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Abstract: In this paper, we investigate the problem of robust dynamic para-
meter-dependent output feedback (RDP-DOF) stabilization under H∞ perfor-
mance index for a class of linear time invariant parameter-dependent (LTIPD)
systems with multi-time delays in the state vector and in the presence of norm-
bounded non-linear uncertainties. Using Hamiltonian–Jacobi–Isaac (HJI) me-
thod and the idea of polynomial parameter-dependent quadratic (PPDQ)
Lyapunov–Krasovskii functions, a new sufficient condition is derived to en-
sure robust asymptotic stability and robust disturbance attenuation of the
closed-loop system. Finally, an example is included that demonstrates the
application of the results.
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1 Introduction

The stability analysis and control design of linear time invariant parameter-dependent
(LTIPD) systems where the state-space matrices depend affinely on parameter vector,
whose values are not known a priori, but can be measured online for control process, have
received considerable attention recently (see for instance [1, 2, 3, 5, 6, 18, 23, 25, 26, 28, 31]
and the references therein). In many industrial applications, like flight control and pro-
cess control, the operating point can indeed be determined from measurement, making
the LTIPD approach viable, see for example [21, 24]. Establishing stability via the use of
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classical quadratic Lyapunov function is conservative for the LTIPD systems. To investi-

gate the stability of LTIPD systems one needs to resort the use of parameter-dependent

Lyapunov functions to achieve necessary and sufficient conditions of system stability,

see [7, 10, 11, 14, 16, 30]. However, Bliman in [10] proposed robust stability analysis for

LTIPD systems with polytopic uncertain parameters. He also developed some condi-

tions for robust stability in terms of solvability of some linear matrix inequalities (LMIs)

without conservatism. Moreover, the existence of a polynomial parameter-dependent

quadratic (PPDQ) Lyapunov function for parameter-dependent systems, which are ro-

bustly stable, is stated in [11]. Recently, sufficient conditions for robust stability of the

linear state-space models affected by polytopic uncertainty have been provided in [12] us-

ing homogeneous polynomial parameter-dependent quadratic Lyapunov functions, which

are formulated in terms of LMI feasibility tests.

On the other hand, time delays are often present in engineering systems, which have

been generally regarded as a main source on instability and poor performance. Therefore,

the stabilization of LTIPD state-delayed systems is a field of intense research. Generally,

a way to ensure stability robustness with respect to the uncertainty in the delays is

to employ stability criteria valid for any nonnegative value of the delays that is delay-

independent results. This assumption that no information on the value of the delay is

known is often coarse in practice. Recently, a systematic way for the use of PPDQ

Lyapunov functions in the state feedback control of the LTIPD systems with time-delay

in the state vector was proposed in [19]. It was also shown that the PPDQ Lyapunov-

Krasovskii functions make some sufficient conditions under the form of linear matrix

inequalities (LMIs).

In this paper, we extend the robust parameter-dependent state-feedback stabilization

problem of the LTIPD state-delayed systems in [9, 19] to robust dynamic parameter-

dependent output feedback (RDP-DOF) control synthesis problem for the LTIPD systems

with multi-time delays in the state vector and in the presence of norm-bounded non-linear

uncertainties based on the Hamiltonian–Jacoby–Isaac (HJI) method. It is provided a sys-

tematic framework for the use of the PPDQ Lyapunov functions in the issue of RDP-DOF

stabilization with preserving H∞ performance criteria. Delay-independent stabilization

problem of the system is stated in terms of some LMIs. It would be shown that the

use of HJI method makes a sufficient condition to have a parameter-dependent bilinear

matrix inequality (BMI) optimization problem; thereafter, parameter-independent BMI

optimization problem is derived utilizing the PPDQ Lyapunov functions. Therefore, a

complete synthesis technique is developed and solving a parameter-independent LMI and

a set of linear algebraic equations can construct the RDP-DOF matrices. The simula-

tion results show that the obtained RDP-DOF control can achieve the delay-independent

stability and disturbance attenuation of the closed-loop system, simultaneously.

The notations used throughout the paper are fairly standard. The matrices In, 0n

and 0n×p are the identity matrix, the n × n and n × p zero matrices, respectively. The

symbol ⊗ denotes Kronecker product, the power of Kronecker products being used with

the natural meaning M0⊗ = 1, Mp⊗ = M (p−1)⊗ ⊗ M . Let Ĵk, J̃k ∈ Rk×(k+1) and u[k]

be defined by Ĵk = [Ik, 0k×1], J̃k = [0k×1, Ik] and u[k] = [1, u, . . . , uk−1]T, respectively,

which have essential roles for polynomial manipulations [10]. Finally given a signal x(t),

‖x(t)‖2 denotes the L2 norm of x(t); i.e., ‖x(t)‖2
2 =

∞∫
0

x(t)Tx(t) dt.
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2 Problem Description

In this paper, we consider a class of LTIPD systems with multi-time delays in the state
vector and in the presence of norm-bounded nonlinear uncertainties in which the state-
space matrices depend affinely on the constant vector ρ = [ρ1, ρ2, . . . , ρm]T ∈ ζ ⊂ Rm

(with ζ being a compact set) as follows:

ẋ(t) = A(ρ)x(t) +
r∑

i=1

A
(i)
d (ρ)x(t − hi) + B1u(t) + E1(ρ)w(t) + ∆(x(t)),

x(t) = ϕ(t), t ∈ [−h, 0],

z(t) = C1x(t),

y(t) = C2x(t) + E2w(t)

(1)

where the constant parameter hi is time-delay, h = max
i

{hi} for i = 1, 2, . . . , r, and ϕ(t)

is the continuous vector valued initial function, also x(t) ∈ Rn, u(t) ∈ Rl , w(t) ∈ Rs,
z(t) ∈ Rz and y(t) ∈ Rp are the state vector, the control input, the disturbance vector,
the controlled output and the output vector, respectively. Moreover, the parameter-

dependent matrices A(ρ), A
(i)
d (ρ) and E1(ρ) are expressed as A(ρ) = A0 +

m∑
i=1

ρi Ai,

A
(i)
d (ρ) = A

(i)
0d +

m∑
j=1

ρjA
(i)
jd and E1(ρ) = E01 +

m∑
i=1

ρiEi1, respectively, and the vector

function ∆(x(t)) is non-linear term of uncertainty set. Furthermore, it is known that
the vector ρ is contained in a priori given set whereas the actual curve of the vector ρ is
unknown but can be measured online for control process.

Assumption 1 There exists a known real constant matrix H ∈ Rn×n for the non-
linear uncertainty vector ∆(·) ∈ Ω(·) such that ‖∆(x(t))‖2 ≤ ‖Hx(t)‖2 for any x(t) ∈
Rn. Denote the corresponding uncertainty set by Ω(x(t)) = {∆(x(t)) : ‖∆(x(t))‖2 ≤
‖Hx(t)‖2}.

The robust dynamic parameter-dependent output feedback (RDP-DOF) control prob-
lem that we address in this paper is of the form

ẋc(t) = AK(ρ)xc(t) + BK(ρ)y(t),

u(t) = CK(ρ)xc(t),
(2)

where xc(t) ∈ Rnc and the parameter-dependent matrices of AK(ρ), BK(ρ) and CK(ρ)

are defined as AK(ρ) = A0K +
m∑

i=1

ρiAiK ∈ Rnc×nc , BK(ρ) = B0K +
m∑

i=1

ρiBiK ∈ Rnc×p

and CK(ρ) = C0K +
m∑

i=1

ρiCiK ∈ Rl×nc , respectively. In the sequel, the RDP-DOF

control state-space matrices will be determined.
Applying the RDP-DOF control (2) into the system (1), we obtain the following

augmented closed-loop system

Ẋ(t) = ĀρX(t) +

r∑

i=1

Ā
(i)
dρX(t − hi) + Eρw(t) + ∆(SX(t)),

X(t) = ϕ(t), t ∈ [−h, 0],

z(t) = C1X(t),

y(t) = C2X(t) + E2w(t),

(3)
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where X(t) = [xT(t), xT
c (t)]T, S = [In, 0n×nc

], C1 = [C1, 0z×nc
], C2 = [C2, 0p×nc

],

∆(·) =

[
∆(·)
0nc×1

]
, Āρ = Ãρ + F1ΓρF2, Ā

(i)
dρ =

[
A

(i)
dρ 0n×nc

0nc×n 0nc

]
, Eρ = Ẽρ + ŜΓρÊ

and

Ãρ =

[
A(ρ) 0n×nc

0nc×n 0nc

]
, F1 =

[
B1 0n×nc

0nc×l Inc

]
, F2 =

[
C2 0p×nc

0nc×n Inc

]
,

Γρ =

[
0l×p Ck(ρ)

Bk(ρ) Ak(ρ)

]
, Ẽρ =

[
E1(ρ)
0nc×s

]
, Ê =

[
E2

0nc×s

]
,

Ŝ =





In+nc
for n = l,

[
0(n−l)×(l+nc)

Il+nc

]
for n > l.

The main objective of the paper is to seek the state-space matrices of the RDP-DOF
control (2) that asymptotically stabilizes the closed-loop system (3) with multi-time
delays and norm-bounded nonlinear uncertainties as well as guarantees a prescribed H∞

performance, i.e.,
‖z(t)‖2

2 < γ2‖w(t)‖2
2 (4)

for all nonzero w(t) ∈ L2(0,∞) under zero initial conditions and a positive scalar γ.

Definition 1 We call a polynomial parameter-dependent quadratic (PPDQ) Lya-
punov function any quadratic function xT(t)S(ρ)x(t) such that

S(ρ) = (ρ[k]
m ⊗ · · · ⊗ ρ

[k]
1 ⊗ In)TSk(ρ[k]

m ⊗ · · · ⊗ ρ
[k]
1 ⊗ In)

for every x(t) ∈ Rn and a certain Sk ∈ Rkmn. The integer k − 1 is called the degree of
the PPDQ function S(ρ).

3 Delay-Independent Stability Analysis

In this section, assuming that the structure of the RDP-DOF control (2) is known and
we will investigate the conditions under which the closed-loop system (3) is asymptot-
ically stable for all admissible vectors ρ ∈ ζ and any nonlinear function ∆(·) ∈ Ω(·)
independent of time delay parameters hi for i = 1, 2, . . . , r.

The approach employed here is to investigate the delay-independent stability analysis
of the closed-loop system (3) in the presence of the disturbance (exogenous input) and
norm-bounded nonlinear uncertainties based on the standard HJI method. In the litera-
ture, extensions of the Lyapunov method to the Lyapunov–Krasovskii method have been
proposed for time-delayed systems [8, 20]. Hence, we define a class of PPDQ Lyapunov–
Krasovskii functions of the degree k − 1 for this purpose in the following form

V (X(t)) = X(t)TPρX(t) +
r∑

i=1

t∫

t−hi

X(σ)TQ(i)
ρ X(σ) dσ (5)
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where the positive definite matrices Pρ = P (ρ) ∈ Rn+nc and Q
(i)
ρ = Q(i)(ρ) ∈ Rn+nc

for i = 1, 2, . . . , r are expressed as

Pρ = (ρ[k]
m ⊗ · · · ⊗ ρ

[k]
1 ⊗ In+nc

)TPk(ρ[k]
m ⊗ · · · ⊗ ρ

[k]
1 ⊗ In+nc

), (6)

Q(i)
ρ = (ρ[k]

m ⊗ · · · ⊗ ρ
[k]
1 ⊗ In+nc

)TQ
(i)
k (ρ[k]

m ⊗ · · · ⊗ ρ
[k]
1 ⊗ In+nc

) (7)

with Pk, Q
(i)
k ∈ Rkm(n+nc) for i = 1, 2, . . . , r. Therefore, the following HJI function is

considered as

J [w(t), ∆(·)] =
dV (X(t))

dt
+ zT(t)z(t) − γ2wT(t)w(t) (8)

where derivative of V (X(t)) is evaluated along the trajectory of the closed-loop system
(3). It is well known that a sufficient condition for achieving robust disturbance attenu-
ation is that the inequality J [w(t), ∆(·)] < 0 for every w ∈ L2, ρ ∈ ζ and ∆(·) ∈ Ω(·)
results in a function V (X(t)), which is strictly radially unbounded (see, for example,
[27, 29]). Therefore, we will establish conditions under which

sup
∆∈Ω

sup
w∈L2

J [w(t), ∆(·)] < 0, (9)

then for every T , taking the definite integral from 0 to T of both sides of (8) gives

T∫

0

zT(t) z(t) dt − γ2

T∫

0

wT(t)w(t) dt < V (X(0)) − V (X(T )) ≤ V (X(0)) = 0

i.e., constraint of disturbance attenuation (4).

From (5) – (8), we find

J [w(t), ∆(·)] = X(t)T(ĀT
ρ Pρ + PρĀρ +

r∑

i=1

Q(i)
ρ + C

T

1 C1)X(t)

+ X(t)TPρ

r∑

i=1

Ā
(i)
dρX(t − hi) +

( r∑

i=1

Ā
(i)
dρX(t − hi)

)T

PρX(t)

−

r∑

i=1

X(t − hi)
TQ(i)

ρ X(t − hi) + ∆(SX(t))TPρX(t) + X(t)TPρ∆(S X(t))

+ w(t)TE
T

ρ PρX(t) + X(t)TPρEρw(t) − γ2w(t)Tw(t).

(10)

It is easy to show that the worst-case disturbance in (10) occurs when

w∗(t) = γ−2E
T

ρ PρX(t). (11)
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By substituting (11) into (10), we obtain

sup
w∈L2

J(w(t),∆) = J(w∗, ∆)

= X(t)T
(

ĀT
ρ Pρ + PρĀρ + γ−2PρEρE

T

ρ Pρ +

r∑

i=1

Q(i)
ρ + C

T

1 C1

)
X(t)

+ X(t)TPρ

r∑

i=1

Ā
(i)
dρX(t − hi) +

( r∑

i=1

Ā
(i)
dρX(t − hi)

)T

PρX(t)

−

r∑

i=1

X(t − hi)
TQ(i)

ρ X(t − hi) + ∆(SX(t))TPρX(t) + X(t)TPρ∆(S X(t)).

(12)
Now, by utilizing Lemma 2 and Assumption 1, it is trivial to show that for any positive

scalar ε the following matrix inequality holds

∆(SX(t))TPρX(t) + X(t)TPρ∆(S X(t)) ≤ εX(t)TP 2
ρ X(t) + ε−1∆(S X(t))T∆(SX(t))

≤ X(t)T(εP 2
ρ + ε−1(HS)T(HS))X(t),

(13)
then from (12)–(13), the following inequality is obtained

sup
∆∈Ω

sup
w∈L2

J [w(t), ∆(·)] = sup
∆∈Ω

J(w∗, ∆) ≤ X̄(t)TMρX̄(t) (14)

where the vector X̄(t) = [X(t)T, X(t − h1)
T, . . . , X(t − hr)

T]T is an augmented state
and the parameter-dependent matrix Mρ is defined in the form




ĀT
ρ Pρ + PρĀρ + γ−2PρEρE

T

ρ Pρ + εP 2
ρ +

r∑
i=1

Q
(i)
ρ + ε−1(HS)T(HS) + C

T

1 C1

PρĀ
(1)
dρ . . . PρĀ

(r)
dρ

(PρĀ
(1)
dρ )T −Q

(1)
ρ . . . 0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(PρĀ
(r)
dρ )T 0 . . . −Q

(r)
ρ




. (15)

Consequently, if there exist the positive scalar ε and the positive definite solutions Pρ

and Q
(i)
ρ for i = 1, 2, . . . , r to the parameter-dependent matrix inequality Mρ < 0, then

we have
J [w(t), ∆(·)] < 0, ∀w(t) ∈ L2, ρ ∈ ζ, ∆(·) ∈ Ω(·). (16)

Using Schur Complement Lemma, the parameter-dependent inequality Mρ < 0 can
be represented as



ĀT
ρ Pρ + PρĀρ +

r∑
i=1

Q
(i)
ρ +

ε−1(HS)T(HS) + C
T

1 C1

Pρ PρEρ PρĀ
(1)
dρ . . . PρĀ

(r)
dρ

Pρ −ε−1In+nc
0 0 . . . 0

(PρEρ)
T 0 −γ2Is 0 . . . 0

(PρĀ
(1)
dρ )T 0 0 −Q

(1)
ρ . . . 0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(PρĀ
(r)
dρ )T 0 0 0 . . . −Q

(r)
ρ




< 0. (17)

The following result is now concluded for the delay-independent stability analysis of
the uncertain parameter-dependent state-delayed system (1).
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Theorem 1 Let the parameters γ > 0, k > 1 (degree of the PPDQ Lyapunov–
Krasovskii functions) and the RDP-DOF control matrices AK(ρ), BK(ρ) and CK(ρ) are

given. If there exist positive parameter ε and positive definite matrices Pρ and Q
(i)
ρ for

i = 1, 2, . . . , r to the parameter-dependent matrix inequality (17), then the augmented
closed-loop system (3) is asymptotically stable and preserves the H∞ performance for all
admissible vectors ρ ∈ ζ and any ∆(·) ∈ Ω(·), independent of the time delay parameters
hi for i = 1, 2, . . . , r.

Remark 1 A general framework for relaxing parameter-dependent matrix inequality
problems into parameter-independent matrix inequalities (conventional form) has been
investigated in [4]. However, application of the PPDQ Lyapunov functions as a new tool
for relaxing parameter dependency of the matrix inequalities will be stated in the next
section.

4 RDP-DOF Control Design

This section is devoted to design of the state-space matrices AK(ρ), BK(ρ) and CK(ρ)
for the RDP-DOF control (2) by using the result of Theorem 1 in the previous section.

In Theorem 1, the parameter-dependent inequality (17) can be written in the following
from



ÃT
ρ Pρ + PρÃρ + (F1ΓρF2)

TPρ+

Pρ(F1ΓρF2) +
r∑

i=1

Q
(i)
ρ +

ε−1(HS)T(HS) + C
T

1 C1

Pρ PρẼρ + PρŜΓρÊ PρĀ
(1)
dρ . . . PρĀ

(r)
dρ

Pρ −ε−1In+nc
0 0 . . . 0

(PρẼρ + PρŜΓρÊ)T 0 −γ2Is 0 . . . 0

(PρĀ
(1)
dρ )T 0 0 −Q

(1)
ρ . . . 0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(PρĀ
(r)
dρ )T 0 0 0 . . . −Q

(r)
ρ




< 0

(18)
and it is clear that the above constraint is however not simultaneously convex in the
parameter Pρ and the controller parameters Γρ. In the literature, more attention has
been paid to the problems having this nature, which called bilinear matrix inequality
(BMI) problems [22].

In the sequel, we state application of the PPDQ Lyapunov functions to relax depen-
dency of the BMI (18) into the parameter vector ρ. At first, for parameter-dependent

matrix Rρ = ÃT
ρ Pρ + PρÃρ, the PPDQ Lyapunov function of degree k is expressed in

the form

Rρ = (ρ[k+1]
m ⊗ · · · ⊗ ρ

[k+1]
1 ⊗ In+nc

)TRk(ρ[k+1]
m ⊗ · · · ⊗ ρ

[k+1]
1 ⊗ In+nc

) (19)

and by some matrix manipulations, in (19) the parameter-independent matrix Rk ∈

R(k+1)m(n+nc) which depends on matrix Pk linearly is obtained as follows

Rk =

(
(Ĵm⊗

k ⊗ Ã0) +

m∑

i=1

(Ĵ
(m−i)⊗
k ⊗ J̃k ⊗ Ĵ

(i−1)⊗
k ⊗ Ãi)

)T

Pk(Ĵm⊗

k ⊗ In+nc
)

+ (Ĵm⊗

k ⊗ In+nc
)TPk

(
(Ĵm⊗

k ⊗ Ã0) +
m∑

i=1

(Ĵ
(m−i)⊗
k ⊗ J̃k ⊗ Ĵ

(i−1)⊗
k ⊗ Ãi)

) (20)
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where

Ãρ = Ã0 +
m∑

i=1

ρiÃi and Ãi =

[
Ai 0n×nc

0nc×n 0nc

]
for i = 0, 1, . . . , m.

Similarly, the PPDQ Lyapunov function of degree k for the parameter-dependent
matrix Σρ = (F1ΓρF2)

TPρ + Pρ(F1ΓρF2) will be as

Σρ = (ρ[k+1]
m ⊗ · · · ⊗ ρ

[k+1]
1 ⊗ In+nc

)TΣk(ρ[k+1]
m ⊗ · · · ⊗ ρ

[k+1]
1 ⊗ In+nc

) (21)

where the parameter-independent matrix Σk ∈ R(k+1)m(n+nc) is shown as follows

Σk =

(
(Ĵm⊗

k ⊗ F1Γ0F2) +

m∑

i=1

(Ĵ
(m−i)⊗
k ⊗ J̃k ⊗ Ĵ

(i−1)⊗
k ⊗ F1ΓiF2)

)T

Pk(Ĵm⊗

k ⊗ In+nc
)

+ (Ĵm⊗

k ⊗ In+nc
)TPk

(
(Ĵm⊗

k ⊗ F1Γ0F2) +

m∑

i=1

(Ĵ
(m−i)⊗
k ⊗ J̃k ⊗ Ĵ

(i−1)⊗
k ⊗ F1ΓiF2)

)

(22)
where

Γρ = Γ0 +

m∑

i=1

ρiΓi with Γj =

[
0l×p Cjk

Bjk Ajk

]
for j = 1, 2, . . . , m.

Lemma 4 Let the degree of the PPDQ Lyapunov function Pρ be k − 1. The para-
meter-dependent matrix PρTρ satisfies the following representation form

PρTρ = (ρ[k+1t]
m ⊗ · · · ⊗ ρ

[k+1]
1 ⊗ In+nc

)THk(ρ[k+1]
m ⊗ · · · ⊗ ρ

[k+1]
1 ⊗ Iq), (23)

where Tρ = T0 +
m∑

i=1

ρiTi and Ti ∈ R(n+nc)×q, then the matrix

Hk ∈ R((k+1)m(n+nc))×((k+1)mq)

which depends on the matrix Pk linearly is defined as

Hk = (Ĵm⊗

k ⊗ In+nc
)TPk

(
(Ĵm⊗

k ⊗ T0) +

m∑

i=1

(Ĵ
(m−i)⊗
k ⊗ J̃k ⊗ Ĵ

(i−1)⊗
k ⊗ Ti)

)
. (24)

According to Lemma 4 for the parameter-dependent matrices Ẽρ = Ẽ0 +
m∑

j=1

ρjẼj ,

Ā
(i)
dρ = Ā

(i)
0d +

m∑
j=1

ρjĀ
(i)
jd and ŜΓρÊ = Ê0 +

m∑
j=1

ρjÊj , we obtain

PρẼρ = (ρ[k+1]
m ⊗ · · · ⊗ ρ

[k+1]
1 ⊗ In+nc

)TΞ̃k(ρ[k+1]
m ⊗ · · · ⊗ ρ

[k+1]
1 ⊗ Is),

PρĀ
(i)
dρ = (ρ[k+1]

m ⊗ · · · ⊗ ρ
[k+1]
1 ⊗ In+nc

)TΞ
(i)

k (ρ[k+1]
m ⊗ · · · ⊗ ρ

[k+1]
1 ⊗ In+nc

),

PρŜΓρÊ = (ρ[k+1]
m ⊗ · · · ⊗ ρ

[k+1]
1 ⊗ In+nc

)TΞ̂k(ρ[k+1]
m ⊗ · · · ⊗ ρ

[k+1]
1 ⊗ Is),

(25)
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where the parameter-independent matrices Ξ̃k, Ξ
(i)

k and Ξ̂k are represented in the forms

Ξ̃k = (Ĵm⊗

k ⊗ In+nc
)TPk

(
(Ĵm⊗

k ⊗ Ẽ0) +
m∑

j=1

(Ĵ
(m−j)⊗
k ⊗ J̃k ⊗ Ĵ

(j−1)⊗
k ⊗ Ẽj)

)
,

Ξ
(i)

k = (Ĵm⊗

k ⊗ In+nc
)TPk

(
(Ĵm⊗

k ⊗ Ā
(i)
0d ) +

m∑

j=1

(Ĵ
(m−j)⊗
k ⊗ J̃k ⊗ Ĵ

(j−1)⊗
k ⊗ Ā

(i)
jd )

)
,

Ξ̂k = (Ĵm⊗

k ⊗ In+nc
)TPk

(
(Ĵm⊗

k ⊗ Ê0) +
m∑

j=1

(Ĵ
(m−j)⊗
k ⊗ J̃k ⊗ Ĵ

(j−1)⊗
k ⊗ Êj)

)

(26)
with

Ā
(i)
jd =

[
A

(i)
jd 0
0 0

]
, Ẽj =

[
Ej1

0nc×s

]
and Êj = ŜΓj

[
E2

0nc×s

]

for j = 1, 2, . . . , m and i = 1, 2, . . . , r.

Similarly, the parameter-independent matrices C
T

1 C1, (HS)T(HS) and Is can be
also represented as

C
T

1 C1 = (ρ[k]
m ⊗ · · · ⊗ ρ

[k]
1 ⊗ In+nc

)TCk(ρ[k]
m ⊗ · · · ⊗ ρ

[k]
1 ⊗ In+nc

)

= (ρ[k+1]
m ⊗ · · · ⊗ ρ

[k+1]
1 ⊗ In+nc

)T(Ĵm⊗

k ⊗ In+nc
)TCk

× (Ĵm⊗

k ⊗ In+nc
)(ρ[k+1]

m ⊗ · · · ⊗ ρ
[k+1]
1 ⊗ In+nc

),

(27)

(HS)T(HS) = (ρ[k]
m ⊗ · · · ⊗ ρ

[k]
1 ⊗ In+nc

)TH̄k(ρ[k]
m ⊗ · · · ⊗ ρ

[k]
1 ⊗ In+nc

)

= (ρ[k+1]
m ⊗ · · · ⊗ ρ

[k+1]
1 ⊗ In+nc

)T(Ĵm⊗

k ⊗ In+nc
)TH̄k

× (Ĵm⊗

k ⊗ In+nc
)(ρ[k+1]

m ⊗ · · · ⊗ ρ
[k+1]
1 ⊗ In+nc

),

(28)

and
Is = (ρ[k]

m ⊗ · · · ⊗ ρ
[k]
1 ⊗ Is)

TĪs
k(ρ[k]

m ⊗ · · · ⊗ ρ
[k]
1 ⊗ Is)

= (ρ[k+1]
m ⊗ · · · ⊗ ρ

[k+1]
1 ⊗ Is)

T(Ĵm⊗

k ⊗ Is)
TĪs

k

× (Ĵm⊗

k ⊗ Is)(ρ
[k+1]
m ⊗ · · · ⊗ ρ

[k+1]
1 ⊗ Is)

(29)

where the certain matrices Ck, H̄k and Īs
k are defined, respectively, as

Ck = diag (C
T

1 C1, 0n+nc
, . . . , 0n+nc︸ ︷︷ ︸

(km−1) elements

), H̄k = diag ((HS)T(HS), 0n+nc
, . . . , 0n+nc︸ ︷︷ ︸

(km−1) elements

),

and Īs
k = diag (Is, 0s, . . . , 0s︸ ︷︷ ︸

(km−1) elements

).

Therefore using the defined notations as well as the definition

Īn+nc

k = diag (In+nc
, 0n+nc

, . . . , 0n+nc︸ ︷︷ ︸
(km−1) elements

)
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and some matrix manipulations, the following parameter-independent BMI form can be
obtained from the parameter-dependent inequality (18),




Rk + Σk + (Ĵm⊗

k ⊗ In+nc
)T

(
ε−1H̄k + Ck +

r∑
i=1

Q
(i)
k

)
(Ĵm⊗

k ⊗ In+nc
)

(Ĵm⊗

k ⊗ In+nc
)TPk(Ĵm⊗

k ⊗ In+nc
)

Ξ̃T
k + Ξ̂T

k

Ξ
(1)T

k

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Ξ
(r)T

k

(Ĵm⊗

k ⊗ In+nc
)TPk(Ĵm⊗

k ⊗ In+nc
) Ξ̃k + Ξ̂k

−ε−1(Ĵm⊗

k ⊗ In+nc
)TĪn+nc

k (Ĵm⊗

k ⊗ In+nc
) 0

0 −γ2(Ĵm⊗

k ⊗ Is)
TĪs

k(Ĵm⊗

k ⊗ Is)
0 0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

0 0

Ξ
(1)

k . . . Ξ
(r)

k

0 . . . 0
0 . . . 0

−(Ĵm⊗

k ⊗ In+nc
)TQ

(1)
k (Ĵm⊗

k ⊗ In+nc
) . . . 0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

0 . . . −(Ĵm⊗

k ⊗ In+nc
)TQ

(r)
k (Ĵm⊗

k ⊗ In+nc
)




< 0.

(30)

Remark 2 Using the property of AC ⊗BD = (A ⊗B)(C ⊗D), the defined matrices

Ξ̂k and Σk can be shown in the following forms

Ξ̂k = (Ĵm⊗

k ⊗ In+nc
)TPk(Ĵm⊗

k ⊗ Ŝ)(I(k+1)m ⊗ Γi)

(
I(k+1)m ⊗

[
E2

0nc×s

])

+

m∑

i=1

(Ĵm⊗

k ⊗ In+nc
)TPk(Ĵ

(m−i)⊗
k ⊗ J̃k ⊗ Ĵ

(i−1)⊗
k ⊗ Ŝ)

× (I(k+1)m ⊗ Γi)

(
I(k+1)m ⊗

[
E2

0nc×s

] )
(31)

and

Σk =

(
(Ĵm⊗

k ⊗ F1)(I(k+1t)m ⊗ Γ0)(I(k+1)m ⊗ F2)

+
m∑

i=1

(Ĵ
(m−i)⊗
k ⊗ J̃k ⊗ Ĵ

(i−1)⊗
k ⊗ F1)(I(k+1)m ⊗ Γi)(I(k+1)m ⊗ F2)

)T

Pk(Ĵm⊗

k ⊗ In+nc
)

+ (Ĵm⊗

k ⊗ In+nc
)TPk

(
(Ĵm⊗

k ⊗ F1)(I(k+1)m ⊗ Γ0)(I(k+1)m ⊗ F2)

+

m∑

i=1

(Ĵ
(m−i)⊗
k ⊗ J̃k ⊗ Ĵ

(i−1)⊗
k ⊗ F1)(I(k+1)m ⊗ Γi)(I(k+1)m ⊗ F2)

)
.

(32)
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The constraint (30) is not convex in terms of the parameter Pk and the controller
parameters Γ0, Γ1, . . . , Γm. Consequently, it cannot be used directly for synthesis. It
is clear that constraint (30) includes multiplication of control matrices and Lyapunov
function matrix. In the sequel, we will simplify and restate the BMI (30) along with the
robust performance satisfaction to derive tractable solvability conditions.

Define new matrices as

Ω0 = Pk(Ĵm⊗

k ⊗ F1)(I(k+1)m ⊗ Γ0),

Ωi = Pk(Ĵ
(m−i)⊗
k ⊗ J̃k ⊗ Ĵ

(i−1)⊗
k ⊗ F1)(I(k+1)m ⊗ Γi), i = 1, 2, . . . , m,

(33)

and
Π0 = Pk(Ĵm⊗

k ⊗ Ŝ)(I(k+1)m ⊗ Γ0),

Πi = Pk(Ĵ
(m−i)⊗
k ⊗ J̃k ⊗ Ĵ

(i−1)⊗
k ⊗ Ŝ)(I(k+1)m ⊗ Γi), i = 1, 2, . . . , m.

(34)

From the above definitions, the following algebraic equations can be concluded

[
Ĵm⊗

k ⊗ F1

Ĵm⊗

k ⊗ Ŝ

]
(I(k+1)m ⊗ Γ0) = P−1

k

[
Ω0

Π0

]
(35)

and

[
Ĵ

(m−i)⊗
k ⊗ J̃k ⊗ Ĵ

(i−1)⊗
k ⊗ F1

Ĵ
(m−i)⊗
k ⊗ J̃k ⊗ Ĵ

(i−1)⊗
k ⊗ Ŝ

]
(I(k+1)m ⊗ Γi) = P−1

k

[
Ωi

Πi

]
, i = 1, 2, . . . , m, (36)

in the case of the matrix F1 or equivalently the matrix B1 has the full column rank , it
can be concluded from the linear algebra theory that the set of algebraic equations (35)
and (36) has at most one solution Γ0, Γ1, . . . , Γm.

According to (33) and (34), the matrices Σk and Ξ̂k in the BMI (30) can be represented
in the forms

Σk =

((
Ω0 +

m∑

i=1

Ωi

)
(I(k+1)m ⊗ F2)

)T

Pk(Ĵm⊗

k ⊗ In+nc
)

+ (Ĵm⊗

k ⊗ In+nc
)T

(
Ω0 +

m∑

i=1

Ωi

)
(I(k+1)m ⊗ F2)

(37)

and

Ξ̂k = (Ĵm⊗

k ⊗ In+nc
)T

(
Π0 +

m∑

i=1

Πi

)(
I(k+1)m ⊗

[
E2

0nc×s

] )
. (38)

Then, from (33)–(37) the solutions of the BMI (30) can be stated as the solutions of an
LMI and a set of algebraic equations. Finally, we summarize our result as follows.

Theorem 2 (Delay-independent stabilization) Let the positive scalar k − 1 as the
degree of the PPDQ Lyapunov–Krasovskii functions is given. Consider the uncertain
parameter-dependent system (1) with the constant time delay parameters hi for i =
1, 2, . . . , r and full column rank of the matrix B1. For a given performance bound γ, if

there exist positive parameter ε and the positive definite matrices Pk, Q
(i)
k ∈ Rkm(n+nc)

for i = 1, 2, . . . , r as well as the matrices Ωi, Πi ∈ Rkm(n+nc)×(k+1)m(p+nc) for i =
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0, 1, . . . , m to the parameter-independent BMI (30), then the sub-optimal RDP-DOF con-
trol law (2) with the following state-space matrices

Γρ = Γ0 +

m∑

i=1

ρiΓi (39)

may be obtained from the linear algebraic equations (35) and (36) to achieve robust delay-
independent asymptotic stability and disturbance attenuation for all admissible vector
ρ ∈ ζ and any ∆(·) ∈ Ω(·).

Theorem 2 gives a solution to the sub-optimal RDP-DOF control problem. Note that
this result can be reformulated as an optimal controller synthesis procedure by solving
the following optimization problem

Min γ

subject to (30), (35) and (36).
(40)

Remark 3 It is observed that the inequality (30) is linear in Pk, Q
(1)
k , Q

(2)
k , . . . , Q

(r)
k ,

Ω0, Ω1, . . . , Ωm and Π0, Π1, . . . , Πm which are calculated independently from the vector
ρ. It is also seen from the above results that there exists some freedoms contained in
the design of control law, such as the choices of appropriate the positive scalar ε and
the degree of PPDQ Lyapunov function. These degrees of freedoms can be exploited to
achieve other desired closed-loop properties.

5 Example

In this section, we illustrate the proposed methodology on a simple system. The state-
space form of the uncertain parameter-dependent state-delayed plant is considered as

ẋ(t) = (−5 − 2 ρ1)x(t) + (2 + ρ1)x(t − h1) + u(t) + (1 + ρ1)w(t) + ∆(x(t)),

x(t) = 2, t ∈ [−h1, 0],

z(t) = x(t),

y(t) = 2 x(t) + w(t),

(41)

with h1 = 10 seconds and σ2 = 0.5 as the constant time delay and noise variance,
respectively. The compact set of the parameter ρ1 is considered as ρ1 ∈ (−1, 1). The
non-linear uncertain term ∆(x(t)) is assumed to be norm-bounded with the matrix
bound H = 1. Using the definitions (33) and (34), solving the LMI (30) and the set of
algebraic equations (35) and (36) for the performance bound γ = 1.5 by the Lmitool

toolbox of the Matlab software [17] gives the following positive definite matrices Pk, Q
(1)
k

for k = 2,

Pk =




0.2256 0.0103 −0.0264 0.0009
0.0103 0.0771 −0.0846 0.0020

−0.0264 −0.0846 0.2001 0.0096
0.0009 0.0020 0.0096 0.0542


 ,

Q
(1)
k =




0.4484 −0.0111 0.2732 0.0022
−0.0111 0.5251 0.0047 −0.0230

0.2732 0.0047 1.2472 −0.0070
0.0022 −0.0230 −0.0070 0.6286


 .
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Figure 5.1. Time behavior of y(t).

By considering the parameter ρ1 = 0.2225, time behavior of the system dynamic (41)
has been depicted in Figure 5.1.

The sub-optimal RDP-DOF control (2) with the following state-space matrices

Γ0 =

[
0 0.0771

−0.0264 −0.0846

]
and Γ1 =

[
0 0.0020

0.0096 0.0542

]

ensures the asymptotic stability of the closed-loop system (3) which has been shown in
Figure 5.2.

Figure 5.2. The sub-optimal RDP-DOF control.

Moreover, the correctness of disturbance attenuation on the controlled output, i.e.
‖z(t)‖2

2 − γ2‖w(t)‖2
2 < 0, has been depicted in Figure 5.3.

6 Conclusion

In this paper, we have presented a systematic framework for the RDP-DOF stabilization
under H∞ performance index for a class of LTIPD systems with multi-time delays in the
state vector and in the presence of norm-bounded non-linear uncertainties. Our main
contribution consists in providing a new sufficient condition as QMIs formulations for
the existence of the RDP-DOF control using the PPDQ Lyapunov–Krasovskii functions
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Figure 5.3. The plot of ‖z(t)‖2
2 − γ2‖w(t)‖2

2.

and HJI method. The applicability of the proposed method was illustrated on a simple
example.
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Appendix

Lemma 1 (Schur Complement Lemma) Given constant matrices Ψ1, Ψ2 and Ψ3,

where Ψ1 = ΨT
1 and Ψ2 = ΨT

2 > 0, then Ψ1 + ΨT
3 Ψ−1

2 Ψ3 < 0 if and only if
[

Ψ1 ΨT
3

Ψ3 −Ψ2

]
< 0 or equivalently,

[
−Ψ2 Ψ3

ΨT
3 Ψ1

]
< 0.



158 H.R. KARIMI

Lemma 2 [28] For any matrix X and Y with appropriate dimensions and for any
constant η > 0, we have

XTY + Y TX ≤ ηXTX +
1

η
Y TY.

Lemma 3 (Projection Lemma [13, 15]) Given a symmetric matrix H ∈ Rh×h and
two matrices N ∈ Rq×h and M ∈ Rp×h, consider the problem of finding some matrices
X ∈ Rp×q such that

H + NTXTM + MTXN < 0

then, the inequality above is solvable for X if and only if

N⊥T HN⊥ < 0 and MT⊥T HMT⊥ < 0.


