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Abstract: This paper considers a decentralized H2 control problem for multi-
channel linear time-invariant (LTI) descriptor systems. Our interest is to
design a low order dynamic output feedback controller. The control problem
is reduced to a feasibility problem of a bilinear matrix inequality (BMI) with
respect to variables of a coefficient matrix defining the controller, a Lyapunov
matrix and a matrix related to the descriptor matrix. Under a matching
condition between the descriptor matrix and the measurement output matrix
(or the control input matrix), we propose to set the Lyapunov matrix in the
BMI as block diagonal appropriately so that the BMI is reduced to LMIs.
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1 Introduction

It is well known that descriptor systems (also known as singular systems or implicit sys-
tems) have high abilities in representing dynamical systems. They can preserve physical
parameters in the coefficient matrices, and describe the dynamic part, static part, and
even improper part of the system in the same form. In this sense, descriptor systems are
much superior to systems represented by state-space models.

There have been reported many works on descriptor systems, e.g., [2, 13, 10]. Among
these works, Ref. [10] applied the LMI approach (e.g., [2]) to stabilization and H∞ control
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pr  o  ble  ms  fo  r  de s c r ipto r s y s te ms . Sinc e the L MI - ty p e c o nditio ns pr o p o s e d the r e c o nta in
equality constraints, which are not desirable in real applications, Ref. [17] derived strict
LMI conditions for stability, robust stabilization and H∞ control of linear descriptor
systems. Since the strict LMIs are definite ones without equality constraints, they are
highly tractable and reliable when we use recent popular softwares for solving LMIs.
Later, Ref. [8] extended the consideration to H2 control problem for descriptor systems
and derived a strict LMI condition which is necessary and sufficient for H2 control.

Concerning decentralized control of descriptor systems, Ref. [9] considered a decen-
tralized stabilization problem for large-scale interconnected descriptor systems, which are
special cases of multi-channel descriptor systems. In that context, the design problem
was reduced to feasibility of a BMI, and to solve the BMI, a homotopy-based method
was proposed, where the interconnections between subsystems are increased gradually
from zeros to the given magnitudes. Ref. [20] extended the results in [17] to decentralized
H∞ control for descriptor systems and proposed strict LMI conditions for designing low
order decentralized controller. However, to the best of our knowledge, there is very few
existing result considering decentralized H2 controller design for multi-channel descriptor
systems.

Motivated by the above observations, we consider low order decentralized H2 controller
design for multi-channel descriptor systems in this paper. More precisely, for the multi-
channel descriptor systems under consideration, in addition to the requirement that the
controller should be decentralized (composed of local controllers), we require that the
sum of the orders of local controllers should be smaller than the order of the system
to be controlled. As pointed out in many references [4, 7], the problem of computing a
low order controller is quite difficult. In [18], the homotopy-based algorithm was also
extended to low order decentralized H∞ controller design for multi-channel LTI systems,
by augmenting the matrix variable defining the decentralized controller of desired low
order to a matrix variable defining a full order decentralized controller. Although the
homotopy-based method in [18] can also be applied for the present problem by some
modifications, the convergence of the algorithm depends on how to choose the initial
full order centralized controller, and the random search of such a centralized controller
introduced in [18] needs huge computational efforts in general.

In this paper, we first apply the existing results in [8] for H2 control of linear descriptor
systems, to express the existence condition of decentralized H2 controllers with desired
orders as a BMI with respect to variables of a coefficient matrix defining the controller,
a Lyapunov matrix and a matrix related to the descriptor matrix. As also pointed out
in [18], although it is not difficult to obtain such a BMI, there has been no guaranteed
method for solving general BMIs, especially of large size [6, 10]. Here, under a matching
condition between the descriptor matrix and the measurement output matrix (or the
control input matrix), we apply and modify the method developed in [12, 19, 13] so that
the BMI on hand is reduced to an LMI [2] which is sufficient to the BMI but much more
tractable. More precisely, we propose to set the Lyapunov matrix variable in the BMI
as block diagonal appropriately corresponding to the controller’s desired order. Because
the structure of the block diagonal matrix variables can be set freely, we can consider
the controller’s order arbitrarily.

The remainder of this paper is organized as follows. In Section 2 we formulate our
control problem and rewrite compactly the closed-loop decentralized control system com-
posed of the original descriptor system and the local controllers, by defining some nota-
tions. In Section 3, under a matching condition between the descriptor matrix and the
measurement output matrix, we derive the first LMI condition for existence of desired
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controllers by setting the Lyapunov matrix variable in the BMI as block diagonal appro-
priately. In Section 4, under a matching condition between the descriptor matrix and
the control input matrix, we derive the second LMI condition.

2 Problem Formulation

We consider the N -channel LTI descriptor system described by

Eẋ = Ax + B1w +

N
∑

i=1

B2iui,

z = C1x,

yi = C2ix, i = 1, 2, . . . , N,

(1)

where x ∈ Rn is the descriptor variable, w ∈ Rh is the disturbance input, z ∈ Rp is the
controlled output, ui ∈ Rmi and yi ∈ Rqi are the control input and the measurement
output of channel i (i = 1, 2, . . . , N). The matrices E, A, B1, B2i, C1, C2i are constant
and of appropriate size, N > 1 is the number of subsystems. The matrix E may be
singular and we denote its rank by r = rankE ≤ n. Without loss of generality, we assume
that for every i, B2i is of full column rank, and C2i is of full row rank. Furthermore,
to ensure fitness of the H2 control problem, we assume that the system (1) satisfies the
following condition [16, 8]

kerE ⊂ kerC1. (2)

For the system (1), we consider a decentralized output feedback controller

ẋci = Acixci + Bciyi,

ui = Ccixci + Dciyi

(3)

where xci ∈ Rnci is the state of the i-th local controller, nci is a specified dimension,
and Aci, Bci, Cci, Dci, i = 1, 2, . . . , N, are constant matrices to be determined. Since
we are interested in designing a low order decentralized controller, we require that nc =
∑N

i=1 nci < n̄ ≤ n, where n̄ is the order of the system described by the transfer function

C1(sE − A)−1B1.
The closed-loop system obtained by applying the controller (3) to the system (1) is

Eẋ =

(

A +

N
∑

i=1

B2iDciC2i

)

x +

N
∑

i=1

B2iCcixci + B1w,

ẋci = BciC2ix + Acixci,

z = C1x.

(4)

By Tzw(s), we denote the transfer function from w to z in the above closed-loop
system. Then, the control problem of this paper is stated as follows:

Decentralized H2 control problem. For a specified scalar γ > 0, design a low order

decentralized controller (3) for the system (1) so that the resultant closed-loop system (4)
is stable and ‖Tzw(s)‖2 < γ. If such a decentralized controller exists, we say the descriptor
system (1) is stabilizable with H2 norm γ via a decentralized controller (3).
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We collect the controller state xci and the coefficient matrices Aci, Bci, Cci, Dci as

xc = [xT
c1 xT

c2 . . . xT
cN ]T,

AcD = diag {Ac1, Ac2, . . . , AcN},

BcD = diag {Bc1, Bc2, . . . , BcN},

CcD = diag {Cc1, Cc2, . . . , CcN},

DcD = diag {Dc1, Dc2, . . . , DcN},

and define the matrices
B2 = [ B21 B22 . . . B2N ] ,

C2 = [ CT
21 CT

22 . . . CT
2N ]

T

to describe the closed-loop system (4) as

Eẋ = (A + B2DcDC2)x + B2CcDxc + B1w,

ẋc = BcDC2x + AcDxc,

z = C1x.

(5)

Since it is reasonable to consider the case where all the input/output channels are
independent, we assume that B2 is of full column rank and C2 is of full row rank.

We further write the matrices AcD, BcD, CcD and DcD in a single matrix

GD =

[

AcD BcD

CcD DcD

]

(6)

and introduce the notations

[

˜E Ã
]

=

[

E 0
∣

∣ A 0n×nc

0 Inc

∣

∣ 0nc×n 0nc×nc

]

,

[

˜B1
˜B2

]

=

[

B1

∣

∣ 0n×nc
B2

0nc×h

∣

∣ Inc
0nc×m

]

,

[

˜C1

˜C2

]

=







C1 0p×nc

0nc×n Inc

C2 0q×nc






,

where m =
N
∑

i=1

mi, q =
N
∑

i=1

qi. Then, the system (5) is written in a compact form as

˜E ˙̃x = (Ã + ˜B2GD
˜C2)x̃ + ˜B1w,

z = ˜C1x̃,
(7)

where x̃ = [xTxT
c ]T ∈ Rn+nc . In this description, only the controller coefficient matrix

GD is unknown, while all the other matrices are given by the system (1) and specified
orders of local controllers.
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3 Controller Design I

We first recall an existing result for H2 control of linear descriptor systems.

Lemma 1 [8] Consider the linear descriptor system described by

Eẋ = Ax + Bw,

z = Cx,
(8)

where x ∈ Rn is the descriptor variable, w ∈ Rh is the disturbance input, z ∈ Rp is the

controlled output, and E, A, B, C are constant matrices of appropriate size. The matrix

E may be singular and rank E = r ≤ n. Let matrices V, U ∈ Rn×(n−r) be of full column

rank and composed of bases of Null E and Null ET, respectively. Assume that the fitness

condition (2) is true between E and C. Then, for a given positive scalar γ, the system

(8) is stable and ‖C(sE−A)−1B‖2 < γ if and only if there exist P > 0 and S satisfying

the LMIs

A(PET + V SUT) + (PET + V SUT)TAT + BBT < 0,

trace [CPCT] < γ2.

Translating Lemma 1 in terms of the closed-loop system (7), we see that the decen-
tralized H2 control problem is reduced to solving the matrix inequalities

(Ã + ˜B2GD
˜C2)( ˜P ˜ET + ˜V ˜S ˜UT) + ( ˜P ˜ET + ˜V ˜S ˜UT)T(Ã + ˜B2GD

˜C2)
T + ˜B1

˜BT
1 < 0, (9)

trace [ ˜C1
˜P ˜CT

1 ] < γ2 (10)

with respect to GD, ˜P > 0 and ˜S, where

˜V =

[

V

0nc×(n−r)

]

, ˜U =

[

U

0nc×(n−r)

]

.

It is observed from the above that the existence condition (9) for a desired decentralized

H2 controller is a BMI with respect to ( ˜P , ˜S) and GD, and at present there is no
globally effective method to solve general BMI problems. Although global optimization
approaches using branch and bound methods for general BMIs have been proposed [6, 10],
the necessary computational efforts would be prohibitive when their methods are applied
to solve our BMI for systems of high dimensions in unlimited regions of the matrix
variables in (9). Another algorithm has been proposed in [18] for solving the BMI (9) by
using the idea of the homotopy method, where the controller’s coefficient matrices are
deformed from full matrices defined by a centralized controller, to block diagonal matrices
of specified dimensions which describe a decentralized controller. Since the convergence
of the algorithm in [18] depends on the choice of the initial centralized controller, a
random search has been proposed for such centralized controller. However, for large
scale problems, the computation efforts for such random search is still very large. For
this reason, we propose to set the Lyapunov matrix variable in (9) as block diagonal
appropriately so that the BMI (9) is reduced to an LMI, which is easy to solve by using
the existing softwares (for example, the LMI Control Toolbox of MATLAB [5]).

Throughout this section, we assume:
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Assumption 1 There exists a matrix C2e such that C2 = C2eE.

This assumption requires a matching condition between the descriptor matrix E and
the measurement output matrix C2, which implies that the null space of E is included
in that of C2. We note that the measurement output in control systems is the quantity
that we can adjust in real implementation, and thus Assumption 1 is not an unrealistic
condition.

Theorem 1 The system (1) under Assumption 1 is stabilizable with H2 norm γ via

a decentralized controller (3) if there exist a matrix ˜S ∈ R(n−r)×(n−r), a positive definite

matrix ̂P structured as

̂P =

[

̂P1 0
0 ̂P2

]

, ̂P1 =

[

̂PA
̂PB

̂PT
B

̂PD

]

,

̂PA = diag { ̂PA1, ̂PA2, . . . , ̂PAN},

̂PB = diag { ̂PB1, ̂PB2, . . . , ̂PBN},

̂PD = diag { ̂PD1, ̂PD2, . . . , ̂PDN}

with ̂PAi ∈ Rnci×nci , ̂PBi ∈ Rnci×qi , ̂PDi ∈ Rqi×qi , and a matrix W structured as

W =

[

WA WB

WC WD

]

, (11)

WA = diag {WA1, WA2, . . . , WAN},

WB = diag {WB1, WB2, . . . , WBN},

WC = diag {WC1, WC2, . . . , WCN},

WD = diag {WD1, WD2, . . . , WDN}

with WAi ∈ Rnci×nci , WBi ∈ Rnci×qi , WCi ∈ Rmi×nci , WDi ∈ Rmi×qi , such that the

LMIs

Φ1 + ΦT
1 + ̂B1

̂BT
1 < 0, (12)

Φ1 = Â( ̂P ̂ET + V̂ ˜SÛT) + ̂B2 [ W 0 ] ̂ET,

trace [Ĉ1
̂PĈT

1 ] < γ2 (13)

hold. Here, ̂E = T−1
˜ET , Â = T−1ÃT , ̂B1 = T−1

˜B1, ̂B2 = T−1
˜B2, Ĉ1 = ˜C1T ,

V̂ = T−1
˜V , Û = T−1

˜U, and T ∈ R(n+nc)×(n+nc) is a nonsingular matrix satisfying

˜C2T = [ Inc+q 0 ] . (14)

When the LMIs (12) – (13) are feasible, one desired controller is computed as

GD = W ̂P−1
1 . (15)

Proof We first note that since we have assumed in the previous section that C2 is

of full row rank, ˜C2 is also of full row rank, and thus there always exists a nonsingular
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matrix T such that (14) is satisfied. Although such a matrix is not unique, we can see
later that the choice of T does not affect the feasibility of the LMIs (12) – (13).

Pre-multiplying the first LMI (12) by T and post-multiplying it by T T, and then

substituting all the notations we defined together with ˜P = T ̂PT T, we obtain

Φ̃1 + Φ̃T
1 + ˜B1

˜BT
1 < 0 (16)

Φ̃1 = Ã( ˜P ˜ET + ˜V ˜S ˜UT) + ˜B2 [ W 0 ]T T
˜ET.

It is easy to confirm from (14) and (15) that

[ W 0 ] = GD
˜C2T ̂P,

and that

˜C2
˜V =

[

0nc×n Inc

C2 0q×nc

] [

V

0nc×(n−r)

]

=

[

0
C2V

]

=

[

0
C2eEV

]

= 0.

Thus, we obtain from (16) that

Ã( ˜P ˜ET + ˜V ˜S ˜UT) + ( ˜P ˜ET + ˜V ˜S ˜UT)TÃT + ˜B2GD
˜C2

˜V ˜S ˜UT + ( ˜B2GD
˜C2

˜V ˜S ˜UT)T

+ ˜B2GD
˜C2

˜P ˜ET + ( ˜B2GD
˜C2

˜P ˜ET)T + ˜B1
˜BT

1 < 0

which is exactly the matrix inequality (9). Since the second LMI (13) is the same as
(10), we declare that the closed-loop system (7) with (15) is stable with H2 norm γ.

What we have to do next is to prove that the controller coefficient matrix GD given

by (15) has the decentralized structure defined in (6). Since we required ̂P > 0 in the

theorem, we get ̂PA > 0 and ̂PD > 0. Then, it is not difficult to obtain that

̂P−1
1 =

[

PA PB

PT
B PD

]

where

PA = ̂P−1
A + ̂P−1

A
̂PB( ̂PD − ̂PT

B
̂PT
A

̂PB)−1
̂PT
B

̂P−1
A

PB = − ̂P−1
A

̂PB( ̂PD − ̂PT
B

̂P−1
A

̂PB)−1

PD = ( ̂PD − ̂PT
B

̂P−1
A

̂PB)−1.

Since ̂PA, ̂PB , ̂PD are block diagonal, PA, PB and PD are block diagonal too. Then, we
obtain from (15) that

GD = W ̂P−1
1 =

[

WAPA + WBPT
B WAPB + WBPD

WCPA + WDPT
B WCPB + WDPD

]

. (17)

Since WA, WB , WC , WD are block diagonal, we see that all the four elements in (17) are
block diagonal and thus the above GD has the decentralized structure specified in (6).
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Remark 1 It is understood from the above proof that the block diagonal structures of

W and ̂P1 are designed so that a decentralized controller is obtained, and the block diag-

onal structure of ̂P is assumed so that the coupling between GD and ˜P can be removed
by using some equivalent transformation. Although the structures of the variables are
complicated at a first glimpse, the matrix inequalities (12) – (13) are linear with respect

to ˜S, ̂P , W , and thus are very easy to solve by using the existing software LMI Control
Toolbox [5].

4 Controller Design II

In this section, we assume:

Assumption 2 There exists a matrix B2e such that B2 = EB2e.

This assumption requires a matching condition between the descriptor matrix E and
the control input matrix B2, which implies that the space spanned by B2 is included in
that by E. We note that the control input in control systems is the quantity that we can
adjust in real implementation, and thus Assumption 2 is not an unrealistic condition.

To proceed, we first derive another form of Lemma 1 for the benefit of the discussion
in this section. To do this, we consider the same system (8) as in Lemma 1. Noticing
that ‖C(sE −A)−1B‖2 < γ is equivalent to ‖BT(sET −AT)−1CT‖2 < γ together with
the fact

(ET)TV = 0, (ET)U = 0,

we apply Lemma 1 to the dual system of (8), described by (ET, AT, CT, BT), to obtain
the following result. It is noted that the result has also appeared in [8].

Lemma 2 For a given positive scalar γ, the system (8) is stable and ‖C(sE −
A)−1B‖2 < γ if and only if there exist Q > 0 and R satisfying the LMIs

AT(QE + URV T) + (QE + URV T)TA + CTC < 0

trace [BTQB] < γ2.

Translating Lemma 2 in terms of the closed-loop system (7), we see that the decen-
tralized H2 control problem is reduced to solving the matrix inequalities

(

Ã + ˜B2GD
˜C2

)T
( ˜Q ˜E + ˜U ˜R˜V T) + ( ˜Q ˜E + ˜U ˜R˜V T)T

(

Ã + ˜B2GD
˜C2

)

+ ˜CT
1

˜C1 < 0, (18)

trace [ ˜BT
1

˜Q ˜B1] < γ2 (19)

with respect to GD, ˜Q > 0 and ˜R. Same as in the previous section, the matrix inequality

(18) is a BMI with respect to ( ˜Q, ˜R) and GD, there is no globally effective method for
solving it. Here, under Assumption 2, we propose to set the Lyapunov matrix variable
˜Q as block diagonal appropriately so that the BMI (18) is reduced to an LMI.
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Theorem 2 The system (1) under Assumption 2 is stabilizable with H2 norm γ via

a decentralized controller (3) if there exist a matrix ˜R ∈ R(n−r)×(n−r), a positive definite

matrix ̂Q structured as

̂Q =

[

̂Q1 0

0 ̂Q2

]

, ̂Q1 =

[

̂QA
̂QB

̂QT
B

̂QD

]

,

̂QA = diag { ̂QA1, ̂QA2, . . . , ̂QAN},

̂QB = diag { ̂QB1, ̂QB2, . . . , ̂QBN},

̂QD = diag { ̂QD1, ̂QD2, . . . , ̂QDN},

with ̂QAi ∈ Rnci×nci , ̂QBi ∈ Rnci×mi , ̂QDi ∈ Rmi×mi , and a matrix W structured as

(11) such that the LMIs

Υ1 + ΥT
1 + C̆T

1 C̆1 < 0, (20)

Υ1 = (ĔT
̂Q + V̆ ˜RTŬT)Ă + ĔT

[

W

0

]

C̆2

trace [B̆T
1

̂QB̆1] < γ2 (21)

hold. Here, Ĕ = X ˜EX−1, Ă = XÃX−1, B̆1 = X ˜B1, C̆1 = ˜C1X
−1, C̆2 = ˜C2X

−1,

V̆ =
(

X−1
)T

˜V , Ŭ =
(

X−1
)T

˜U, and X ∈ R(n+nc)×(n+nc) is a nonsingular matrix

satisfying

X ˜B2 =

[

Inc+m

0

]

. (22)

When the LMIs (20) – (21) are feasible, one desired controller is computed as

GD = ̂Q−1
1 W. (23)

Proof We first note that since we have assumed that B2 is of full column rank, ˜B2 is
also of full column rank, and thus there always exists a nonsingular matrix X such that
(22) is satisfied. Also, we can see later that the choice of X does not affect the feasibility
of the LMIs (20) – (21).

Pre-multiplying the first LMI (20) by XT and post-multiplying it by X , and then

substituting all the notations we defined with ˜Q = XT
̂QX , we obtain

Υ̃1 + Υ̃T
1 + ˜CT

1
˜C1 < 0, (24)

Υ̃1 = ( ˜ET
˜Q + ˜V ˜RT

˜UT)Ã + ˜ETXT

[

W

0

]

˜C2.

According to (22) and (23), we compute

̂QX ˜B2GD =

[

̂Q1 0

0 ̂Q2

] [

I

0

]

̂Q−1
1 W =

[

W

0

]

.
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Together with the fact

˜BT
2

˜U =

[

0 In̂

BT
2 0

] [

U

0

]

=

[

0
BT

2eE
TU

]

= 0, (25)

we obtain (18) easily from (24)–(25).
Since the second LMI (21) is the same as (19), and the decentralized structure of

GD = ̂Q−1
1 W can be proved by using the same technique as used in Theorem 1, we

conclude that the system (1) is stabilized with H2 norm γ via the decentralized controller
(3) given by (23).

Remark 2 Although Theorems 1 and 2 come up with dual forms, they are not equiv-
alent and are supposed to deal with different cases of Assumption 1 or Assumption 2,
respectively. Furthermore, the LMI conditions provided by the theorems are sufficient
ones. Therefore, even in the case where both Assumption 1 and Assumption 2 hold and
thus both theorems can be applied, the LMI conditions of one theorem would be satisfied
while the other would not.

Remark 3 When it is necessary, we can try to obtain a tight H2 norm γ by considering
the generalized eigenvalue problem (EVP) [2]: “minimize γ2, s.t. (12) – (13) or (20) – (21),
respectively”.

5 Conclusion

This paper has considered a decentralized H2 control problem for multi-channel lin-
ear time-invariant (LTI) descriptor systems. We first reduce the control problem to a
feasibility problem of a bilinear matrix inequality (BMI) with respect to variables of a
coefficient matrix defining the controller, a Lyapunov matrix and a matrix related to
the descriptor matrix. Then, under a matching condition between the descriptor matrix
and the measurement output matrix (or the control input matrix), we has proposed to
set the Lyapunov matrix in the BMI as block diagonal appropriately so that the BMI
is reduced to LMIs. Since the structure of the block diagonal matrix variables can be
set freely, we can consider the controller’s order arbitrarily. We suggest that the present
approach should be applicable for any controller design problem with controller structure
constraints.

Noting that there are several references [1, 14] dealing with H2 and/or H∞ control of
descriptor systems also using the matrix inequality approach, our future research interest
includes the extension of the results in the present paper to the case of mixed H2/H∞

decentralized control for time-delay descriptor systems. Stochastic or probabilistic con-
trol [1] is another interesting issue for descriptor systems.
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