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Abstract: This paper addresses the dynamics of a SHARON bioreactor for
ammonium removal from concentrated wastewater streams. It is shown that
multiple equilibrium points occur for a simplified reactor model. Conditions
are determined for which the system possesses multiple equilibrium points and
the corresponding phase portraits are analysed. In case the reactor model
possesses two locally asymptotically stable equilibrium points, the stability
boundary, that separates their attraction regions, is visualized. Subsequently,
it is examined how small parameter changes affect the number of equilib-
rium points and the corresponding phase portraits. The analytically obtained
results are illustrated by means of simulations.
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1 Introduction

Throughout the years, biological nitrogen removal from wastewater has proven its effec-
tiveness and has been adopted widely in favour of the more expensive physicochemical
processes. Typically, biological nitrogen removal is performed through nitrification of
ammonium (i.e. the main form in which nitrogen is present in wastewater) via nitrite to
nitrate, followed by denitrification of nitrate to nitrogen gas.

Several novel nitrogen removal processes have been developed, among which the
SHARON process (single reactor system for high activity ammonia removal over nitrite),
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that is ideally suited to remove nitrogen from wastewater streams with high ammonium
concentration [5].

The SHARON reactor is operated as a continuously stirred tank reactor (CSTR)
without biomass retention. At the prevailing pH (about 7) and high temperature (30-
40◦C), ammonium oxidizers grow faster than nitrite oxidizers. For this reason, it is
possible to establish ammonium oxidation to nitrite only and prevent further oxidation
of nitrite to nitrate by setting an appropriate dilution rate. In this way, substantial
savings in aeration costs are realized, in comparison with oxidation of ammonium to
nitrate. Additional savings can be made when the SHARON reactor is coupled with an
Anammox process, in which an almost equimolar mixture of ammonium and nitrite is
converted to nitrogen gas [9].

In this paper, the dynamics of the SHARON reactor model with inhibition kinetics is
analysed. Starting from a simplified model, conditions under which the reactor exhibits
multiple equilibrium points are identified and their importance is discussed from a tech-
nological point of view. The global convergence properties of the set of the equilibrium
points is discussed and phase trajectories are drawn for the different cases distinguished.
In case multiple stable equilibrium points occur at the same time, their stability bound-
ary is visualized by means of a trajectory reversing technique. In order to examine the
effect of varying parameter values on the number of equilibrium points, an extended
model is considered, that is obtained by small modifications of the simplified model. The
equilibrium points are calculated analytically and phase trajectories are drawn to verify
the results.

2 The SHARON Reactor Model

For a wide class of biotechnological reaction systems in which n components are involved
in m reactions (n > m), the state equations can be written in the general form [1]

ξ̇ = Cρ(ξ) − Dξ + F. (1)

The state ξ, of dimension n, is the vector of reactor concentrations of the various com-
ponents participating in the process. F = col (Fi), i = 1, . . . , n, represents the supply
rates, while D is the dilution rate. F and D are assumed to remain constant and satisfy

Fi ≥ 0, i = 1, . . . , n, D > 0. (2)

For a CSTR with constant reactor volume, the supply rate can be written as F =
Dξin, with ξin representing the vector of influent concentrations of the various process
components.

ρ(ξ) = col (ρj(ξ)), j = 1, . . . , m, is the reaction rate function. Let ρ(ξ) ∈ C1 (con-
tinuous with continuous partial derivatives w.r.t. the components of ξ). This condition
ensures the existence and the uniqueness of the solutions of (1) for given initial conditions.
For all values of the composition vector ξ, ρj(ξ) ≥ 0, j = 1, . . . , m.

C ∈ Rn×m, with rankC = m, is the matrix of yield coefficients. Without loss of
generality C can be written as

C =

[

Cb

Ca

]

(3)

where Ca ∈ Rm×m is nonsingular.
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It has been proven [2, 7] that under some fairly general assumptions, including the
principle of mass conservation, the state variables of the system (1) cannot become
negative and remain upper bounded for increasing time. Moreover the system (1) can
be brought in a canonical form by the state transformation

xb , A0ξa + ξb ∈ Rn−m, xa , ξa ∈ R+m

(4)

with A0 = −CbC
−1
a . The canonical model consists of a linear part of dimension (n−m)

dynamically coupled with a nonlinear part of dimension m.
The SHARON reactor model considers two nitrification reactions (m = 2): oxidation

of ammonium to nitrite and consecutive oxidation of nitrite to nitrate. Four components
(n = 4) are involved in the biochemical reactions: ammonium, nitrite, ammonium ox-
idizers and nitrite oxidizers. Ammonium and nitrite oxidations are described by their
respective reaction rates

ρ1(ξ) = a1 ·
ξ1

b1 + ξ1

· c1

c1 + ξ2

· ξ3 (5)

and

ρ2(ξ) = a2 ·
ξ2

b2 + ξ2

· ξ1

c2 + ξ1

· d2

d2 + ξ2

· e2

e2 + ξ1

· ξ4 (6)

in which a1, b1, c1, a2, b2 c2, d2 and e2 are constant, at least for a SHARON reactor in
which temperature and pH are controlled at a fixed level, as is assumed further. The
model considers inhibition of ammonium oxidation by nitrite (with inhibition constant
c1), as well as inhibition of nitrite oxidation by ammonium and by nitrite (with inhibition
constants e2 and d2 respectively). The matrix of yield coefficients has the form:

C =







−a −b

c −d

1 0
0 1






(7)

Assuming a constant reactor volume, under the state transformation (4), the canonical
model of the SHARON reactor becomes:

ẋb = D(wb − xb), (8)

ẋa = D(wa − xa) + Caρ(x), (9)

where

xa ,

[

x3

x4

]

∈ R+2

, xb ,

[

x1

x2

]

∈ R2, Ca = I2,

ρ(x) ,

[

ρ1(x)
ρ2(x)

]

∈ R+2

; wa =

[

w3

w4

]

,

[

ξin3

ξin4

]

∈ R+2

;

wb =

[

w1

w2

]

,

[

ξin1
+ aξin3

+ bξin4

ξin2
− cξin3

+ dξin4

]

∈ R2,

ρi(x) = ρi(ξ)|ξa=xa; ξb=xb+CbC
−1

a xa
, i = 1, 2.
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Biochemical reactors are positive systems, which means their state variables ξi, i =
1, . . . , n, cannot become negative. Hence the states of the canonical model (8), (9) must
fulfill the following physical boundary conditions:

w1 − ax3 − bx4 ≥ 0, (10)

w2 + cx3 − dx4 ≥ 0, (11)

x3 ≥ 0, (12)

x4 ≥ 0. (13)

Table 2.1 gives the numerical values/ranges for the SHARON model parameters and
input variables, applied in this study. These values are the same as applied in [10], except
for the values of a1 and b2, that were slightly changed in this study to avoid numerical
instabilities, without qualitatively affecting the results.

Table 2.1. Numerical values/ranges SHARON model parameters and input variables.

a1 1.35 × 10−5 day−1 a 16 mole mole−1

b1 4.73 mole m−3 b 0.2 mole mole−1

c1 837 mole m−3 c 58.6 mole mole−1

a2 1.22 × 10−5 day−1 d 15.8 mole mole−1

b2 60 mole m−3 D [0 3 × 10−5] day−1

c2 0.01 mole m−3 ξin1
[0 2000] mole m−3

d2 1000 mole m−3 ξin2
0 mole m−3

e2 1000 mole m−3 ξin3
= ξin4

0.01 mole m−3

Since all solutions of the SHARON reactor remain bounded for increasing time, it
can easily be established [4], using basic Lyapunov theory, that all trajectories of the
canonical model converge to the quarter hyperplane

∆ = {x3 ≥ 0, x4 ≥ 0, xb = wb} . (14)

On the hyperplane ∆ the dynamics are described by the autonomous second order sys-
tem (9) in which xb ≡ wb, whose the solutions remain bounded for t → +∞. Hence
by Poincaré–Bendixson’s theorem (see e.g. [6], P. 321) every solution either converges
to an equilibrium point or to a closed trajectory (limit cycle). If there are no closed
trajectories in the state space of this system then the set of the equilibrium points is
globally convergent. More detailed considerations on the convergence of biochemical re-
actors of rank two can be found in [8]. Here it was concluded that for processes such
as the SHARON reactor, working under operating conditions which violate analytical
criteria such as Bendixson’s negative criterion [6], the absence of limit cycles must be
verified by simulation.
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3 Analysis of a Simplified SHARON Reactor Model

In this section, the existence, uniqueness and stability of the equilibrium points is studied
for the SHARON reactor model, that is further simplified. The simplified model is
obtained by assuming that the inflow does not contain any nitrite, ammonium oxidizers
or nitrite oxidizers. Furthermore, nitrite limitation of ammonium oxidizers as well as
ammonium inhibition of nitrite oxidizers are not considered. These simplifications are
expressed mathematically as

ξini
= 0, i = 2, . . . , 4, (15)

c1 = +∞, c2 = 0, e2 = +∞. (16)

The equilibrium points of the corresponding canonical model satisfy

x1 = w1 = ξin1
, (17)

x2 = w2 = 0, (18)

[−D + ρ1(x)] x3 = 0, (19)

[−D + ρ2(x)] x4 = 0, (20)

where

ρ1(x) = a1 ·
ξ1

b1 + ξ1

, (21)

ρ2(x) = a2 ·
ξ2

b2 + ξ2

· d2

d2 + ξ2

, (22)

ξ1 = w1 − ax3 − bx4, (23)

ξ2 = cx3 − dx4. (24)

There are three valid possibilities resulting from (19), (20).

Case 1. x3 = 0, x4 = 0.
This gives the equilibrium point:

x̂A = col (ξin1
, 0, 0, 0). (25)

This equilibrium point occurs independently of the choice of dilution rate D and of
ammonium concentration in the inflow ξin1

. It is the wash-out state of the system, in
which no biomass remains in the reactor and, consequently, no conversion is realized.

It is worth noting that, if in an equilibrium point there are no ammonium oxidizers
present (x3 = 0), then the concentration of nitrite oxidizers (x4) must also be zero,
otherwise the physical boundary ξ2 ≥ 0 is violated. This is logical regarding the fact
that, in a SHARON reactor, ammonium oxidizers grow faster than nitrite oxidizers.

Case 2. x4 = 0, ρ1(x) = D.

Denoting by ξ̂B1
the solution of ρ1(x) = D,

ξ̂B1
=

Db1

a1 − D
(26)
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the second equilibrium point of the system is found as

x̂B = col

(

ξin1
, 0,

ξin1
− ξ̂B1

a
, 0

)

, (27)

x̂B is a physical state of the system only if D <
a1ξin1

b1 + ξin1

. This second equilibrium

point corresponds with a situation in which only ammonium oxidizers are present in the
reactor, so only nitrite is formed. Nitrate formation is successfully suppressed by keeping
out nitrite oxidizers, as is the aim of a SHARON reactor.

Case 3. ρ1(x) = D, ρ2(x) = D.
As before, the first equality results in

ξ̂C1
=

Db1

a1 − D
(28)

under the condition D < a1, while the second equality will have two solutions ξ̂C2
and

ξ̂D2
if D < a2 ·

d2

(
√

b2 +
√

d2)2
. Let ξ̂D2

> ξ̂C2
. Then a third physical equilibrium point

x̂C =















ξin1

0
d(ξin1

− ξ̂C1
) + bξ̂C2

ad + bc
c(ξin1

− ξ̂C1
) − aξ̂C2

ad + bc















(29)

will occur if in addition ξ̂C2
<

c

a
(ξin1

− ξ̂C1
). Moreover, if also ξ̂D2

<
c

a
(ξin1

− ξ̂D1
),

where ξ̂D1
= ξ̂C1

then the fourth equilibrium point

x̂D =















ξin1

0
d(ξin1

− ξ̂D1
) + bξ̂D2

ad + bc
c(ξin1

− ξ̂D1
) − aξ̂D2

ad + bc















(30)

is also a physical equilibrium point of the system. The equilibrium points x̂C and x̂D

correspond with situations in which nitrite oxidizers are present, so in which at least part
of the nitrite is further oxidized to nitrate. This is mostly not desirable in a SHARON
reactor, as more oxygen is consumed. Also for coupling with an Anammox process,

nitrate formation should be avoided. Note that, as ξ̂D2
> ξ̂C2

, more ammonium oxidizers
and less nitrite oxidizers are present, which means that less nitrate is produced in x̂D

than in x̂C .

Summarizing, depending on the values of the dilution rate D and the ammonium con-
centration in the influent ξin1

, the simplified model of the SHARON reactor may possess
one, two, three or four equilibrium points. The boundaries delimiting the regions with
various numbers of equilibrium points are illustrated in Figure 3.1. For high dilution rates
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Figure 3.1. Boundaries of regions with various numbers of equilibrium points.

D, the wash-out equilibrium point x̂A, in which both ammonium and nitrite oxidizers are
washed out of the reactor, is the only equilibrium point. In case the dilution rate is set
lower so that ammonium oxidizers can maintain themselves in the reactor, but still high
enough so that nitrite oxidizers are washed out, the equilibrium point x̂B , corresponding
with only nitrite formation, occurs besides the wash-out equilibrium point x̂A. If the
dilution rate becomes so low that also nitrite oxidizers can grow in the reactor, a third
equilibrium point x̂C appears, and even a fourth equilibrium point x̂D, depending on
the influent ammonium concentration ξin1

. Note, however, that the influent ammonium
concentration often cannot be set by the user but should rather be seen as a process
disturbance.

The analytically obtained results for the simplified reactor model have been checked
by simulations. Figure 3.2 shows the obtained phase portraits of the system on the
hyperplane ∆ for different combinations of dilution rate and influent ammonium concen-
tration. One combination was selected in each one of the four regions in the ξin1

− D

plane:

1. D = 2 × 10−5 day−1, ξin1
= 1000 mole m−3.

In this case the system has only one equilibrium point, x̂A, which is globally
asymptotically stable (Figure 3.2a). All trajectories of the system converge to
x̂A, where all ammonium and nitrite oxidizers are washed out of the bioreactor.

2. D = 1.33 × 10−5 day−1, ξin1
= 1000 mole m−3.

For this choice of inputs the simplified reactor model possesses two equilibrium
points (Figure 3.2b): the wash-out state x̂A which is unstable and a desired
operating point x̂B which is asymptotically stable. All trajectories, except for
the wash-out state, converge to the operating point x̂B.

3. D = 0.786× 10−5 day−1, ξin1
= 275 mole m−3.

Three equilibrium points occur in this situation (Figure 3.2c): two unstable ones
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Figure 3.2. Phase portraits in the x3 − x4 plane.

(x̂A, x̂B) and an asymptotically stable operating point x̂C . All trajectories, except
those starting with x4(0) = 0, converge to x̂C .

4. D = 0.786× 10−5 day−1, ξin1
= 440 mole m−3.

This situation corresponds to the occurrence of four equilibrium points (Fig-
ure 3.2d). There are two unstable equilibrium points (x̂A and x̂D) and two locally

asymptotically stable equilibrium points (x̂B and x̂C). Because ξ̂B2
> ξ̂C2

and

ξ̂B1
= ξ̂C1

, in practice x̂B is a better operating point than x̂C .

4 Estimation of a Stability Boundary

For the practical situation, in which two stable equilibrium points occur at the same time,
as in Case 4 of the previous section, it is essential to forecast from which initial states the
process will converge to the desired operating point x̂B, corresponding with only nitrite
formation, and which initial conditions will lead the system to the operating point x̂C ,
in which nitrate is formed. This corresponds to estimating the stability boundary

∂Ω(x̂B) = ∂Ω(x̂C) (31)

separating the regions of attraction Ω(x̂B) and Ω(x̂C) of the stable equilibria. For
systems such as the SHARON reactor, algorithms to find an estimate of the stability
boundary ∂Ωest(x̂B) that approaches the true stability boundary ∂Ω(x̂B) as some al-
gorithmic parameter ε → 0, have been described in [8]. In the present case

∂Ω(x̂B) = W s(x̂D) (32)
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Figure 4.1. Intersections of the stability boundary with the planes H1, H2.

where the right hand side of (32) denotes the stable manifold of x̂D. An estimate
W s

est(x̂D) can be found by a trajectory reversing technique such as described e.g. in [3].

The extent of the stability boundary in the four-dimensional state space of the system
can be visualized by computing intersections of ∂Ωest(x̂B) with the set H = {xb = η}
for constant vectors η = [η1, η2]

T. For a numerical technique to accomplish such visua-
lizations see [8].

Figure 4.1 presents the intersection of the estimated stability boundary with the planes
H1 and H2 corresponding respectively to η1 = x̂D1

+2, η2 = x̂D2
+4 and η1 = x̂D1

− 4,
η2 = x̂D2

− 2. The obtained intersections practically coincide with the curve W s(x̂D)
on the ∆ hyperplane (Figure 3.2d). If the initial conditions of the process are chosen in
such a way that the states x3 and x4 are below this intersection line (e.g. by ensuring
that the initial amount of nitrite oxidizers, x4(t = 0) is small) and inside the physical
boundaries, then the SHARON reactor will converge to the desired operating point x̂B ,
in which only nitrite is formed.

Summarizing, even for high dilution rates, stable nitrite formation is possible, as long
as the influent ammonium concentration is sufficiently high to have four equilibrium
points (see Figure 3.1) and if the initial concentration of nitrite oxidizers is sufficiently
low.

5 Effect of Changing Parameter and Input Values

For biological systems, it is often difficult to determine exact parameter values. Also,
parameter values may change in time e.g. because of biomass adaptation. Besides, also
the input values may be uncertain. For this reason, the effect of changing parameter and
input values is assessed by the analysis of an extended model of the SHARON reactor.
Let

c3 ,
1

c1

, e3 ,
1

e2

(33)

and suppose that ξini
, i = 2, . . . , 4, c2, c3 and e3 have small positive values. We in-

vestigate the effect of these values on the position of equilibrium points. Note that the
index, hence the local asymptotic stability or instability, of the equilibrium points are
not affected by these small parameters because all the equilibrium points of the reactor
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are hyperbolic. The equilibrium points of the extended model are the solutions of:

x1 = w1, (34)

x2 = w2, (35)

[−D + ρ1(x)] x3 + Dξin3
= 0, (36)

[−D + ρ2(x)] x4 + Dξin4
= 0, (37)

where

ρ1(x) = a1 ·
ξ1

b1 + ξ1

· 1

1 + c3ξ2

, (38)

ρ2(x) = a2 ·
ξ2

b2 + ξ2

· d2

d2 + ξ2

· ξ1

c2 + ξ1

· 1

1 + e3ξ1

. (39)

We calculate the equilibrium points of the extended model as variations of the solutions
of the simplified model, neglecting higher order terms in the small parameter values.

Case 1. x̃A = x̂A + ∆x̂A. This equilibrium point is given by

x̃A =















ξin1
+ aξin3

+ bξin4

ξin2
− cξin3

+ dξin4

Dξin3

D − a1
ξin1

b1+ξin1

ξin4















. (40)

It is a physical equilibrium point if D > a1

ξin1

b1 + ξin1

. This corresponds to the case in

which x̂B is not a physical equilibrium point of the simplified model.

Case 2. x̃B = x̂B + ∆x̂B ,

x̃B =







ξin1
+ aξin3

+ bξin4

ξin2
− cξin3

+ dξin4

x̂B3
+ ∆x̂B3

∆x̂B4






(41)

where

∆x̂B3
=

1

ax̂B3

b1
b1+ξ̂B1

+ c3ξ̂B2
ξ̂B1

x̂B3

[

− c3ξ̂B2
ξ̂B1

+
b1

b1 + ξ̂B1

(aξin3
+ bξin4

− b∆x̂B4
)

]

,

∆x̂B4
=

Dξin4

D − a2
ξ̂B2

b2+ξ̂B2

· d2

d2+ξ̂B2

. (42)

It can be shown that x̃B is a physical equilibrium point of the extended model in the
region where the simplified model has two equilibrium points (x̂A, x̂B) and also in the
region where the simplified model possesses four equilibrium points (x̂A, x̂B , x̂C , x̂D).
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Figure 5.1. Phase portraits in the x3 − x4 plane for the extended model.

a) x̃A = [0.03 0.01]T ; b) x̃B = [1.06 0.01]T ; c) x̃C = [16.37 0.7]T ; d) x̃B =
[25.71 0.16]T .

Case 3. x̃C = x̂C + ∆x̂C and x̃D = x̂D + ∆x̂D,

x̃C =







ξin1
+ aξin3

+ bξin4

ξin2
− cξin3

+ dξin4

x̂C3
+ ∆x̂C3

x̂C4
+ ∆x̂C4






, x̃D =







ξin1
+ aξin3

+ bξin4

ξin2
− cξin3

+ dξin4

x̂D3
+ ∆x̂D3

x̂D4
+ ∆x̂D4






. (43)

These equilibrium points can be determined in a similar way as x̃A and x̃B. They are
lying in the neighborhood of x̂C and x̂D and therefore they are physical equilibrium
points.

The equilibrium points of the extended model can also be determined using a numerical
search algorithm. Figure 5.1 displays the phase portraits in the x3 − x4 plane of the
extended model for the same combinations of dilution rate and ammonium concentration
in the inflow as considered for the simplified model. For the selected parameter values
and inputs the analytical calculation of the equilibrium points proved to be reasonably
accurate. Similar values for the equilibria were obtained from the simulation of the
phase portraits. While in the cases 1, 3 and 4 the phase portrait of the extended model
is very similar to the phase portrait of the simplified model, this is not true however
in case 2. Here small variations of the component concentration in the inflow and a
more detailed reaction rate function have a great impact on the technological relevance
of the equilibrium point: x̂B changes from a desirable operating point in the case of the
simplified model to a non-desirable equilibrium point in the case of the extended model.
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More specifically, in the first situation (Figure 5.1a), the globally asymptotically stable
wash-out state x̃A moves into the interior of the physical state space, however the change
is not sufficiently significant to make x̃A a desirable operating point. For the second choice
of inputs (Figure 5.1b), x̃A moves out of the physical state space. Only one physical
equilibrium point occurs, namely x̃B, which changes from a desired operating point to
an almost wash-out state, that is undesirable. Apparently, the assumed parameter and
input variations affect the model behavior significantly.

In the third situation (Figure 5.1c) both x̃A and x̃B move out of the physical state
space. Now the extended reactor model possesses only one physical equilibrium point
x̃C , where the rate of conversion to nitrite is smaller than in the case of Figure 3.2. The
last situation presents a particularity of the SHARON reactor: although the calculations
indicate the occurrence of three physical equilibrium points (x̃B , x̃C , x̃D), while x̃A has
moved out of the physical state space, the phase portrait (Figure 5.1d) shows x̃B as a
globally asymptotically stable equilibrium point, while it was expected to be only locally
asymptotically stable. Due to numerical limitations, the equilibrium points x̃C and x̃D

could not be detected. This is due to the fact that for the extended reactor model the
equilibrium points x̃C (locally asymptotically stable) and x̃D (unstable) move so close to
each other that they practically cancel each other and do not noticeable affect the phase
portrait. The remaining equilibrium point x̃D corresponds with good reactor operation,
as only nitrite is formed.

6 Conclusion

In this paper, the dynamic behavior of a SHARON reactor with constant volume, consid-
ering two consecutive nitrification reactions, is assessed. The reactor models that have
been studied, are valid for constant temperature and pH.

First, the behavior of a simplified reactor model is analysed. The only inhibition
effect considered in this model, is nitrite inhibition of nitrite oxidation. It is further
assumed that the reactor influent does not contain biomass. It was shown that multiple
equilibrium points occur, depending on the dilution rate and the influent ammonium
concentration. For the case in which two stable equilibrium points occur at the same
time, the stability boundary has been estimated, to determine the initial states which
will lead the reactor to the most desirable operating point. Four situations are identified,
corresponding to the occurrence of one, two, three or four equilibrium points respectively.
From a technological point of view, the SHARON reactor should be operated in such a
way that only nitrite is produced and nitrate formation is suppressed. Good operation of
the SHARON reactor is ensured in case the dilution rate is sufficiently low to make sure
the ammonium oxidizers can maintain themselves in the reactor, while nitrite oxidizers
are washed out (case 2), but also for lower dilution rates and at the same time sufficiently
high ammonium influent concentrations, provided a rather low concentration of nitrite
oxidizers initially present in the reactor (case 4).

Subsequently, an extended reactor model has been studied to determine the effect
of changing parameter and input values. Small influent biomass concentrations were
considered, as well as additional inhibition effects in in the reaction rate functions. How-
ever, even the slight modifications applied, significantly affect the reactor performance.
The moderate dilution rate and influent ammonium concentration corresponding with
case 2, that allow good performance of the simplified reactor model, now corresponds
with almost wash-out of biomass. On the other hand, the relatively high dilution rate,
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high influent ammonium concentration and low initial concentration of nitrite oxidizers,
corresponding with case 4, still allow good operation of the SHARON reactor.
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