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1 Introduction

Two modifications are typically used when differential delay systems are studied by using
the second Liapunov method [9 – 11]. The first one is the Liapunov–Krasovsky method.
In this case, a segment of the trajectory is identified with a point in Banach space. Also,
the main ideas of the Liapunov functions method are carried over to this case of func-
tionals, and the stability theorems usually contain the necessary and sufficient conditions
[9, 11]. The second modification uses the finite-dimensional Liapunov functions. In this
case the derivative of the solution is estimated under the assumption that the solution
remains inside the level surface of the Liapunov function. This assumption is called the
Razumikhin condition [10].
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2 Preliminaries

In this paper we consider differential delay systems with a quadratic nonlinearity of the
following form

ẋ(t) = Ax(t − τ) + XT(t)Bx(t − τ), (1)

where t ≥ 0, τ is a positive constant, x(t) ∈ Rn, A is a constant square matrix.
The matrices XT(t) and B are rectangular ones of the size n × n2 and n2 × n, re-

spectively; XT(t) =
{

XT
1 (t), XT

2 (t), . . . , XT
n (t)

}

, BT = {B1, B2, . . . , Bn}. We suppose

that square matrices Bi, i = 1, n, are constant and symmetric, and all elements of
the square matrices XT

i (t), i = 1, n, are zero except the i-th row, which equals to
x(t) = (x1(t), x2(t), . . . , xn(t)) [2, 7].

Since the right hand side of system (1) does not contain the phase coordinate x at
present time t the approach with the use of quadratic functionals encounters certain
difficulties (see [10] for more details). Therefore, we shall study the stability of the zero
solution x(t) = 0 and derive estimates on the stability region by using finite-dimensional
Liapunov functions subject to the Razumikhin condition. For the Liapunov function we
shall choose the following quadratic form

V (x, t) = eγtxTHx

with the positive definite matrixH solving the Liapunov matrix equation [1, 10]

ATH + HA = −C. (2)

The exponential factor eγt, γ > 0, does not guarantee the existence of an infinitesimal
limit of higher order for the function V (x, t) [8, 10, 12]. It allows us however to obtain an
estimate on the upper bound of decrease rate of solutions starting in the stability domain
of zero solution.

In the case when matrix A is asymptotically stable the matrix equation (2) has a
unique solution, positive definite matrix H , for every positive definite matrix C. We
shall use the standard vector and matrix norms [6] as follows

|A| = {λmax(A
TA)}1/2, |x(t)| =

{

n
∑

i=1

x2
i (t)

}1/2

, ‖x(t)‖τ = max
−τ≤s≤0

{|x(t + s)|}.

Here and in the sequel λmin(·) and λmax(·) stand for the smallest and the largest eigen-
values respectively for the symmetric positive definite matrices.

Let ∂V γ
α be a level surface of the Liapunov function V and V γ

α be the corresponding
domain in the space Rn × R, that is

∂V γ
α = {(x, t) : V (x, t) = α}, V γ

α = {(x, t) : V (x, t) < α}.
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3 Main Results

3.1 Linear case

Consider the following linear system with delay

ẋ(t) = Ax(t − τ). (3)

Lemma 1 Suppose solution x(t) of system (3) satisfies (x(t), t) ∈ V γ
α , for t > −τ .

Then
|x(t)| <

√

α/λmin(H)e−
1

2
γt, t ≥ τ. (4)

Proof The Liapunov functions of quadratic type X(x, T ) = eγtxTHx are known to
satisfy the following two-sided inequality [3]

eγtλmin(H)|x(t)|2 ≤ V (x(t), t) ≤ eγtλmax(H)|x(t)|2. (5)

Therefore, the assumptions of Lemma imply

λmin(H)|x(t)|2 < α.

From the latter inequality the estimate (4) follows.

Lemma 2 Suppose there exist constants α > 0, γ > 0 such that the solution x(t)
of system (3) satisfies (x(t), t) ∈ V γ

α , for all T − 2τ ≤ t < T and (x(T ), T ) ∈ ∂V γ
α .

Then

|x(T ) − x(T − τ)| < 2
|A|

γ
e

1

2
γτ

√

ϕ(H)
(

e
1

2
γτ − 1

)

|x(T )|,

ϕ(H) = λmax(H)/λmin(H)λmin(H).

(6)

Proof Solutions of system (3) can be represented in the following integral form

x(t) = x(t − τ) +

t
∫

t−τ

Ax(s − τ) ds.

When t = T the latter implies

|x(T ) − x(T − τ)| ≤

T
∫

T−τ

|A||x(s − τ)| ds.

From the assumptions of Lemma 2 and inequality (5) the following holds

eγ(s−τ)λmin(H)|x(s − τ)|2 ≤ V (x(s − τ), s − τ) ≤ V (x(T ), T )

< eγT λmax(H)|x(T )|2 for all T − τ ≤ s ≤ T.

Therefore

|x(s − τ)| < e
1

2
γ(T−s+τ)

√

ϕ(H) |x(T )|, ϕ(H) = λmax(H)/λmin(H). (7)

By using the last inequality in the integral representation we derive the required estimate

|x(T ) − x(T − τ)| <

T
∫

T−τ

|A|e
1

2
γ(T−s+τ)

√

ϕ(H)|x(T )|ds

= 2
|A|

γ
e

1

2
γτ

√

ϕ(H)
[

e
1

2
γτ − 1]

∣

∣x(T )|.
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Lemma 3 Every solution x(t) of system (3) satisfies the inequality

|x(t)| ≤ (1 + |A|τ)‖x(0)‖τ (8)

on the time interval 0 ≤ t ≤ τ .

Proof Write system (3) in the integral form

x(t) = x(0) +

t
∫

0

Ax(s − τ) ds.

Then

|x(t)| ≤ |x(0)| +

t
∫

0

|A||x(s − τ)| ds ≤ |x(0)| + |A|‖x(0)‖τ τ ≤ (1 + |A|τ)‖x(0)‖τ .

By using the above Lemmas the following Theorem on asymptotic stability of the
system with pure delay (3) is derived.

Theorem 1 Assume that matrix A is asymptotically stable. Then the system with
pure delay (3) is also asymptotically stable for all τ < τ0, where

τ0 =
λmin(C)

2|A||HA|
√

ϕ(H)
. (9)

Moreover, the solutions of the system satisfy the following exponential estimate on their
rate of decrease

|x(t)| < (1 + |A|τ)‖x(0)‖τ

√

ϕ(H) exp

{

1

2
γt

}

, t ≥ τ, (10)

where 0 < γ < γ∗, γ∗ is the positive solution of the equation

γ∗(λmin(C) − γ∗λmax(H)) = 4
√

ϕ(H) |HA||A|e
1

2
γ∗τ

(

e
1

2
γ∗τ − 1

)

. (11)

Proof Let x(t) be any solution of system (3). Then, as it follows from Lemma 3, it
satisfies the following inequality

|x(t)| ≤ (1 + |A|τ)‖x(0)‖τ ,

for all 0 ≤ t ≤ τ . Also on the same time interval x(t) satisfies (x(t), t) ∈ V γ
α , where

γ > 0 is a constant to be determined later, and α > λmax(H)(1 + |A|τ)2‖x(0)‖2
τ .

We claim that also (x(t), t) ∈ V γ
α for all t > τ . Suppose not. Then there exists a

time moment T > τ, such that (x(T ), T ) ∈ ∂V γ
α . Evaluate now the total derivative of

the Liapunov function V along the solutions of system (3):

d

dt
V (x(t)) = eγtγxT(t)Hx(t)+ eγt{xT(t)(ATH +HA)x(t)+2xT(t)HA[x(t− τ)−x(t)]}.
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If matrix A is asymptotically stable then, as it follows from the matrix Liapunov equa-
tion (2), for any positive define matrix C and matrix H solving the equation the total
derivative of V satisfies

d

dt
V (x(t)) ≤ eγt{γλmax(H) − λmin(C)}|x(t)|2 + 2eγt|HA||x(t)||x(t) − x(t − τ)|.

As it follows from the assumptions of Theorem 1 and inequality (7) the last inequality
at time t = T reads

d

dt
V (x(t)) ≤ −eγT

{

λmin(C) − γλmax(H) − 4|HA||A|
√

ϕ(H) e
1

2
γτ e

1

2
γτ − 1

γ

}

|x(t)|2.

If in addition the inequality

λmin(C) − γλmax(H) − 4|HA||A|
√

ϕ(H) e
1

2
γτ e

1

2
γτ − 1

γ
> 0 (12)

holds, then the total derivative of the Liapunov function will be negative. This means
that the velocity vector of the motion x(t) is directed inside the domain at the moment
t = T, and (x(t), t) ∈ V γ

α for all t > 0. It follows from inequalities (4) and (8) that the
following holds

|x(t)| < (1 + |A|τ)‖x(0)‖τ

√

ϕ(H) exp

{

1

2
γt

}

, t ≥ τ,

that is, inequality (10) is true. Let us find the conditions for inequality (12) to be true.
If γ → +0 then inequality (11) has the form

λmin(C) − 2|HA||H |
√

ϕ(H) τ > 0,

and if τ < τ0, then

τ0 =
λmin(C)

2|HA||A|
√

ϕ(H)
.

That is, the maximum allowed delay τ0 has the form given by (9). Let τ < τ0. Then
there is a threshold for the rate of exponential decrease of the solutions, which value is
determined by the solution of equation (11).

Remark 1 In general it is not possible to represent the solution of equation (11) in an
explicit analytic form. The value γ∗ can be replaced by a smaller value γ̃∗, where

0 < γ̃∗ = γ0 −
h(γ0)

λmin(C)
, γ0 =

λmin(C)

λmax(H)
,

h(γ0) = 4|HA||A|
√

ϕ(H) e
1

2
γ0τ

(

e
1

2
γ0τ − 1

)

.

Proof The left-hand side of system (11) is the parabola

g(γ) = γ[λmin(C) − γλmax(H)]
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opening downward and having the following two zeros γ0 = λmin(C)/λmax(H), γ1 = 0.

The right-hand side of equality (11) is a parabola in the variable e
1

2
γτ , where γ ≥ 0

h(γ) = 4|HA||A|e
1

2
γτ

(

e
1

2
γτ − 1

)

,

also opening downward. Since g(0) = h(0) = 0 and

g′(0) = λmin(C) > 2|HA||A|
√

ϕ(H) τ = h′(0),

then a γ∗ exists (0 < γ∗ < γ0 = λmin(C)/λmax(H)), such that g(γ∗) = h(γ∗). The

“parabola” h(γ) is replaced by the line segment h(γ) passing through the origin and

the point (γ0, h(γ0)) and having the form h(γ) = h(γ0)
γ
γ0

. Point γ̃∗ is defined as the

intersection of the parabola g(γ) and the line h(γ). That is, as the positive solution of
the equation

γ[λmin(C) − γλmax(H)] = h(γ0)
γ

γ0
.

The latter gives the required value of γ̃∗.

Remark 2 Condition (9) is rather approximate but readily calculated one. For exam-
ple, for the scalar equation

ẋ(t) = −ax(t − τ), a > 0

the stability condition is τ < π/2a (see [12]). By using the Liapunov function V (x, t) =
eγtx2 from inequality (9) we obtain the following stability condition τ < 1/a.

3.2 Nonlinear case

Consider next systems of the form (1) with pure delay in the linear part.

Lemma 4 Assume there exist constants α > 0 and γ > 0 such that the solution
x(t) of system (1) satisfies (x(T ), T ) ∈ ∂V γ

α for t = T, and (x(t), t) ∈ V γ
α for T −2τ ≤

t < T . Then the following inequality holds

|x(T ) − x(T − τ)| <
2

γ
e

1

2
γτ

√

ϕ(H) |A|
(

e
1

2
γτ − 1

)

|x(T )|

+
1

γ
e

1

2
γτϕ(H)|B|(eγτ − 1)|x(T )|2.

(13)

Proof Write system (1) in the integral form

x(t) = x(t − τ) +

t
∫

t−τ

[Ax(s − τ) + XT(s)Bx(s − τ)] ds.

At the time moment t = T the latter inequality implies

|x(T ) − x(T − τ)| ≤

T
∫

T−τ

[|A||x(s − τ)| + |X(s)||B||x(s − τ)|] ds.
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From the assumptions of Lemma 4 and estimate (7) it follows that the following inequality
holds

|x(s − τ)| < e
1

2
γ(T−s+τ)

√

ϕ(H) |x(T )|, |x(s)| < e
1

2
γ(T−s)

√

ϕ(H) |x(T )|,

for all T − τ ≤ s ≤ T . By using the latter in the integral representation we derive

|x(T ) − x(T − τ)| <

T
∫

T−τ

|A|e
1

2
γ(T−s+τ)

√

ϕ(H) |x(T )| ds

+

T
∫

T−τ

e
1

2
(2T−2s+τ)ϕ(H)|B||x(T )|2 ds,

or

|x(T )−x(T −τ)| <
2

γ
e

1

2
γτ

√

ϕ(H) |A|
(

e
1

2
γτ −1

)

|x(T )|+
1

γ
e

1

2
γτϕ(H)|B|(eγτ −1)|x(T )|2.

Lemma 5 Every solution x(t) of system (1) satisfies the following inequality

|x(t)| ≤ (1 + |A|τ)‖x(0)‖τe|B‖x(0)‖|ττt (14)

on the interval 0 ≤ t ≤ τ .

Proof Write system (1) in the integral form

x(t) = x(0) +

t
∫

0

[Ax(s − τ) + XT(s)Bx(s − τ)] ds.

Then

|x(t)| ≤ |x(0)| +

t
∫

0

[|A||x(s − τ | + |X(s)|B||x(s − τ ||] ds

≤ (|x(0)| + |A|‖x(0)‖τ τ) + |B|‖x(0)‖τ

t
∫

0

|x(s)| ds

≤ (1 + |A|τ)‖x(0)‖τ e|B‖x(0)‖|ττt.

Lemma 6 Suppose the derivative of the Liapunov function V (x, t) = eγtxTHx along
solutions of system (1) satisfies the inequality

d

dt
V (x(t), t) ≤ −aV (x(t), t) + be−

1

2
γtV

3

2 (x(t), t), (15)
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for all t ≥ 0, where a > 0, b > 0, γ > 0. Then all the solutions subjected to the initial
condition

‖x(0)‖τ <
a + γ

b
√

λmax(H)

satisfy the inequality

|x(t)| ≤

√

ϕ(H) ‖x(0)‖τe−
1

2
at

1 −
b

a + γ

(

1 − e−
1

2
(a+γ)t

)

√

λmax(H) ‖x ∗ (0)‖τ

. (16)

Proof Inequality (15) is a Bernoulli type inequality. Since V (x, t) > 0, divide the

inequality by V 3/2(x, t). It follows

V − 3

2 (x(t), t)
d

dt
V (x(t), t) ≤ −aV − 1

2 (x(t), t) + be−
1

2
γt.

By using the substitution V −1/2(x(t), t) = z(t), z(0) > b/a, we derive

d

dt
z(t) ≥

1

2
az(t) −

1

2
be−

1

2
γt.

By solving the above differential inequality we obtain

z(t) ≥

[

z(0)−
b

a + γ

]

e
1

2
at +

b

a + γ
e−

1

2
γt, z(0) ≥

b

a
.

Having returned to the original variables we have

1
√

V (x(t), t)
≥

[

1
√

V (x(0), 0)
−

b

a + γ

]

e
1

2
at +

b

a + γ
e−

1

2
γt

or

V (x(t), t) ≤
1

{[

1
√

V (x(0), 0)
−

b

a + γ

]

e
1

2
at +

b

a + γ
e−

1

2
γt

}2 .

Next we see that

V (x(t), t) ≤
V (x(0), 0)

{[

1 −
b

a + γ

√

V (x(0), 0)

]

e
1

2
at +

b

a + b
e−

1

2
γt

√

V (x(0), 0)

}2 .

Finally by using the standard inequalities for quadratic forms we obtain inequality (16).
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Theorem 2 Assume that matrix A is asymptotically stable. Then for all τ < τ0

where τ0 is defined by (9), the zero solution of the differential system with delay (1) is
also asymptotically stable. The stability domain contains the sphere Uδ, where the radius
δ is found as the positive solution of the equation

(1 + |A|τ)δe|B|δτ =
a + γ

b
√

λmax(H)
. (17)

Moreover, for the solutions with the initial conditions inside the sphere Uδ the following
estimate on the convergence rate holds

|x(t)| ≤

√

ϕ(H) ‖x(0)‖τe−
1

2
(a+γ)t

1 −
b

a + γ

(

1 − e−
1

2
(a+γ)t

)

√

λmax(H) ‖x(0)‖τ

, (18)

where

a =
1

λmax(H)

{

λmin(C) − γλmax(H) − 4|HA|
|A|

γ
E

1

2
γτ (E

1

2
γτ − 1)

√

ϕ(H)

}

,

b =
2

λmin(H)
|B|

√

ϕ(H)E
1

2
γτ

{

|HA|
√

ϕ(H)
1

γ
(Eγτ − 1) + λmax(H)

}

.

Proof Suppose the initial condition for the solution x(t) of system (1) satisfies the
assumption ‖x(0)‖τ < δ where δ is defined by (17). Then inequality (14) of Lemma 5
implies that at the moment t = τ the following inequality

‖x(τ)‖τ ≤ R, R = (1 + |A|t)δe|B|δt

is true. On the time interval −τ ≤ t ≤ τ the integral curve satisfies (x(t), t) ∈ V γ
α

where γ > 0 is a constant and α = eγτλmax(H)R. We shall show that there exists a

constant γ∗ > 0 such that (x(t), t) ∈ V γ∗

α for all t > τ . Assume not. Then there exists
T > τ such that (x(T ), T ) ∈ ∂V γ

α . We evaluate next the total derivative of the Liapunov
function V along the solutions of system (1)

d

dt
V (x(t)) = eγtγxT(t)Hx(t) + eγt{[Ax(t − τ) + XT(t)Bx(t − τ)]Hx(t)

+ xT(t)H [Ax(t − τ) + XT(t)Bx(t − τ)]},

or

d

dt
V (x(t)) = eγtxT(t)(γH + ATH + HA)x(t)

+ 2eγtxT(t)HA[x(t − τ) − x(t)] + 2eγtxT(t)HXT(t)Bx(t − τ).

If matrix A is asymptotically stable then using the chosen matrix norm and the Liapunov
equation (2) we obtain

d

dt
V (x(t), t) ≤ −eγt{λmin(C) − γλmax(H)}|x(t)|2

+ 2eγt|HA||x(t)||x(t) − x(t − τ)| + 2eγtλmax(H)|B||x(t)|2|x(t − τ)|.
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Since (x(T ), T ) ∈ ∂V γ
α by using inequalities (13) and (14) we obtain the following

estimate for the derivative of the Liapunov function

d

dt
V (x(T ), T )

≤ −eγT

{

λmin(C) − γλmax(H) − 4|HA|
|A|

γ
e

1

2
γτ (e

1

2
γτ − 1)

√

ϕ(H)

}

|x(T )|2

+ 2eγT |B|
√

ϕ(H)e
1

2
γτ

{

|HA|
√

ϕ(H)
1

γ
(eγτ − 1) + λmax(H)

}

|x(T )|3.

By using the standard inequalities for quadratic forms we obtain

d

dt
V (x(T ), T ) ≤ −

1

λmax(H)

{

λmin(C) − γλmax(H)

− 4|HA|
|A|

γ
e

1

2
γτ

(

e
1

2
γτ − 1

)

√

ϕ(H)

}

V (x(T ), T )

+
2

λmin(H)
|B|

√

ϕ(H) e
1

2
γτ

{

|HA|
√

ϕ(H)
1

γ
(eγτ − 1)

+ λmax(H)

}

e−
1

2
γT V 3/2(x(T ), T ).

(19)

Let τ < τ0, where τ0 is defined by (8) and let 0 < γ < γ∗, where γ∗ is the solution of
equation (11). Define

a =
1

λmax(H)

{

λmin(C) − γλmax(H) − 4|HA|
|A|

γ
e

1

2
γτ

(

e
1

2
γτ − 1

)

√

ϕ(H)

}

,

b =
2

λmin(H)
|B|

√

ϕ(H) e
1

2
γτ

{

|HA|
√

ϕ(H)
1

γ
(eγτ − 1) + λmax(H)

}

.

Then a > 0, b > 0, and inequality (19) has the form (15)

d

dt
V (x(T ), T ) ≤ −aV (x(T ), T ) + bV 3/2(x(T ), T ).

By using Lemma 6 we conclude that inequality (16) is true for the solutions x(t) of system
(1) satisfying the condition ‖x(τ)‖τ ≤ R, where δ is defined by (17). This completes the
proof of the theorem.
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