gâteaux differentiable functional Φµ : Ua × Ea ⊂ U × E → R,
such that the total potential P (u; µ) of the system can be written as

Pµ(u) = P (u; µ) = Φµ(u, Λ(u)). (10)

Thus, for a dissipative dynamical system with linear damping, the total action of the
system is a weighted nonconvex functional

Πµ(u) =

∫ tc

0

eνt [K(∂tu) − Φµ(u, Λ(u))] dt, (11)

which is well-defined on the feasible space Uk given by

Uk = {u ∈ Ua| Λ(u) ∈ Ea, ∂tu ∈ Va}. (12)

For the linear time-differential operator ∂t = ∂/∂t, its formal adjoint associated with this
weighted functional is an affine operator ∂∗

t = −∂/∂t− ν (see Gao (2000d)).
The following classification for distributed parameter control systems was originally

introduced in nonlinear variational/boundary value problems by Gao (1998, 2000d,2000).

Definition 2.2 Suppose that for the problem (P) given in (1), the associated total
potential Pµ(u) is well-defined on its domain Us ⊂ U . If the geometrical operator Λ :
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U → E can be chosen such that Pµ(u) = Φµ(u, Λ(u)), Φµ ∈ ΓG(Ua) × ΓG(Ea) and
Us = {u ∈ Ua| Λ(u) ∈ Ea}, then

(1) the transformation {P ;Us} → {Φµ;Ua×Ea} is called the canonical transformation,
and Φµ : Ua × Ea → R is called the canonical functional associated with Λ;

(2) the problem (P) is called geometrically nonlinear (or linear) if Λ : U → E is
nonlinear (or linear); it is called physically nonlinear (resp. linear) if the duality mapping
DΦµ : Ua × Ea → U∗

a × E∗
a is nonlinear (resp. linear); it is called fully nonlinear if it is

both geometrically and physically nonlinear. ♦

The canonical transformation plays a fundamental role in duality theory of noncon-
vex systems. Clearly, if Φµ ∈ ΓG(Ua) × ΓG(Ea) is a canonical functional, the Gâteaux
derivative DΦµ : Ua × Ea → U∗

a × E∗
a ⊂ U∗ × E∗ is a monotone mapping, i.e., the duality

relations
u∗ = DuΦµ(u, ξ), ξ∗ = DξΦµ(u, ξ) (13)

are reversible between the paired spaces (Ua,U∗
a ) and (Ea, E∗

a ), where DuΦµ and DξΦµ

denote partial Gâteaux derivatives of Φµ with respect to u and ξ, respectively. Thus, on
Uk the directional derivative of Pµ at ū in the direction u ∈ Uk can be written as

δPµ(ū; u) = 〈u , DuΦµ(ū, Λ(ū))〉 + 〈Λt(ū)u ; DξΦµ(ū, Λ(ū))〉

= 〈u , ū∗〉 + 〈u ; Λ∗
t (ū)ξ̄∗〉 ∀u ∈ Uk.

In terms of canonical variables, the governing equation (1) for fully nonlinear problems
can be written in the tri-canonical forms, namely,

(1) geometrical equations: v = ∂tu, ξ = Λ(u),
(2) physical relations: p = ρv, (u∗, ξ∗) = DΦµ(u, ξ),
(3) balance equation: ∂∗

t p − u∗ − Λ∗
t (u)ξ∗ = 0.

(14)

The framework for fully nonlinear systems is shown in Figure 2.1. Extensive illustrations
of the canonical transformation and the tri-canonical forms in mathematical physics and
variational analysis were given in the monograph by Gao (2000).

� 〈u , u∗〉 -

� -〈ξ ; ξ∗〉

Λt + Λc = Λ

?

Λ∗
t = (Λ − Λc)

∗
6

Eξ ∈

Uu ∈

E∗ ∋ ξ∗

U∗ ∋ u∗

Vv ∈ V∗ ∋ p� -〈v , p〉

∂
∂t = ∂t

6
∂∗

t = − ∂
∂t − ν

?

Figure 2.1. Framework in fully nonlinear Newtonian systems with linear damping.

In geometrically linear systems, where Λ : U → E is linear, we have Λ = Λt. For
dynamical problems, if the total potential Pµ is convex, the total action associated with
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the problem (P) is a d.c. functional, i.e., the difference of convex functionals:

Πµ(u) =

∫ tc

0

eνt[K(∂tu) − Pµ(u)] dt.

It was shown by Gao (2000d) that the critical point of Πµ either minimizes or maximizes
Πµ over the kinetically admissible space. The classical Hamiltonian associated with this
d.c. functional Πµ is a convex functional on the phase space U × V∗, i.e.

H(u, p) = K∗(p) + Pµ(u), (15)

The classical canonical forms for convex Hamilton systems are well-known

∂tu = DpH(u, p), ∂∗
t p = DuH(u, p).

Furthermore, if the canonical functional Φµ can be written in the form Φµ(u, ξ) =
1
2 〈ξ ; Cξ〉−Fµ(u), where C : E → E∗ is a linear symmetrical operator, then the governing
equations for linear system can be written as

ρ(u,tt + νu,t) + Λ∗CΛu = DFµ(u).

In mathematical physics, the geometrical mapping Λ is usually a gradient-like operator.
Then A = Λ∗CΛ is an elliptic operator if C is positive-definite.

In geometrically nonlinear systems, Λ 6= Λt, and the total potential Pµ(u) is usually
a nonconvex functional. In this case, we have the following operator decomposition

Λ(u) = Λt(u)u + Λc(u), (16)

where Λc : U → E is called the complementary operator of the Gâteaux derivative
operator Λt. By this decomposition, we have

〈Λ(u) ; ξ∗〉 = 〈u , Λ∗
t (u)ξ∗〉 − G(u, ξ∗), (17)

where G : U × E∗ → R is so-called complementary gap functional, defined by

G(u, ξ∗) = 〈−Λc(u) ; ξ∗〉 : U × E∗ → R. (18)

This functional was first introduced by Gao and Strang (1989) in finite deformation the-
ory to recover a broken symmetry in geometrical nonlinear systems. It is now understood
that this gap functional plays a key role in extremality analysis of nonconvex variational
problems.

As a typical example in nonconvex dynamical systems, let us consider the following
nonconvex variational problem over the domain Ωt = (0, ℓ) × (0, tc):

Πµ(u) =

∫

Ωt

eνt

[

1

2
ρu2

,t −
1

2
a(

1

2
u2

,x − µ)2 + uf

]

dxdt → sta ∀u ∈ Uk, (19)

where a, µ are given positive constants. This nonconvex problem also appears very often
in phase transitions and hysteresis.

First, we let Λ = ∂/∂x be a linear operator, and Pµ(u) = Wµ(Λu) − Fµ(u) with

Wµ(ǫ) =

∫ ℓ

0

1

2
a(

1

2
ǫ2 − µ)2 dx, Fµ(u) =

∫ ℓ

0

uf dx.
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Thus, Wµ(ǫ) is the so-called van der Waals’ double-well function of the linear “strain”
ǫ = u,x. Since Wµ(ǫ) is not a canonical functional, the constitutive equation ǫ∗ = DWµ(ǫ)
is not one-to-one. Thus, the Legendre conjugate of Wµ(ǫ) does not have a simple algebraic
expression. The Fenchel conjugate W ∗

µ(ǫ∗) of the double-well energy Wµ(ǫ), defined by

W ∗
µ (ǫ∗) = sup

ǫ
{〈ǫ ; ǫ∗〉 − Wµ(ǫ)},

is always a convex, lower semi-continuous functional. However, the well-known Fenchel-
Young inequality

Wµ(u,x) ≥ 〈u,x ; ǫ∗〉 − W ∗
µ(ǫ∗)

leads to a so-called duality gap between the primal problem and the Fenchel-Rockafellar
dual problem (see Gao, 2000d). This nonzero duality gap indicates that the well-
established Fenchel-Rockafellar duality theory can be used only for solving convex vari-
ational problems.

From the theory of continuum mechanics we know that in finite deformation prob-
lems, ǫ = u,x is not a strain measure (it does not satisfy the axiom of material frame-
indifference (cf. e.g., Gao, 2000d)). In order to recover this duality gap, we need
to choose a suitable geometrical operator Λ, say, Λ(u) = 1

2u2
,x − µ, so that the non-

convex problem (19) can be put in our framework. In continuum mechanics, this
quadratic measure ξ = Λ(u) is a Cauchy-Green type strain. Thus, in terms of u and
ξ, Φµ(u, ξ) = Wµ(ξ) − Fµ(u) = 1

2 〈ξ ; aξ〉 − 〈u , f〉 is a canonical functional. The
Legendre conjugate of the quadratic functional Wµ(ξ) = 1

2 〈ξ ; aξ〉 is simply defined by
W ∗(ξ∗) = 1

2 〈a
−1ξ∗ ; ξ∗〉. The operator decomposition (16) for this quadratic operator

reads

Λ(u) = Λt(u)u + Λc(u), Λt(u)u = u,xu,x, Λc(u) = −
1

2
u2

,x − µ.

The complementary gap functional associated with this quadratic operator is a quadratic
functional of u

G(u, ξ∗) = 〈−Λc(u) ; ξ∗〉 =

∫ ℓ

0

1

2
u2

,xξ∗ dx.

For homogeneous boundary conditions, we have

〈Λt(u)u ; ξ∗〉 =

∫ ℓ

0

u,xu,xξ∗ dx = −

∫ ℓ

0

u(u,xξ∗),x dx = 〈u , Λ∗
t (u)ξ∗〉,

which leads to the adjoint operator Λ∗
t of Λt. Thus, the tri-canonical equations for this

nonconvex problem can be listed as the following.

v = ∂tu, ξ =
1

2
au2

,x − µ,

p = ρv, ξ∗ = DWµ(ξ) = aξ, u∗ = DFµ(u) = f,

p,t + νp = −Λ∗
t (u)ξ∗ + u∗ = (u,xξ∗),x + f.

Since the geometrical operator Λ is nonlinear, and the canonical constitutive equations
are linear, the nonconvex problem (19) is a geometrically nonlinear system.
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3 Extended Lagrangian and Triality Theory

The triality theory in nonconvex problems was originally proposed by the author (Gao,
1997, 1999, 2000) in static finite deformation theory and global optimization. In this
section, we will generalize this interesting result into fully nonlinear dynamical systems.
We assume that for a given fully nonlinear system, there exists a Gâteaux differentiable
operator Λ : Ua → Ea such that the total potential of the system can be written as

Pµ(u) = Wµ(Λ(u)) − Fµ(u), (20)

where Wµ ∈ Γ̌G(Ea) is a convex canonical functional, while Fµ : Ua → R is a linear
functional. Thus, the primal problem (P) can be reformulated as the following.

Problem 3.1 (Primal Distributed-Parameter Control Problem) For a given
primal feasible space Uk = {u ∈ Ua| ∂tu ∈ Va, Λ(u) ∈ Ea} and the final state
(ūc(x), v̄c(x)), find the control field µ(x, t) ∈ M such that the solution ū(x, t) of the
variational problem

(P) : Πµ(u) =

∫ tc

0

eνt[K(∂tu) − Wµ(Λ(u)) + Fµ(u)] dt → sta ∀u ∈ Uk (21)

satisfying the controllability condition

(ū(x, tc), ū,t(x, tc)) = (ūc(x), v̄c(x)) ∀x ∈ Ω.

It is easy to check that the criticality condition DΠµ(ū) = 0 leads to the the canonical
governing equation

ρ(ū,tt + νū,t) = DFµ(ū) − Λ∗
t (ū)DWµ(Λ(ū)). (22)

By the Legendre-Fenchel transformation, the conjugate of Wµ(ξ) is defined by

W ∗
µ(ξ∗) = sup

ξ∈E

{〈ξ ; ξ∗〉 − Wµ(ξ)}.

Since Wµ : Ea → R is a convex canonical functional, W ∗
µ(ξ∗) is well-defined on the range

E∗
a of the duality mapping DW ∗

µ : Ea → E∗, the canonical duality relation

ξ∗ = DWµ(ξ) ⇔ ξ = DW ∗
µ (ξ∗) ⇔ Wµ(ξ) + W ∗

µ(ξ) = 〈ξ ; ξ∗〉

holds on Ea×E∗
a . Moreover, we have W ∗∗

µ (ξ) = Wµ(ξ) for all ξ ∈ Ea. Let Z = U×V∗×E∗

be the so-called extended canonical phase space.

Definition 3.1 Suppose that for a given problem (P), there exists a Gâteaux differ-
entiable operator Λ : U → E and canonical functionals Wµ ∈ Γ(E), Fµ ∈ Γ(U) such that
Pµ(u) = Wµ(Λ(u)) − Fµ(u). Then

(1) the functional Hµ : Z → R defined by

Hµ(u, p, ξ∗) = K∗(p) − W ∗
µ(ξ∗) + Fµ(u) ∈ Γ(U) × Γ(V∗) × Γ(E∗) (23)

is called extended canonical Hamiltonian density associated with Πµ;
(2) the functional Lµ : Z → R defined by

Lµ(u, p, ξ∗) = 〈∂tu , p〉 − 〈Λ(u) ; ξ∗〉 − Hµ(u, p, ξ∗) (24)
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is called extended Lagrangian density of (P) associated with Λ;
(3) the functional Ξµ : Z → R defined by

Ξµ(u, p, ξ∗) =

∫ tc

0

eνtLµ(u, p, ξ∗) dt (25)

is called extended Lagrangian form of (P). It is called canonical Lagrangian form if
Ξµ ∈ Γ(U) × Γ(V∗) × Γ(E∗). ♦

A point (ū, p̄, ξ̄∗) ∈ Z is said to be a critical point of Ξµ if Ξµ is Gâteaux-differentiable
at (ū, p̄, ξ̄∗) and DΞµ(ū, p̄, ξ̄∗) = 0. It is easy to find out that the criticality condition
DΞµ(ū, p̄, ξ̄∗) = 0 leads to canonical Lagrange equations

DΞµ(ū, p̄, ξ̄∗) = 0 ⇒

{

Λ(ū) = Dξ∗W ∗
µ (ξ̄∗), ∂tū = DK∗(p̄),

∂∗
t p̄ = Λ∗

t (ū)ξ̄∗ − DFµ(ū).
(26)

By the fact that Wµ and Fµ are canonical functionals, we know that, by the Legendre
duality theory, any critical point of Ξµ solves the variational problem (P).

Since Fµ(u) : Ua → R is a linear functional, by the Riesz representation theory we
know that there exists an element ū∗(µ) ∈ U∗ such that Fµ(u) = 〈u , ū∗(µ)〉. Thus, the
extended Lagrangian associated with (P) can be written as

Ξµ(u, p, ξ∗) =

∫ tc

0

eνt [〈∂tu , p〉 − 〈Λ(u) ; ξ∗〉 − K∗(p) + W ∗(ξ∗) + 〈u , ū∗(µ)〉] dt.

(27)
Note that Ξµ : V∗

a × E∗
a → R is a saddle functional for any given u ∈ Ua, we have always

the equality

inf
ξ∗∈E∗

a

sup
p∈V∗

a

Ξµ(u, p, ξ∗) = sup
p∈V∗

a

inf
ξ∗∈E∗

a

Ξµ(u, p, ξ∗) ∀u ∈ Ua. (28)

However, for any given (p, ξ∗) ∈ V∗
a × E∗

a , the convexity of Ξµ(·, p, ξ∗) → R depends on
the operator Λ. Let Lc ⊂ Za = Ua × V∗

a × E∗
a be a critical point set of Ξµ, i.e.

Lc = {(ū, p̄, ξ̄∗) ∈ Za| δΞµ(ū, p̄, ξ̄∗; u, p, ξ∗) = 0 ∀(u, p, ξ∗) ∈ Za}.

For any given critical point (ū, p̄, ξ̄∗) ∈ Lc, we let Zr = Ur × V∗
r × E∗

r ⊂ Za be its
neighborhood such that (ū, p̄, ξ̄∗) is the only critical point on Zr. The following triality
theorem should play an important role in the stability analysis of nonlinear dynamical
systems.

Theorem 3.1 (Triality Theorem) Suppose that for a given control field µ(x, t)
such that (ū, p̄, ξ̄∗) ∈ Lc is a critical point of Ξµ, and Zr is a neighborhood of (ū, p̄, ξ̄∗).

If 〈Λ(u) ; ξ̄∗〉 is concave on Ur, then on Zr,

Ξµ(ū, p̄, ξ̄∗) = min
u

max
p

min
ξ∗

Ξµ(u, p, ξ∗) = max
p

min
u

min
ξ∗

Ξµ(u, p, ξ∗). (29)

However, if 〈Λ(u) ; ξ̄∗〉 is convex on Ur, then on Zr we have either

Ξµ(ū, p̄, ξ̄∗) = min
u

max
p

min
ξ∗

Ξµ(u, p, ξ∗) = min
p

max
u

min
ξ∗

Ξµ(u, p, ξ∗)

= min
ξ∗,u

max
p

Ξµ(u, p, ξ∗) = min
p,ξ∗

max
u

Ξµ(u, p, ξ∗). (30)
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or

Ξµ(ū, p̄, ξ̄∗) = max
u

min
ξ∗

max
p

Ξµ(u, p, ξ∗) = max
p

min
ξ∗

max
u

Ξµ(u, p, ξ∗)

= min
ξ∗

max
u,p

Ξµ(u, p, ξ∗) = max
u,p

min
ξ∗

Ξµ(u, p, ξ∗). (31)

Proof Since W ∗
µ ∈ Γ̌(E∗

a ), K∗ ∈ Γ̌(V∗
a), if 〈Λ(u) ; ξ̄∗〉 is concave on Ur, then for a

given ξ̄∗, Ξµ ∈ Γ̌(Ur)× Γ̂(V∗
a) is a saddle functional. Thus the equality (29) follows from

the saddle-Lagrangian duality theorem (cf. e.g., Gao, 2000d). However, if 〈Λ(u) ; ξ̄∗〉 is
convex on Ur, then for any given ξ∗ ∈ E∗

r , the extended Lagrangian Ξµ ∈ Γ̂(Ur) × Γ̂(V∗
a)

is a super-critical functional (see Gao, 2000d). By the super-Lagrangian duality theorem
proved in Gao (2000d), we have either (30) or (31). 2

4 Dual Action and Tri-Duality in Dissipative Systems

The goal of this section is to develop a dual approach for solving the distributed parameter
control problem (P). For any given u ∈ Uk, the extended Lagrangian density Ξµ(u, p, ξ∗)
is a saddle functional on V∗ × E∗, and we have

Πµ(u) = sup
p∈V∗

inf
ξ∗∈E∗

Ξµ(u, p, ξ∗) ∀u ∈ Uk. (32)

On the other hand, the dual action Πd
µ : V∗

a × E∗
a → R can be defined by

Πd
µ(p, ξ∗) = sta{Ξµ(u, p, ξ∗)| ∀u ∈ Ua}

= FΛ
µ (p, ξ∗) −

∫ tc

0

[K∗(p) − W ∗
µ(ξ∗)] dt, ∀(p, ξ∗) ∈ V∗

a × E∗
a , (33)

where FΛ
µ (p, ξ∗) is the so-called Λ-dual functional of Fµ(u) defined by

FΛ
µ (p, ξ∗) = sta

u∈Ua

∫ tc

0

eνt[〈∂tu , p〉 − 〈Λ(u) ; ξ∗〉 + Fµ(u)] dt. (34)

Since Fµ(u) = 〈u , ū∗(µ)〉 is a linear functional, for any given (p, ξ∗) ∈ V∗
a × E∗

a and
the applied control µ ∈ M, the solution ū of this stationary problem (34) satisfies the
balance equation

∂∗
t p − Λ∗

t (ū)ξ∗ + ū∗(µ) = 0 in Ωt. (35)

For geometrically linear conservative systems, where Λ is a linear operator, we have

FΛ
µ (p, ξ∗) = up|t=tc

t=0 , s.t. Λ∗ξ∗ + p,t = ū∗(µ). (36)

In this case,

Πd
µ(p, ξ∗) = up|t=tc

t=0 +

∫ tc

0

eνt[W ∗
µ(ξ∗) − K∗(p)] dt (37)

is the classical complementary action in linear engineering dynamical systems (see Tabar-
rok and Rimrott, 1994) defined on the dual feasible space

Ts = {(p, ξ∗) ∈ Va × E∗
a | p,t + Λ∗ξ∗ = ū∗(µ)}.
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In fully nonlinear systems, we let Ts ⊂ V∗
a ×E∗

a be a subspace such that for any given
(p, ξ∗) ∈ Ts, the critical point ū can be determined by (35) as ū = ū(p, ξ∗) and the dual
action Πd

µ is well defined by (33). Thus, by the operator decomposition Λ = Λt + Λc, we
have

FΛ
µ (p, ξ∗) = eνtup|t=tc

t=0 +

∫ tc

0

eνtGd(p, ξ∗) dt, s.t. ∂∗
t p = Λ∗

t (ū)ξ∗ − u∗(µ), (38)

where Gd(p, ξ∗) = 〈−Λc(ū) ; ξ∗〉 is the so-called pure complementary gap functional.
Then, the problem dual to the primal control problem (P) can be proposed as the
following.

Problem 4.1 (Dual Distributed-Parameter Control Problem) For a given
dual feasible space Ts and the final state (uc(x), vc(x)), find the control field µ(x, t) ∈ M
such that the dual solution (p̄(x, t), ξ̄∗(x, t)) of the dual variational problem

(Pd) : Πd
µ(p, ξ∗) → sta ∀(p, ξ∗) ∈ Ts (39)

and the associated state ū(x, t) satisfying the controllability condition

(ū(x, tc), ρ
−1p̄(x, tc)) = (uc(x), vc(x)) ∀x ∈ Ω. (40)

Lemma 4.1 Let Ξµ(u, p, ξ∗) be a given extended Lagrangian associated with (P) and
Πd

µ(p, ξ∗) the dual action defined by (33). Suppose that Zr = Ur×V∗
r ×E∗

r is an open subset

of Za and (ū, p̄, ξ̄∗) ∈ Zr is a critical point of Ξµ on Zr, Πµ is Gâteaux differentiable at
ū, and Πd

µ is Gâteaux differentiable at (p̄, ξ̄∗). Then DΠµ(ū) = 0, DΠd
µ(p̄, ξ̄∗) = 0, and

Πµ(ū) = Ξµ(ū, p̄, ξ̄∗) = Πd
µ(p̄, ξ̄∗). (41)

The proof of this lemma was given by the author in parametrical variational analysis
(Gao, 1998).

Lemma 4.1 shows that the critical points of the extended Lagrangian are also the
critical points for both the primal and dual variational problems.

Theorem 4.1 (Tri-Duality Theorem) Suppose that for a given control field
µ(x, t) such that (ū, p̄, ξ̄∗) ∈ Lc is a critical point of Ξµ and Zr = Ur × V∗

r × E∗
r is a

neighborhood of (ū, p̄, ξ̄∗) such that V∗
r × E∗

r ⊂ Ts. If 〈Λ(u) ; ξ̄∗〉 is concave on Ur, then

Πµ(ū) = min
u∈Ur

Πµ(u) iff Πd
µ(p̄, ξ̄∗) = max

p∈V∗
r

min
ξ∗∈E∗

r

Πd
µ(p, ξ∗). (42)

However, if 〈Λ(u) ; ξ̄∗〉 is convex on Ur, then

Πµ(ū) = min
u∈Ur

Πµ(u) iff Πd
µ(p̄, ξ̄∗) = min

(p,ξ∗)∈Ts

Πd
µ(p, ξ∗); (43)

Πµ(ū) = max
u∈Ur

Πµ(u) iff Πd
µ(p̄, ξ̄∗) = max

p∈V∗
r

min
ξ∗∈E∗

r

Πd
µ(p, ξ∗). (44)

Proof This theorem can be proved by combining Lemma 4.1 and the triality theorem.
2
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5 Feedback Control Against Chaos in Dissipative Duffing System

As we have shown in the first section of this paper that the governing equations for
shear/damping control of large deformed nonlinear beam structure are eventually equiv-
alent to the well-known Duffing system. As a typical example, let us consider the very
simple nonconvex dynamical problem over the time domain I = (0, tc)

Πµ(u) =

∫

I

eνt[ρu′2 −
1

2
a(

1

2
u2 − λ)2 + µu] dt → sta ∀u ∈ Uk. (45)

For initial-value problem of this one-dimensional dynamical system, the kinematically
admissible space Uk can simply be given as

Uk = {u ∈ L4(0, tc)| u′ ∈ L2(0, tc), u(0) = u0, u′(0) = v0}.

The criticality condition of Πµ leads to the dissipative Duffing equation

ρ(u′′ + νu′) = au(λ −
1

2
u2) + µ(t), ∀t ∈ I, u ∈ Uk. (46)

In terms of the nonlinear canonical measure ξ = Λ(u) = 1
2u2, the energy density Wµ(ξ)

and its conjugate W ∗
µ(ς) are convex functions:

Wµ(ξ) =
1

2
a(ξ − λ)2, W ∗

µ(ς) =
1

2a
ς2 + λς.

The extended Lagrangian for this nonconvex system is

Ξµ(u, p, ς) =

∫

I

eνt

(

pu′ − ς(
1

2
u2 − λ) −

1

2ρ
p2 +

1

2a
ς2 + µu

)

dt. (47)

The criticality condition DuΞµ(ū, p, ς) = 0 leads to the equilibrium equation

p′ + νp + ūς = µ ∀t ∈ I.

Clearly, the critical point ū = (µ − p′ − νp)/ς is well-defined for any nonzero ς. Thus,
the dual feasible space can be defined as

Ts =

{

(p, ς) ∈ C1(I)

∣

∣

∣

∣

p(0) = ρv0, −λa ≤ ς(t) < +∞,
ς(t) 6= 0 ∀t ∈ I, ς(0) = a(1

2u2
0 − λ)

}

.

Substituting ū = (µ − p′ − νp)/ς into Ξd
µ, the dual action is obtained as

Πd
µ(p, ς) = sta

u∈Ua

Ξµ(u, p, ς)

= eνtcp(tc)u(tc) − ρv0u0 +

∫

I

eνt[
1

2a
ς2 + λς +

(p′ + νp − µ)2

2ς
−

1

2ρ
p2] dt, (48)

which is well defined on Ts. The criticality condition for Πd
µ leads to the dual Duffing

system in the time domain I ⊂ R

(

1

ς
(p′ + νp − µ)

)′

+
1

ρ
p = 0, (49)
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ς2

(

1

a
ς + λ

)

=
1

2
(µ − p′ − νp)2. (50)

This system consists of the so-called differential-algebraic equations (DAE’s), which arise
naturally in many applications (cf. Brenan et al, 1996). Although the numerical solution
of these types of systems has been the subject of intense research activity in the past
few years, the solvability of each problem depends mainly on the so-called index of the
system. Clearly, the algebraic equation (50) has zero solution ς = 0 if and only if
g = (µ − p′ − νp) = 0. Otherwise, for any nonzero g(t) = µ(t) − p′(t) − νp(t), the
algebraic equation (50) has at most three real roots ςi(t) (i = 1, 2, 3), each of them leads
to the state solution ui(t) = (µ(t) − p′i(t) − νpi(t))/ςi(t).

Theorem 5.1 (Stability and Bifurcation Criteria) For a given parameter λ >
0, initial data (u0, v0) and the input control µ(t), if at a certain time period Is ⊂ I =
(0, tc),

λp(t) =
3

2

(

µ(t) − p′(t) − νp(t)

a

)2/3

> λ, t ∈ Is (51)

then the Duffing system possesses only one solution set (ū(t), p̄(t), ς̄(t)) satisfying ς̄(t) >
0 ∀t ∈ Is, and over the period Is,

Πµ(ū) = min Πµ(u) iff Πd
µ(p̄, ς̄) = min Πd

µ(p, ς), (52)

Πµ(ū) = maxΠµ(u) iff Πd
µ(p̄, ς̄) = max

p
min

ς
Πd

µ(p, ς). (53)

However, if at a certain time period Ib ⊂ I = (0, tc) we have λp(t) < λ, then, the
system possesses three sets of different solutions (ūi, p̄i(t), ς̄i(t)), i = 1, 2, 3. In the case
that the three solutions ςi(t) are in the following ordering

−aλ ≤ ς̄3(t) ≤ ς̄2(t) ≤ 0 ≤ ς̄1(t) ∀t ∈ Ib, (54)

then over the period Ib, the solution set (ū1(t), p̄1(t), ς̄1(t)) satisfies either (52) or (53);
while the solution sets (ūi(t), p̄i(t), ς̄i(t)) (i = 2, 3) satisfy

Πµ(ūi) = min
u

Πµ(u) = max
p

min
ς

Πd
µ(p, ς) = Πd

µ(p̄i, ς̄i), i = 2, 3. (55)

This theorem can be proved by combining the theorem given by Gao (2000d, Theorem
3.4.4) and the triality theorem.

Remark 5.1 By Theorem 3.4.4 proved by the author (Gao, 2000d), for any given
continuous function g(t), if ς̄i(t) (i = 1, 2, 3) are the three solutions of the dual Euler-
Lagrange equation (50) in the order of (54), then the associated ū1(t) is a global minimizer
of the total potential

Pµ(u) =

∫

I

eνt

[

1

2
a(

1

2
u2 − λ)2 − g(t)u

]

dt,

while ū2(t) is a local minimizer of Pµ and ū3(t) is a local maximizer of Pµ.

In algebraic geometry, the dual Euler-Lagrange equation (50) is the so-called singular
algebraic curve in (ς, g)-space, i.e. ς = 0 is on the curve (see Silverman & Tate, 1992,
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p. 99). With a change of variables, the singular cubic curve (50) can be given by the
well-known Weierstrass equation

y2 = x3 + αx2 + βx + γ,

where α, β, γ ∈ R are constants. If we let Cns be a set consisting of non-singular points
on the curve, then Cns is an Abelian group. This fact in algebraic geometry is very
important in understanding the stability of the nonconvex dynamical systems. Actually,
from Figure 5.1 we can see clearly that for a given input control, if λp(t) < λ, the cubic
algebraic equation (50) possesses three different real solutions for ς(t). The two negative
solutions ς̄(t) are the sources that lead to the chaotic motion of the system. Thus, the
inequality (51) provides a bifurcation (or chaotic) criterion for the Duffing system. Figure
5.1 also shows that if the continuous function g(t) = µ(t)− p′(t)− νp(t) is one-signed on
certain time interval Ib ⊂ I = (0, tc), each root ς̄(t) of (50) is also one-signed on Ii.

-1 -0.8 -0.6 -0.4 -0.2 0.2 0.4

-0.4

-0.2

0.2

0.4

ς

λp > λ

λp = λ

λp < λ

g

Figure 5.1. Invariant set of dual solutions and bifurcation criterion for Duffing equation (50).

Theoretically speaking, for the given same data, the Duffing equation (46) and its
dual system (49-50) should have the same solution set. Numerically, the primal and dual
Duffing problems give quite different results (see Figure 5.2 (a)). For the given data
a = 1, λ = 1.5, u0 = 2, v0 = 1.4 and ν = 0, Figures 5.2 and 5.3 show the numerical primal
(solid line) and dual (dashed line) solutions. From the dual trajectories in the dual phase
space ς-p-p,t (Figure 5.3 (c-d)) we can see that at the point ς3(t) = −aλ, if the function
g(t) = µ(t) − p,t(t) − νp(t) changes its sign, the state u(t) crosses the t-axis and falls
down to the another potential well in the phase space Z = U × V∗. The bifurcation is
then occurred.

For the forced vibration with linear damping, the numerical results are extremely
sensitive to the parameters. Figure 5.4 shows that the trajectories are chaotic in phase
spaces q-p (Figure 5.4 (b)) and ς-p-g ( Figure 5.4 (d)). However, trajectory in the dual
phase space ς-g is an invariant (see Figure 5.4 (c)), which depends only on the parameters
λ, a and the amplitude of the force g(t).

As it is known that the nonconvex dynamical systems are very sensitive to both the
parameters and numerical methods used. For the given periodic driving force µ(t) =
1.5 cos(2.75t) and ν = 0.1, Figure 5.4 shows that different numerical solvers in MATLAB
produce very different “chaotic results”. However, solutions in dual phase space ς-g form
an invariant set (Figure 5.4 (c)). This important fact shows that the triality theorem
will play an important role in stability and bifurcation analysis of chaotic systems.
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Figure 5.4. Chaos and invariant set: numerical results by two differential numerical methods in MATLAB.
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Based on the canonical dual transformation method and theorems developed in this
paper, the dual feedback control against the chaotic vibration of the Duffing system can
be suggested as the following.

1. Periodic vibration on the whole phase plane.
Choosing the control parameters µ and ν such that the function g(t) = µ−p′(t)−νp(t)

changes its sign at the point ς̄3(t) = −aλ.
2. Unilateral vibrations on half phase planes (either u(t) > 0 or u(t) < 0).
There are two methods: (1) choosing the control parameters µ and ν such that the

function g(t) = µ − p′(t) − νp(t) does not change its sign at the point ς̄3(t) = −aλ; (2)
choosing µ and ν such that

λp(t) =
3

2

(

µ(t) − p′(t) − νp(t)

a

)2/3

> λ ∀t ∈ I. (56)

By the bifurcation criterion (Theorem 5.1) we know that if λp > λ, the total potential
of this dissipative Duffing equation is convex and the system is stable.

6 Concluding Remarks

The concept of duality is one of the most successful ideas in modern mathematics and
science. The inner beauty of duality theory owes much to the fact that many different
natural phenomena can be put in a unified trio-canonical framework (see Gao, 2000d,
2001). By the fact that the canonical physical variables appear always in pairs, the
canonical dual transformation method can be used to solve many problems in natural
systems. The associated extended Lagrange duality and triality theories have profound
computational impacts. For any given nonlinear problem, as long as there exists a ge-
ometrical operator Λ such that the trio-canonical forms can be characterized correctly,
the canonical dual transformation method and the associated triality principles can be
used to establish nice theories and to develop powerful alternative algorithms for robust
feedback control of chaotic systems. Actually, it has been shown that in global opti-
mization many difficult nonconvex minimization problems in n-dimensional space can be
converted into certain canonical dual problems (either convex minimization or concave
maximization) in ONE-dimensional space, therefore, a class of problems have been solved
completely, including the well-known quadratic minimization over a sphere (Gao, 2004),
polynomial minimization (Gao, 2005), and quadratic programming with box constraints
(Gao, 2006). In general n-dimensional distributed parameter systems, the dual algebraic
equation (50) will be a tensor equation and the stability of the nonconvex system will
depend on the eigenvalues of symmetrical canonical stress tensor field ς(x, t) (see Gao,
2001). The triality theory can be used for studying the controllability, observability and
stability of distributed parameter control problems.
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