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Abstract: In this work, a new approach is developed for dynamic analysis
of a composite beam with an interply crack, in which a physically impossible
interpenetration of the crack faces is prevented by imposing a special con-
straint, leading to taking account of a force of contact interaction of the crack
faces and to nonlinearity of the formulated boundary value problem. The
shear deformation and rotary inertia terms are included into the formulation,
to achieve better accuracy. The model is based on the first order shear defor-
mation theory, i.e. the longitudinal displacement is assumed to vary linearly
through the beam’s thickness. A variational formulation of the problem, non-
linear partial differential equations of motion with boundary conditions and
the finite element solution of the partial differential equations with the use
of the FEMLAB package are developed. The use of FEMLAB facilitates au-
tomatic mesh generation, which is needed if the problem has to be solved
many times with different crack lengths. An example problem of a clamped-
free beam with a piezoelectric actuator is considered, and its finite element
solution is obtained. A noticeable difference of forced vibrations of the delam-
inated and undelaminated beams due to the contact interaction of the crack
faces is predicted by the developed model.
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1 Introduction

Several types of models of delaminated beams have been proposed in the literature.
In some models, for example [1] and [2], the contact force between the delaminated
parts is not taken into account, and the physically impossible mutual penetration of the
delaminated parts is allowed. In other models, for example [3], the delaminated parts are
constrained to have the same transverse displacement, excluding the possibility of the
delamination crack opening during the vibration. In the Reference [4], the interaction
between the delaminated parts is modeled with the use of a nonlinear (piecewise-linear)
spring between the surfaces of the delaminated parts. Stiffness of the spring depends
on the difference of displacements of the lower and upper delaminated parts. If the
delamination crack is open, the stiffness of the spring is set equal to zero, making the
distributed contact force equal to zero. When the delamination crack is closed, the
stiffness of the spring is set either to infinity, or to some finite constant value. The
authors set the spring stiffness equal to a constant (either zero, or 0.1, or infinity) before
solving the problem, thus assuming that the crack remains either open or closed all the
time during the vibration. So, the possibility for the crack to be open in some time
intervals and closed in other time intervals during the vibration is not foreseen in this
model.

In the paper [5], the contact force between the delaminated sublaminates is introduced
as a function of the relative transverse displacement of the sublaminates, in such a way
that the contact force automatically turns out to be zero, when the delamination crack is
open, and takes on a non-zero value, if the crack is closed. So, this model does not require
to specify in advance if the crack is open or closed, and allows for contact and separation of
the crack faces during the vibration. However, the physically impossible interpenetration
of the crack faces is not always prevented in this model. The interpenetration occurs
because a constraint, preventing this phenomenon, is not introduced.

In the model of the delaminated composite beam, presented by the author in the
Reference [6], the constraint, preventing the mutual penetration (interpenetration, over-
lapping) of the delaminated sublaminates (of the crack’s faces), was introduced with the
use of the Heaviside function and the penalty function method [8], which was the main
novelty in solving dynamic problems for beams with cracks. The longitudinal force resul-
tants in the delaminated sublaminates and rotary inertia terms were taken into account
also. The use of the constraint, which prevented the interpenetration of the crack faces,
and taking account of the longitudinal force resultants led to nonlinear partial differential
equations of motion, in which a force of contact interaction of the crack faces was taken
into account.

But the model, presented in Reference [6], did not take the shear strain energy into
account, and, therefore, produced sufficiently accurate results only for thin beams. To
model thicker beams with delamination, one needs to use a beam theory, based on sim-
plifying assumptions, which do not lead to vanishing of the shear strains. The first order
shear deformation theory [8], based on assumed linear variation of a longitudinal displace-
ment in the thickness direction, is the simplest approach that satisfies the requirement
of a non-zero shear strain. This approach is used in the present paper for modeling a
composite delaminated beam with a piezoelectric actuator. In this model, the interpene-
tration of the crack faces is prevented by a method similar to the one, which was used in
Reference [6]: by imposing a constraint, written with the use of the Heaviside function
in one of its analytical forms, leading to taking account of a force of contact interaction
of the crack faces and to nonlinearity of the formulated boundary value problem.
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Besides, in Reference [6], the solution was obtained by the Ritz method in the form
of a series in terms of eigenfunctions of an eigenvalue problem, associated with the lin-
earized partial differential equations and linearized natural boundary conditions. This
series converged rapidly, providing high accuracy of the solution. But the process of
constructing the system of the eigenfunctions for each particular crack length involved
solving a nonlinear algebraic eigenvalue problem by an iterative method, which required
good initial approximations for each of the frequencies. This caused difficulty in achiev-
ing a complete automatization of the process of constructing the eigenfunctions and,
therefore, required much time, if the problem had to be solved many times with different
crack lengths. This difficulty led to the need of developing a finite element solution of
the formulated problem (in conjunction with the first order shear deformation theory,
as mentioned above) and the computer program with automatic mesh generation, which
became the subject of the present paper. The model is developed to include it, later, into
computational procedures for model-aided detection of cracks, with the use of methods
presented in Reference [7]. These procedures involve giving small increments to crack
lengths at each step of the search algorithm for the crack detection, as a result of which
the crack tip does not coincide with the nodes of the initial finite element mesh after each
increment of the crack length. This leads to the need of fast and automatic construction
of the new finite element mesh after each increment of the crack length, and this task
is achieved with the use of the capabilities of the FEMLAB package. In this paper,
the FEMLAB is used to solve the partial differential equations derived by the author in
Reference [9].

So, the main novelty of the model of the delaminated composite beam, presented
in this paper, as compared to the author’s model in Reference [6], is that the method
of taking account of force of contact interaction of the crack faces, presented in the
Reference [6], is combined here with the first order shear deformation theory and the
finite element method, with automatic re-meshing after each increment of the crack
length. This improvement of the model, as compared to the model in Reference [6], leads
to higher accuracy of solutions and allows for full automatization of the solution process.

2 Partial Differential Equations with Boundary Conditions

The partial differential equations, based on the first-order shear deformation theory [8],
describing vibration of delaminated clamped-free beam with piezoelectric actuator (Fig-
ure 2.1) and with account of contact of the crack faces, are derived by the author in
Reference [9] and have the following form.

Partial differential equations:

for Zone 0 (Part 0):

KG0(w
′′

0 + φ′

0) − B0ẅ0 = 0 in x ∈ [0, a], (1)

A0φ
′′

0 − KG0(w
′

0 + φ0) − C0φ̈0 = IpV
′ in x ∈ [0, a]; (2)

for Zone 1 (Part 1):

KG1(w
′′

1 + φ′

1) − B1ẅ1 = 0 in x ∈ [a, α], (3)

A1φ
′′

1 − KG1(w
′

1 + φ1) − C1φ̈1 = 0 in x ∈ [a, α]; (4)
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Figure 2.1. Cantilever beam with delamination and piezoelectric actuator.

a is length of the actuator; α is x-coordinate of the left crack tip; β is x-coordinate of

the right crack tip; γ is z-coordinate of the crack (distance from x-axis to crack); τ

is thickness of the actuator; w0 is transverse displacement of zone 0; w1 is transverse

displacement of zone 1; w2 is transverse displacement of lower part of zone 2 (under

the crack); w3 is transverse displacement of upper part of zone 2 (above the crack);

w4 is transverse displacement of zone 3.

for Zone 2 (Part 2 and Part 3):

KG2(w
′′

2 + φ′

2) − B2ẅ2 − χ(w3 − w2)

(
1

2
−

1

π
arctan

w3 − w2

ǫ

)
= 0 in x ∈ [α, β],

(5)

A2φ
′′

2 − KG2(w
′

2 + φ2) − C2φ̈2 = 0 in x ∈ [α, β];
(6)

KG3(w
′′

3 + φ′

3) − B3ẅ3 + χ(w3 − w2)

(
1

2
−

1

π
arctan

w3 − w2

ǫ

)
= 0 in x ∈ [α, β],

(7)

A3φ
′′

3 − KG3(w
′

3 + φ3) − C3φ̈3 = 0 in x ∈ [α, β];
(8)

for Zone 3 (Part 4):

KG4(w
′′

4 + φ′

4) − B4ẅ4 = 0 in x ∈ [β, L], (9)

A4φ
′′

4 − KG4(w
′

4 + φ4) − C4φ̈4 = 0 in x ∈ [β, L]. (10)
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Essential boundary conditions:

Ri(t) = 0, i = 1, 2, . . . , 12, (11a)

where

R1 ≡ w0(0, t), R2 ≡ φ0(0, t),

R3 ≡ w0(a, t) − w1(a, t), R4 ≡ φ0(a, t) − φ1(a, t),

R5 ≡ w1(α, t) − w2(α, t), R6 ≡ φ1(α, t) − φ2(α, t),
(11b)

R7 ≡ w1(α, t) − w3(α, t), R8 ≡ φ1(α, t) − φ3(α, t),

R9 ≡ w2(β, t) − w4(β, t), R10 ≡ φ2(β, t) − φ4(β, t),

R11 ≡ w3(β, t) − w4(β, t), R12 ≡ φ3(β, t) − φ4(β, t).

Natural boundary conditions:

KG0(φ0 + w′

0) + λ3 = 0 at x = a, (12)

A0φ
′

0 − IpV (t) + λ4 = 0 at x = a, (13)

KG1(φ1 + w′

1) + λ3 = 0 at x = a, (14)

A1φ
′

1 + λ4 = 0 at x = a, (15)

KG1(φ1 + w′

1) + λ5 + λ7 = 0 at x = α, (16)

A1φ
′

1 + λ6 + λ8 = 0 at x = α, (17)

KG2(φ2 + w′

2) + λ5 = 0 at x = α, (18)

A2φ
′

2 + λ6 = 0 at x = α, (19)

KG3(φ3 + w′

3) + λ7 = 0 at x = α, (20)

A3φ
′

3 + λ8 = 0 at x = α, (21)

KG2(φ2 + w′

2) + λ9 = 0 at x = β, (22)

A2φ
′

2 + λ10 = 0 at x = β, (23)

KG3(φ3 + w′

3) + λ11 = 0 at x = β, (24)

A3φ
′

3 + λ12 = 0 at x = β, (25)

KG4(φ4 + w′

4) + λ9 + λ11 = 0 at x = β, (26)

A4φ
′

4 + λ10 + λ12 = 0 at x = β, (27)

KG4(φ4 + w′

4) = 0 at x = L, (28)

A4φ
′

4 = 0 at x = L. (29)

In the following text it will be assumed that the voltage V (x, t), applied to the
piezoelectric actuator, is distributed uniformly over the length of the actuator (over the
interval x ∈ [0, a]) and depends on time as V (x, t) = V (t) = V0 sin(Ωt). Therefore, the

spatial derivative V ′ ≡
∂V (x, t)

∂x
, in the right-hand side of the differential equation (2)

will be considered equal to zero in the subsequent text, and the boundary condition (13)
will be written as

A0φ
′

0 − IpV0 sin(Ωt) + λ4 = 0 at x = a. (30)
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3 Formulation in a Form Convenient for FEMLAB Implementation

Unknown functions w0, w1, w2, w3, w4, φ0, φ1, φ2, φ3 and φ4 are defined only in
the beam’s parts, which are indicated by the function’s subscripts (Figure 2.1). So,
the functions with subscript 0 are defined only in Part 0 (Zone 0); the functions with
subscript 1 are defined only in Part 1 (Zone 1); the functions with subscripts 2 and 3 are
defined in Part 2 (Zone 2) and Part 3 (Zone 2) respectively; the functions with subscript
4 are defined in Part 4 (Zone 3). But for convenience of using the FEMLAB package,
one needs to give some definitions to functions w1, w2, w3, w4, φ1, φ2, φ3 and φ4 in Zone
0; to functions w0, w2, w3, w4, φ0, φ2, φ3 and φ4 in Zone 1; to functions w0, w1, w4,
φ0, φ1 and φ4 in Zone 2; and to functions w0, w1, w2, w3, φ0, φ1, φ2 and φ3 in Zone 3.
These definitions must not contradict the essential boundary conditions (30). Therefore,
the following definitions are introduced:

For Zone 0 (Part 0), i.e. 0 ≤ x ≤ a:

w1 ≡ w0, w2 ≡ w0, w3 ≡ w0, w4 ≡ w0,
(31)

φ1 ≡ φ0, φ2 ≡ φ0, φ3 ≡ φ0, φ4 ≡ φ0.

For Zone 1 (Part 1), i.e. in a ≤ x ≤ α:

w0 ≡ w1, w2 ≡ w1, w3 ≡ w1, w4 ≡ w1,
(32)

φ0 ≡ φ1, φ2 ≡ φ1, φ3 ≡ φ1, φ4 ≡ φ1.

For Zone 2 (Part 2 and Part 3), i.e. in α ≤ x ≤ β:

w0 ≡ w2, w1 ≡ w2, w4 ≡ w2,
(33)

φ0 ≡ φ2, φ1 ≡ φ2, φ4 ≡ φ2.

For Zone 3 (Part 4), i.e. in β ≤ x ≤ L:

w0 ≡ w4, w1 ≡ w4, w2 ≡ w4, w3 ≡ w4,
(32)

φ0 ≡ φ4, φ1 ≡ φ4, φ2 ≡ φ4, φ3 ≡ φ4.

In the further presentation, to create a formulation that complies the format, required
by the FEMLAB package, the following notations will be introduced for the Lagrange
multipliers:

λ̂1 ≡ λ3, λ̂2 ≡ λ4,

λ̃1 ≡ λ5, λ̃2 ≡ λ7, λ̃3 ≡ λ6, λ̃4 ≡ λ8,

λ1 ≡ λ9, λ2 ≡ λ11, λ3 ≡ λ10, λ4 ≡ λ12.

(35)

In view of definitions (31)–(34), and in view of the notations (35), the partial differen-
tial equations and boundary conditions take the form presented below. To comply with
the terminology of FEMLAB, the zones will be called subdomains. The Zone 0 will be
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called Subdomain 1, the Zone 1 will be called Subdomain 2, the Zone 2 will be called
Subdomain 3, the Zone 3 will be called Subdomain 4.

Partial differential equations:
For Zone 0 (Subdomain 1), i.e. in the interval x ∈ [0, a]:

−B0ẅ0 + KG0(w
′′

0 + φ′

0) = 0 in x ∈ [0, a], (36)

−C0φ̈0 + (A0φ
′′

0 − KG0w
′

0) = KG0φ0 in x ∈ [0, a], (37)

0 = w0 − w1 in x ∈ [0, a], (38)

0 = w0 − w2 in x ∈ [0, a], (39)

0 = w0 − w3 in x ∈ [0, a], (40)

0 = w0 − w4 in x ∈ [0, a], (41)

0 = φ0 − φ1 in x ∈ [0, a], (42)

0 = φ0 − φ2 in x ∈ [0, a], (43)

0 = φ0 − φ3 in x ∈ [0, a], (44)

0 = φ0 − φ4 in x ∈ [0, a]. (45)

For Zone 1 (Subdomain 2), i.e. in the interval x ∈ [a, α]:

−B1ẅ1 + KG1(w
′′

1 + φ′

1) = 0 in x ∈ [a, α], (46)

−C1φ̈1 + (A1φ
′′

1 − KG1w
′

1) = KG1φ1 in x ∈ [a, α], (47)

0 = w1 − w0 in x ∈ [a, α], (48)

0 = w1 − w2 in x ∈ [a, α], (49)

0 = w1 − w3 in x ∈ [a, α], (50)

0 = w1 − w4 in x ∈ [a, α], (51)

0 = φ1 − φ0 in x ∈ [a, α], (52)

0 = φ1 − φ2 in x ∈ [a, α], (53)

0 = φ1 − φ3 in x ∈ [a, α], (54)

0 = φ1 − φ4 in x ∈ [a, α]. (55)

For Zone 2 (Subdomain 3), i.e. in the interval x ∈ [α, β]:

−B2ẅ2 + KG2(w
′′

2 + φ′

2) = χ(w3 − w2)

(
1

2
−

1

π
arctan

w3 − w2

ǫ

)
in x ∈ [α, β],

(56)

−C2φ̈2 + (A2φ
′′

2 − KG2w
′

2) = KG2φ2 in x ∈ [α, β], (57)

−B3ẅ3 + KG3(w
′′

3 + φ′

3) = −χ(w3 − w2)

(
1

2
−

1

π
arctan

w3 − w2

ǫ

)
in x ∈ [α, β],

(58)

−C3φ̈3 + (A3φ
′′

3 − KG3w3%
′) = KG3φ3 in x ∈ [α, β], (59)

0 = w2 − w0 in x ∈ [α, β], (60)
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0 = w2 − w1 in x ∈ [α, β], (61)

0 = w2 − w4 in x ∈ [α, β], (62)

0 = φ2 − φ0 in x ∈ [α, β], (63)

0 = φ2 − φ1 in x ∈ [α, β], (64)

0 = φ2 − φ4 in x ∈ [α, β]. (65)

For Zone 3 (Subdomain 4) i.e. in the interval x ∈ [β, L]:

−B4ẅ4 + KG4(w
′′

4 + φ′

4) = 0 in x ∈ [β, L], (66)

−C4φ̈4 + (A4φ
′′

4 − KG4w
′

4) = KG4φ4 in x ∈ [β, L], (67)

0 = w4 − w0 in x ∈ [β, L], (68)

0 = w4 − w1 in x ∈ [β, L], (69)

0 = w4 − w2 in x ∈ [β, L], (70)

0 = w4 − w3 in x ∈ [β, L], (71)

0 = φ4 − φ0 in x ∈ [β, L], (72)

0 = φ4 − φ1 in x ∈ [β, L], (73)

0 = φ4 − φ2 in x ∈ [β, L], (74)

0 = φ4 − φ3 in x ∈ [β, L]. (75)

Boundary conditions:
Boundary 1, i.e. x = 0:

w0 = 0 at x = 0 (essential BC), (76)

φ0 = 0 at x = 0 (essential BC), (77)

Boundary 2, i.e. x = a:

w0 − w1 = 0 at x = a (essential BC), (78)

φ0 − φ1 = 0 at x = a (essential BC), (79)

KG0(w
′

0 + φ0) = −λ̂1 at x = a (natural BC), (80)

KG1(w
′

1 + φ1) = −λ̂1 at x = a (natural BC), (81)

A0φ
′

0 − IpV0 sin(Ωt) = −λ̂2 at x = a (natural BC), (82)

A1φ
′

1 = −λ̂2 at x = a (natural BC), (83)

Boundary 3, i.e. x = α:

w1 − w2 = 0 at x = α (essential BC), (84)

w1 − w3 = 0 at x = α (essential BC), (85)

φ1 − φ2 = 0 at x = α (essential BC), (86)

φ1 − φ3 = 0 at x = α (essential BC), (87)
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KG1(φ1 + w′

1) = −λ̃1 − λ̃2 at x = α (natural BC), (88)

KG2(φ2 + w′

2) = −λ̃1 at x = α (natural BC), (89)

KG3(φ3 + w′

3) = −λ̃2 at x = α (natural BC), (90)

A1φ
′

1 = −λ̃3 − λ̃4 at x = α (natural BC), (91)

A2φ
′

2 = −λ̃3 at x = α (natural BC), (92)

A3φ
′

3 = −λ̃4 at x = α (natural BC), (93)

Boundary 4, i.e. x = β:

w2 − w4 = 0 at x = β (essential BC), (94)

w3 − w4 = 0 at x = β (essential BC), (95)

φ2 − φ4 = 0 at x = β (essential BC), (96)

φ3 − φ4 = 0 at x = β (essential BC), (97)

KG4(φ4 + w′

4) = −λ1 − λ2 at x = β (natural BC), (98)

KG2(φ2 + w′

2) = −λ1 at x = β (natural BC), (99)

KG3(φ3 + w′

3) = −λ2 at x = β (natural BC), (100)

A4φ
′

4 = −λ3 − λ4 at x = β (natural BC), (101)

A2φ
′

2 = −λ3 at x = β (natural BC), (102)

A3φ
′

3 = −λ4 at x = β (natural BC), (103)

Boundary 5, i.e. x = L:

KG4(φ4 + w′

4) = 0 at x = L (natural BC), (104)

A4φ
′

4 = 0 at x = L (natural BC). (105)

In the FEMLAB terminology, natural boundary conditions are called the Neumann
boundary conditions, essential boundary conditions are called the Dirichlet boundary
conditions, and the mixed boundary conditions (both essential and natural conditions
at the same boundary) are called the Dirichlet boundary conditions also. With the use
of this terminology, the boundary conditions (76)–(103) at boundaries x = 0, x = a,
x = α and x = β are the Dirichlet boundary conditions, and the boundary conditions
(104) and (105) at the boundary x = L are the Neumann boundary conditions.

3.1 Standard form of representation of equations in FEMLAB

for one-dimensional problems

In FEMLAB, in case of N unknown functions uk(x, t) (k = 1, 2, . . . , N) of one special
coordinate x and time t, the partial differential equations of the second order and the
boundary conditions are written in the following form (summation over repeated indices
is implied).

Partial differential equations:

Mmkük + Γ′

m = Fm (k, m = 1, . . . , N) in subdomains of x, (106)
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Neumann boundary conditions at external boundaries:

nxΓm = −Gm (natural BC), (107)

Dirichlet boundary conditions at external boundaries:

Rm = 0 (essential BC) , (108a)

and

nxΓm + λn

∂Rn

∂um

= −Gm (natural BC), (108b)

where
Γm ≡ −cmku′

k − αmkuk + γm,

Fm ≡ fm − amkuk,

Gm ≡ gm − qmkuk,

Rm ≡ hmkuk − rm,

(109)

and coefficients cmk, αmk, γm, fm, amk, gm, qmk, hmk, rm are, generally, some known
functions of the coordinate x and time t. Of course, these coefficients can be functions
of coordinates only, time only, or constants. The quantity nx is an x-component of
the subdomain’s boundary’s outward unit normal vector. In case of one-dimensional
problems, as the one considered here, nx = 1 at right edges of subdomains, and nx = −1
at left edges of subdomains, if the x-axis is directed from left to right, as in Figure 2.1.

If boundary conditions are specified at internal boundaries, i.e. at the boundaries
between two adjacent subdomains (e.g. Subdomain 1 and Subdomain 2), then the Neu-
mann boundary conditions take the form

n(1)
x︸︷︷︸
1

Γ(1)
m + n(2)

x︸︷︷︸
−1

Γ(2)
m = −Gm (natural BC), (110)

and the Dirichlet boundary conditions take the form

Rm = 0 (essential BC)

and

n(1)
x︸︷︷︸
1

Γ(1)
m + n(2)

x︸︷︷︸
−1

Γ(2)
m +

∂Rk

∂um

λk = −Gm (natural BC). (111)

Either the Neumann or Dirichlet boundary conditions must be chosen at each bound-
ary. If only natural boundary conditions are specified on a boundary of a subdomain,
then such boundary conditions have the form of Neumann boundary conditions. If both
essential and natural boundary conditions are specified at a boundary, then such bound-
ary conditions have the form of Dirichlet boundary conditions.

Equations (106) – (108) can be written in matrix form as follows.
Partial differential equations:

[M ]
(N×N)

∂2

∂t2
{u}

(N×1)

+
∂

∂x
{Γ}

(N×1)

= {F}
(N×1)

, (112)
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Neumann boundary conditions:

nx {Γ}
(N×1)

= − {G}
(N×1)

, (113)

Dirichlet boundary conditions:
{R}

(N×1)

= {0}
(N×1)

(114a)

and

nx





Γ1

Γ2

...

ΓN





+




∂R1

∂u1

∂R2

∂u1
. . .

∂RN

∂u1

∂R1

∂u2

∂R2

∂u2
. . .

∂RN

∂u2
. . . . . . . . . . . . . . . . . . . . . . . .
∂R1

∂u
N

∂R2

∂u
N

. . .
∂RN

∂u
N








λ1

λ2

...

λN





= −





G1

G2

...

GN





. (114b)

Similarly, the boundary conditions (110) and (111) at an internal boundary, being written
in the matrix form, are
Neumann boundary conditions:

{Γ}
(1)

(N×1)

− {Γ}
(N×1)

(2) = − {G}
(N×1)

, (115)

Dirichlet boundary conditions:
{R}

(N×1)

= {0}
(N×1)

, (116a)

and

{Γ}
(N×1)

(1) − {Γ}
(N×1)

(2) +

[
∂Rm

∂uk

]T

{λ}
(N×1)

= − {G}
(N×1)

. (116b)

3.2 Subdomain and boundary settings of the problem

To comply with the FEMLAB’s requirements for notations, the following alternative
notations are introduced for the unknown functions of the present problem:

{u}
(10×1)

≡





u1

u2

u3

u4

u5

u6

u7

u8

u9

u10





≡





w0
p0
w1
p1
w2
p2
w3
p3
w4
p4





≡





w0

φ0

w1

φ1

w2

φ2

w3

φ3

w4

φ4





, (117)

for the spatial derivatives of the unknown functions:

w0x ≡ w′

0, p0x ≡ φ′

0, . . . (118)
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for the constants and for matrix [M ] in equation (112):

A0 ≡ A0, B0 ≡ B0, . . . , Omega ≡ Ω, [da] ≡ [M ], (119)

and all kinds of notations will be used interchangeably in the subsequent text.

Partial differential equations (36)–(45) for Zone 0 (Subdomain 1), i.e. for x ∈ [0, a]
can be written in matrix form as

[M ]
(10×10)

(1) ∂2

∂t2
{u}

(10×1)

+
∂

∂x
{Γ}

(10×1)

(1) = {F}
(10×1)

(1), (120a)

where

[M ](1) =




−B0 0 0 0 0 0 0 0 0 0
0 −C0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0




, (120b)

{Γ}
(1)

=





K ∗ G0 ∗ (w0x + p0)
A0 ∗ p0x − K ∗ G0 ∗ w0

0
0
0
0
0
0
0
0





, {F}
(1)

=





0
K ∗ G0 ∗ p0

w0 − w1
w0 − w2
w0 − w3
w0 − w4
p0 − p1
p0 − p2
p0 − p3
p0 − p4





. (120c)

Similarly, one can write partial differential equations for other zones in the FEMLAB
standard form:
Partial differential equations (46) – (55) for Zone 1 (Subdomain 2), i.e. for x ∈ [a, α]:

[M ]
(10×10)

(2) ∂2

∂t2
{u}

(10×1)

+
∂

∂x
{Γ}

(10×1)

(2) = {F}
(10×1)

(2). (121)

Partial differential equations (56) – (65) for Zone 2 (Subdomain 3), i.e. for x ∈ [α, β]:

[M ]
(10×10)

(3) ∂2

∂t2
{u}

(10×1)

+
∂

∂x
{Γ}

(10×1)

(3) = {F}
(10×1)

(3). (122)

Partial differential equations (66) – (75) for Zone 3 (Subdomain 4), i.e. for x ∈ [β, L]:

[M ]
(10×10)

(4) ∂2

∂t2
{u}

(10×1)

+
∂

∂x
{Γ}

(10×1)

(4) = {F}
(10×1)

(4). (123)
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Matrices, which enter into equations (121) – (123) are not written here explicitly for
brevity.

The Dirichlet boundary conditions (76) – (77) at Boundary 1, i.e. at x = 0, written
in FEMLAB standard form, are:

{R}
(10×1)

(1) = {0}
(10×1)

and − {Γ}
(10×1)

(1) +

[
∂R

(1)
m

∂uk

]

(10×10)

T

{λ}
(10×1)

= − {G}
(10×1)

(1), (124a)

where the column-matrix {Γ}(1) is defined by formula (120c),

{R}
(10×1)

(1) ≡ ⌊w0 p0 0 0 0 0 0 0 0 0 ⌋
T

, (124b)

{G}
(10×1)

(1) = {0}
(10×1)

(124c)

and

[
∂R

(1)
m

∂uk

]

(10×10)

T

=




1 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0




, (124d)

but the matrix

[
∂R

(1)
m

∂uk

]T

need not be defined by a user of FEMLAB.

Similarly, one can write boundary conditions for all other external and internal bound-
aries in the FEMLAB standard form.

The Dirichlet boundary conditions (78) – (83) at an internal Boundary 2, i.e. at x = a:

{R}
(10×1)

(2) = {0}
(10×1)

and {Γ}
(10×1)

(1) − {Γ}
(10×1)

(2) +

[
∂R

(2)
m

∂uk

]

(10×10)

T {
λ̂
}

(10×1)

= − {G}
(10×1)

(2). (125)

The Dirichlet boundary conditions (84) – (93) at an internal Boundary 3, i.e. at x = α:

{R}
(10×1)

(3) = {0}
(10×1)

and {Γ}
(10×1)

(2) − {Γ}
(10×1)

(3) +

[
∂R

(3)
m

∂uk

]

(10×10)

T {
λ̂
}

(10×1)

= − {G}
(10×1)

(3). (126)

The Dirichlet boundary conditions (94) – (103) at an internal Boundary 4, i.e. at x = β:

{R}
(10×1)

(4) = {0}
(10×1)

and {Γ}
(10×1)

(3) − {Γ}
(10×1)

(4) +

[
∂R

(4)
m

∂uk

]

(10×10)

T {
λ
}

(10×1)

= − {G}
(10×1)

(4). (127)
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The Neumann boundary conditions (104) and (105) at an external Boundary 5, i.e. at
x = L, written in FEMLAB standard form, are

{Γ}
(N×1)

(4) = − {G}
(N×1)

(5), (128)

Matrices, which enter into equations (125) – (128), are not written here explicitly for
brevity.

4 Solution of Example Problems

As an example problem, a clamped-free wooden beam with the following characteristics
(Figure 2.1) is considered: length L = 20 × 10−2m, width b = 2.76 × 10−2m, thickness

h = 0.99 × 10−2m, wood density ρ(0) = 418.02 kg

m3 , Young’s modulus of the wood in

the direction of fibbers E
(0)
1 = 1.0897 × 1010 N

m2 . The piezoelectric actuator is QP10W

(Active Control Experts). Thickness of the actuator is τ = 3.81 × 10−4m, its length
is a = 5.08 × 10−2m, the piezoelectric constant in the range of applied voltage (from

0 to 200V ) is d31 ≈ −1.05 × 10−9 m
V

, the Young’s modulus of the actuator with its

packaging is E
(p)
1 = 2.57 × 1010 N

m2 , mass density of the actuator with its packaging is

ρ(p) = 6151.1 kg
m3 . The voltage V (t), applied to the piezoelectric actuator, is distributed

uniformly along the length of the actuator and varies with time as

V (t) = Va sin(Ωt),

where Va = 200 V , Ω = 600 1
s
. The wooden beam is cut along its fibbers, so that the

angle θ in the formula (6) is equal to zero, and, therefore, the elastic compliance coefficient

S11 for the wood is equal to S
(0)

11 = 1

E
(0)
1

= 9.1768 × 10−11 m2

N
. For the piezoelectric

actuator, the material coordinate system coincides with the problem coordinate system,
so that the elastic compliance coefficient S11 for the material of the piezo-actuator is

S
(p)

11 = 1

E
(p)
1

= 3.8911 × 10−11 m2

N
. Coordinates of the crack tips are: α = 10 × 10−2m,

β = 15 × 10−2m, γ = 0.66 × 10−2 − h
2 = 1.65 × 10−3m. Then the constants, entering

into the variational formulation and the differential equations of the problem, have the
following values in SI units [9]: A0 = 31.463, B0 = 0.178 9, C0 = 2.642 9 × 10−6, G0 =
1.299 10× 106, A1 = 24.319, B1 = 0.114 22, C1 = 9.328 9× 10−7, G1 = 1.190999× 106,
A2 = 12.61, B2 = 7.614 7×10−2, C2 = 4.837 2×10−7, G2 = 7.93999×105 , A3 = 11.709,
B3 = 3.807 3 × 10−2, C3 = 4.491 7 × 10−7, G3 = 3.969995 × 105 , A4 = 24.319,
B4 = 0.114 22, C4 = 9.328 9 × 10−7, G4 = 1.190999 × 106, Ip = −3.828 5 × 10−3,
a = 5.08 × 10−2, Va = 200, Ω = 600, α = 10 × 10−2, β = 15 × 10−2, γ = 1.65 × 10−3,
b = 2.76 × 10−2, h = 0.99 × 10−2. The small constant ǫ and the large constant χ in
equations (5) and (6) are chosen to be ǫ = 1 × 10−3 and χ = 1 × 106. The shear
correction factor K in expressions for strain energy is set to K = 5

6 .

4.1 Time-domain response to dynamic excitation

A system of ordinary differential equations of a global (assembled) semi-discrete finite
element model has the form

[M ]{Θ̈} + [K] {Θ} + {R}nonlin = {F} . (129)
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Figure 4.1. Transverse displacement of free end of delaminated beam (solid line)

and undelaminated beam (dashed line). Coordinates of the crack tips of the delam-

inated beam are α = 0, 1m, β = 0, 15m, γ = 1, 65× 10−3m.

In the last equation, {R}nonlin is a column-matrix, which contains components that
depend nonlinearly on the unknown nodal parameters Θi. Transverse displacements as
functions of time at free ends of delaminated and undelaminated beams, obtained by
solving equations (129), are shown in graphs of Figure 4.1 These graphs are noticeably
different. Numerical experiments show that this difference is mainly due to the mutual
impact of the crack faces during the vibration.

So, taking account of nonlinearity of the forced response of the delaminated beam due
to the contact interaction of the crack faces can be important for model-aided detection
of cracks in composite beams.
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