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Thermal Stresses in a Hexagonal Region

With an Elliptic Hole
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Abstract: Considering importance of stress concentration around holes and
notches of arbitrary shape in a given elastic medium for modern engineering, a
two dimensional model for a thermoelastic problem in an hexagon region with
an elliptic hole is established. The expressions for the temperature distribu-
tion and thermal stresses which have their importance in nuclear engineering
are obtained for the model. The five elementary function’s method in plane
thermoelasticity of multiply connected regions is used to obtain the solutions
for temperature distribution and thermal stresses. Numerical calculations are
computed assuming a central elliptic hole in the hexagonal region having ther-
mally insulated outer boundary under uniform heat generation. The obtained
results are depicted graphically.
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1 Introduction

The investigation of stress concentration around holes and notches of arbitrary shape
in a given elastic medium is very important for modern engineering. The high stress
concentration found at the edge of a hole is of great importance. The heat generating
cylinder with a hole are used in the construction of the reactor. The circular cylinder
with a square hole is an applicable problem in the construction of support of the bridge.
Polygon region with an elliptic hole have been used in nuclear reactor. As an example
holes in ships deck may be mentioned. When the hull of a ship is bent, tension or
compression is produced in the decks and there is a high stress concentration at the
holes. Under the cycles of stress produced by waves, fatigue of the metal at the over
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stressed portions may result finally in fatigue cracks. It is often necessary to reduce the
stress concentration at holes such as access holes in airplane wings and fuselages. The
contribution of several authors in this field is in [1]− [5]. Takeouti et al. studied problem
of a thick cylinder having a polygon hole, thermal stress distribution in a triangular,
square, hexagonal and octagonal region with a circular hole and theoretical thermal
stress distribution in square region with an elliptic hole in [6] − [11]. Deresiewicz [12]
calculated thermal stresses in a plate due to disturbance of uniform heat flow by a hole of
general shape. Florence et al. [13] studied the problem of an infinite plate under a steady-
state temperature distribution with uniform heat due to presence of an insulated ovaloid
hole. Chowdhury [14] obtained thermal stresses due to uniform temperature distributed
over a band of the cylindrical hole in an infinite body. Verba [15] et al. discussed static
problem of thermoelasticity for an infinite plate weakened by a rectangular hole. Pan [16]
found stresses in an infinite elastic plate containing two unequal circular holes. Chao et
al. [17] considered problems for an anisotropic thermoelastic body containing an elliptic
hole boundary.

With above background in this paper, a basic analysis is presented for thermal stress
analysis in multiply connected region and the solutions for the temperature and thermal
stress in a hexagon regions with an elliptic hole are obtained in the form of the infinite
series expressed by the elliptic co-ordinates. The unknown constants are determined
so as to satisfy boundary conditions and as they become enormous, therefore, we use
point matching technique, as an extension of five elementary function’s method in plane
thermoelasticity of multiply-connected regions [18], [19].

2 Formulation of problem

Consider a hexagon region as shown in Figure 2.1, with an elliptic hole at the centre.

Figure 2.1: Geometry of the Problem.

Assume that the region is thermally insulated at the outer boundary with an internal
convective boundary and is free from external forces. The region is made from an isotropic
linear elastic material then following Takeuti [18], its behaviour under the influence of in-
plane nonuniform temperature distribution which produces infinitesimal displacements
is governed by the equation

∇∇χτ = −k∇τ, (1)
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where τ is temperature change from reference state, k =ε E for plane stress problem, ε is
coefficient of linear thermal expansion, E is Young’s modulus, χ is Airy’s stress function,

∇ = ∂2

∂x2

1

+ ∂2

∂x2

2

. The mean stresses in two dimensions are expressed in terms of stress

function χ by the equation

σij = (∇δij − ∂i∂j)χ, (2)

where δij is Kronecker delta, ∂i is partial differential with respect to i (i, j = 1, 2).
Steady-state heat conduction with internal heat source is governed by the equation

−λ∇τ = q, (3)

where q is heat generation per unit volume per unit time, λ is thermal conductivity.
As the region is multiply connected, the stress function χ can be expressed in terms of
five elementary functions χτ , χ0, χ1l, χ2l and χ3l so that

χ = χτ + χ0 +
3

∑

h=1

n
∑

l=1

Chlχhl, (4)

where Chl are constants, h = 1, 2, 3, l = 1, 2, . . . , n and h, l are not summed. Now,
functions given in equation (4) should have to satisfy the following equations

∇∇χτ = −k∇τ, (5)

∇∇(χ0, χhl) = 0. (6)

Boundary conditions: Boundary conditions on the m-th boundary,

(χτ )pm
= (χτ,ν)pm

= 0, (7)

(χ0)pm
= −

∫ pm

dx1

∫ pm

χ2νds +

∫ pm

dx2

∫ pm

χ1νds, (8)

(χ0,ν)pm
= −(ν1)pm

∫ pm

χ2νds + (ν2)pm

∫

χ1νds, (9)

(χhl)pm
= [(xh)pm

(δ1h + δ2h) + δ3h]δlm, (10)

(χhl,ν)pm
= [(νh)pm(δ1h + δ2h)]δlm, (11)

where ν is outward normal, ν1 = cos(x1, ν), ν2 = cos(x2, ν), pm is an arbitrary point
on m-th boundary, m = 1 corresponds to the elliptic boundary, m=0 corresponds to
the hexagon boundary. In the multiply-connected bodies general equations expressed
in stress components, are not sufficient for determining stresses and to get a complete
solution an additional investigation of displacement is necessary. The first investigation
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of this kind was made by J.H. Michell [20] which are known as Michell’s condition and
given by

∫

cl

[∇(χτ + χ0 +
3

∑

h=1

n
∑

l=1

Chlχhl) + kτ ]ds = 0, (12)

∫

cl

[(x2∂ν − x1∂s)(χτ + χ0 +

3
∑

h=1

n
∑

l=1

Chlχhl) + kτ ]ds = 0, (13)

∫

cl

[(x1∂ν + x2∂s)(χτ + χ0 +

3
∑

h=1

n
∑

l=1

Chlχhl) + kτ ]ds = 0. (14)

The function given in equation (4) should have to satisfy the equations (7)-(14). We
consider the resultant force and moment vanish on each boundary. Consequently, for
pure thermal problem of zero traction on the boundary gives χ0 = 0, and we are taking
l = 1. Thus (4) will take form as

χ = χτ +

3
∑

h=1

Chlχhl = 0. (15)

Boundary conditions for the temperature

τ = 0, on the elliptic region, (16)

τ,ν = 0, on the hexagon region. (17)

To discuss thermal stresses and temperature distribution around the elliptic hole,
use of elliptic co-ordinates is advantageous,therefore we are introducing the elliptic
coordinates as (α, β) are defined for 0 ≤ α ≤ ∞, 0 ≤ β ≤ 2π, x1 = c sinhα coshβ, x2 =
c coshα sinhβ,

α = sinh−1

√

x2

1
+ x2

2
− c2 +

√

(x2

1
+ x2

2
− c2)2 + 4x2

1
c2

2c2
,

β = cosh−1

√

−
x2

1
+ x2

2
− c2 −

√

(x2

1
+ x2

2
− c2)2 + 4x2

1
c2

2c2
.

The coordinate α is constant, and α = α1 on an ellipse of semi axes, c sinhα1 and taking
the semi axes as a and b. Hence c and α1 are calculated as c2 = b2−a2 and α1=tanh−1 a

b
,

and

x1 + ıx2 = c sinh(α + ıβ). (18)

Now any complex quantity can be written in the form, J cos θ + ıJ sin θ, where J and θ
are real. This together with equation (18) gives

J2 = c2(cosh 2α + cos 2β), tan θ = tanhα tan β.
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The expressions for thermal stress components given by equation (2), in the elliptic
co-ordinates are

σαα = J2
∂2χ

∂β2
− J

∂J∂χ

∂α∂α
+ J

∂J∂χ

∂β∂β
, (19)

σββ = J2
∂2χ

∂α2
− J

∂J∂χ

∂α∂α
− J

∂J∂χ

∂β∂β
, (20)

σαβ = −J2
∂2χ

∂α∂β
− J

∂J∂χ

∂α∂β
+ J

∂J∂χ

∂α∂β
. (21)

The expression for steady heat conduction with a constant heat generation given by (3)
in elliptic coordinate will become

J2∇⋆τ = − q

λ
. (22)

The displacement equations given by (5)-(6) in elliptic co-ordinates will be written as

J2∇⋆J2∇⋆χτ = kJ2∇⋆τ. (23)

J2∇⋆J2∇⋆χhl = 0. (24)

Boundary equations given by (7)-(11) in elliptic co-ordinates on the boundary (m=1,0)
are

(χτ )pm
= (

∂

∂n
χτ )pm

=
∂

∂α
χτ (∇α · n) = 0, (25)

(χ11, χ21, χ31)pm
= (c sinhα cosβ, c coshα sinβ, 1) δ1m, (26)

(
∂

∂n
χ11,

∂

∂n
χ21,

∂

∂n
χ31)pm

= (c coshα cosβ, c sinhα sin β, 1) δ1m. (27)

Michell’s conditions given by (12)-(14) in elliptic co-ordinates will become

∫

α=α1

∂

∂α
[J2∇⋆(χτ +

3
∑

h=1

Chlχhl) + kτ ]dβ = 0, (28)

∫

α=α1

(cosh α sin β
∂

∂α
− sinhα cosβ

∂

∂β
)[J2∇⋆(χτ +

3
∑

h=1

Chlχhl) + kτ ]dβ = 0, (29)

∫

α=α1

(cosh α sin β
∂

∂β
+ sinhα cosβ

∂

∂α
)[J2∇⋆(χτ +

3
∑

h=1

Chlχhl) + kτ ]dβ = 0, (30)

and boundary conditions given by (16)-(17) will become

τ = 0, on the elliptic (inner) region, (31)

∂τ

∂n
=

∂τ

∂α
(∇α · n̂) = 0, on the hexagon (outer) region, (32)

∇ = J2∇⋆, ∇⋆ =
∂2

∂α2
+

∂2

∂β2
.
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3 Solution of the problem

Introducing a new variable τr and τs such that

τ = τr + τs

together with equation (22) gives

∇⋆τs = 0, (33)

J2∇⋆τr = −
q

λ
. (34)

The general plane harmonic temperature distribution in elliptic co-ordinates is expressed
in the following series

φ = Ā0 + B̄0α +

∞
∑

n=1

(Ā2n cosh 2nα + B̄2n sinh 2nα) cosnβ+

∞
∑

n=1

(C̄2n cosh 2nα + D̄2n sinh 2nα) sinnβ. (35)

Assuming symmetry of the region about x1 and x2-axis, the solution for τs is given as
follows

τs = Ā0 + B̄0α +
∞
∑

n=1

(Ā2n cosh 2nα + B̄2n sinh 2nα) cosnβ, (36)

where Ā0, B̄0, Ā2n and B̄2n are unknown constants. From equation (22) particular solu-
tion is

τr = − q2

8λ
(cosh 2α − cos 2β), (37)

Therefore

τ = − q2

8λ
(cosh 2α − cos 2β) + Ā0 + B̄0α +

∞
∑

n=1

(Ā2n cosh 2nα + B̄2n sinh 2nα) cos 2nβ. (38)

From the consideration for Michell’s conditions, the coefficients Ā0, Ā2n and B̄2n vanish
in the integration of the equation as to continuity of the displacement on the boundary
of the hole. These coefficients do not appear in the expressions of stress components. In
our problem coefficients appearing in expression of temperature distribution are of less
importance, except B̄0.

As the outer hexagon boundary is thermally insulated under the steady state condi-
tions, the amount of heat generation must carry away by inner elliptic boundary. The
condition of thermal insulation on outer boundary is

λ

∫

∂τ

∂n
ds = q

∫

(p tan
π

p
− πab), (39)
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where p represents the sides of polygon. Equation (39) together with (38) solved to
obtain the value of B̄0 as follows

B̄0 =

√
3

λπ
q. (40)

Now to calculate stress function we are introducing a new stress function

χτ = χτr + χτs. (41)

The equation (1) together with equation (41) will become

J2∇⋆J2∇⋆(χτr + χτs) =
kq

λ
. (42)

By solving the equation (42), we get particular solution as

χτr =
kqc4

512λ
(cosh 4α + cos 4β) (43)

and

∇∇χτs = 0. (44)

We consider the symmetry of the region about x1 and x2- axis. The general solution
for χτs is given by

χτs = A00 + B00α + C00(cosh 2α − cos 2β) + D00(α cosh 2α − α cos 2β − sinh 2α)+

∞
∑

n=1

[A2n0 cosh 2nα cos 2nβ + B2n0 sinh 2nα cos 2nβ + C2n0(cosh(2n + 2)α cos 2nβ+

B2n0 cosh(2n + 2)α cos 2nβ) + D2n0(sinh(2n + 2)α cos 2nβ +

B2n0 sinh(2n + 2)α cos 2nβ)]. (45)

Equations (43) and (45) together give the expression for the stress function χτ as

χτ = A00 + B00α + C00(cosh 2α − cos 2β) + D00(α cosh 2α − α cos 2β − sinh 2α)+

∞
∑

n=1

[A2n0 cosh 2nα cos 2nβ + B2n0 sinh 2nα cos 2nβ + C2n0(cosh(2n + 2)α cos 2nβ+

B2n0 cosh(2n + 2)α cos 2nβ) + D2n0(sinh(2n + 2)α cos 2nβ+

B2n0 sinh(2n + 2)α cos 2nβ)] +
kqc4

512λ
(cosh 4α + cos 4β). (46)

The remaining three constants Chl in equation (4) are to be determined so as to
satisfy the three relations of Michell’s conditions. Symmetry of the region about x1 and
x2 axis, temperature distribution of the body and Michell’s conditions give

C11 = C12 = 0, C31 = −8D00 + kB0c
2

8D03

. (47)
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Similarly, symmetry of the region about x1 and x2 axis, the general solution for χhl,
formed by the terms which satisfy the biharmonic equation in elliptic co-ordinates are
given respectively as

χ11 = A01 + B01 + C01(cosh 2α − cos 2β) + D01(α cosh 2α − α cos 2β − sinh 2α)+

A11(cosh 3α cosα + B11α sinhα cosβ) + D11(sinh 3α cosβ − α sinhα cos 3β)+

∞
∑

n=1

[An1 coshnα cosnβ + Bn1 sinhnα cosnβ + Cn1(cosh(n + 2)α cosnβ−

coshnα cos(n + 2)β) + Dn1(sinh(n + 2)α cosnβ − sinhnα cos(n + 2)β)], (48)

χ21 = E12α sinhα sin β + F12α coshα sin β+

G12(cosh 3α sin β − coshα sin 3β) + H12(sinh 3α sin β − α sinhα sin 3β)+

∞
∑

n=1

[En2 cosh nα sinnβ + Gn2(cosh(n + 2)α sin nβ − coshnα cos(n + 2)β)+

Hn2(sinh(n + 2)α sin nβ − sinhnα sin(n + 2)β)], (49)

χ31 = A03 + B03 + C03(cosh 2α − cos 2β) + D03(α cosh 2α − α cos 2β − sinh 2α)+

∞
∑

n=1

[A2n3 cosh 2nα cos 2nβ + C2n3(cosh(2n + 2)α cos 2nβ − cosh 2nα cos(2n + 2)β)+

D2n3(sinh(2n + 2)α cos 2nβ − sinh 2nα cos(2n + 2)β)]. (50)

Therefore from relation (15), we have

χ = χτ + C31χ31, (51)

which gives expression for χ as

χ = A00 + B00α + C00(cosh 2α − cos 2β) + D00(α cosh 2α − α cos 2β − sinh 2α)+

∞
∑

n=1

[A2n0 cosh 2nα cos 2nβ + B2n0 sinh 2nα cos 2nβ + C2n0(cosh(2n + 2)α cos 2nβ+

B2n0 cosh(2n + 2)α cos 2nβ) + D2n0(sinh(2n + 2)α cos 2nβ+

B2n0 sinh(2n + 2)α cos 2nβ)] +
kqc4

512λ
(cosh 4α + cos 4β) − 8D00 + kB0c

2

8D03

×

[A03 + B03 + C03(cosh 2α − cos 2β) + D03(α cosh 2α − α cos 2β − sinh 2α)+

∞
∑

n=1

[A2n3 cosh 2nα cos 2nβ + C2n3(cosh(2n + 2)α cos 2nβ − cosh 2nα cos(2n + 2)β)+
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D2n3(sinh(2n + 2)α cos 2nβ − sinh 2nα cos(2n + 2)β)]], (52)

where Aij , Bij , Cij , Dij , (i = 0, 1, 2, ....n, j = 0, 3), are constants appearing in thermal
stress function. Substituting (45) and (48) into (25)-(27), we show that χ31 and χτ

must satisfy the boundary conditions around elliptic hole (perimeter of elliptic hole) and
outer edge of hexagon. As these functions have been derived in order to satisfy the
requirements of symmetry of the region about both x1 and x2- axes it is only necessary
to consider the conditions of one quadrant of the region and as these functions are
expressed in the forms of infinite series, the conditional equations to get the unknown
constants become infinite. For this purpose the numerical calculations performed to get
the unknown constants Aij , Bij , Cij , Dij , (i = 0, 1, 2, ....n, j = 0, 3) become enormous.
Therefore, we use the point-matching technique to satisfy the boundary conditions. That
is, if we replace

∑

∞

n=1
in equation (45) and (48) by

∑n
n=1

approximately, the temprature
and stress functions contain 4(N+1) unknown constants. Hence we have to solve 4(N+1)
simultaneous equations.

We have obtained numerical values for unknown constants as follows

A00 = −4.47137×1015, B00 = −4.47137×1015, C00 = 2.6966×1014, D00 = −9.43448×1013,

A20 = 7.12448× 1013, B20 = −7.1724× 1013, C20 = −0.463993, D20 = 0.490715,

A03 = 1, B03 = C03 = D03 = A23 = B23 = C23 = D23 = 0.

The expressions for stress components σαα, σββ and σαβ are obtained substituting from
(52) into (19)-(21).

4 Numerical calculations and conclusion

To analyze the results given here, we consider a numerical example. The results depict
isothermals for the distributions of temperature and thermal stresses. For this purpose,
we take steel as thermoelastic material. The values for the different physical parameters
arising in the analysis in SI units are:

Thermal Conductivity, λ = 19.5W/moC,
Specific heat at constant volume, q = 0.560 × 103J/kgoC,
Linear thermal expansion, ε = 17.7 × 10−6 oC,
Y oung′s modulus, E = 195 × 109Pa.

Figure 4.2 exhibits the isothermals for the temperature distributions. The region
OABC in Figure 4.2, represents a quadrant of hexagon region with an elliptic hole. The
distribution of temperature is shown around an elliptic hole of semi-axes a = 0.495 and
b = 0.505. We see that contours are moving with the increase in distance.

Figure 4.3 depicts the variation of tangential stress σαβ around elliptic hole with
same semi-axes i.e. a = 0.495 and b = 0.505 and variation in thermal stresses in this
case also occur with distance. It is observed contour lines are moving with the variation
in distance.

Figure 4.4 depicts variation of principal stress σαα with distance along x1-axis while
Figure 4.5 depicts the variation of principal stress σββ with respect to distance along
x2-axis from elliptic hole. It can be seen from Figure 4.4 and Figure 4.5 that principal
stresses increase with distance but in opposite fashion.
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Figure 4.2: Isothermals for the elliptic hole. Figure 4.3: Variation of tangential stress σαβ.

Figure 4.4: Variation of principal stress σαα. Figure 4.5: Variation of principal stress σββ.



NONLINEAR DYNAMICS AND SYSTEMS THEORY, 6(3) (2006) 245–256 255

We conclude that the isothermals of the temperature distribution around an elliptic
hole within a hexagon region under constant heat generation shows that the variation
in temperature occurs with distance and the pattern of variation is the same in the
temperature and tangential stress σαβ around elliptic hole. The variation in principal
stress σαα on x1-axis follows the same behaviour as σββ on x2-axis but in opposite
direction.
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