Existence of Nonoscillatory Solution of High-Order Nonlinear Difference Equation

Xiaozhu Zhong¹, Jingcui Liang¹, Yan Shi²*, Donghua Wang¹ and Lixia Ge¹

¹School of Science, Yanshan University, Qinghuangdao 066004, China
²School of Information Science, Kyushu Tokai University, Kumamoto 862-8652, Japan

Received: March 25, 2005; Revised: May 25, 2006

Abstract: In this paper, the existence of the nonoscillatory solution to the equation of a class of high-order nonlinear neutral delay difference is investigated. By using fixed point theorem, a sufficient condition is proposed for the existence of eventually positive solution.

Keywords: Difference equation; oscillation; positive solution.
Mathematics Subject Classification (2000): 35D05, 35E05.

1 Introduction

In the computer designing and the ecomodeling, a class of neutral difference equation is proposed. In recent years, the oscillatory behavior of neutral difference equations was intensively studied, and some good results were obtained [1–4]. Now we consider the nonlinear high-order difference equation

\[\Delta^m(x_n - px_{n-\tau}) + q_nf(x_{n-\sigma}) = 0, \quad (1) \]

where \(m \) is a positive odd number; \(n \in N = \{0,1,2,\ldots\} \), \(p \in R \); for \(n \in N \), \(q_n \in R^+ \), \(\sigma \in N \), \(\tau \in N\backslash\{0\} \), \(\mu = \max\{\tau,\sigma\} \), \(f \in C(R,R) \) satisfying that \(xf(x) > 0 \) for \(x \neq 0 \) and for \(\forall x, y \in R \),

\[|f(x) - f(y)| \leq L|x - y| \quad (2) \]

where \(L \) is a positive constant. The case of \(p = 1 \) was studied in [5], the case of the equation (1) of even order was studied in [6]. In this paper, by using fixed point theorem, the case of the equation (1) of odd order is studied under the condition of \(p \neq \pm 1 \), and

*Corresponding author: shi@ktmail.ktokai-u.ac.jp

© 2006 Informath Publishing Group/1562-8353 (print)/1813-7385 (online)/www.e-ndst.kiev.ua 205