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Abstract: This paper deals with both analytical and quantitative analysis
of multiple impacts of a two-dimensional rod. The successions of clattering
sequence of a rod dropping to the floor are modeled and analyzed to find out
the impact responses as it collides with the ground. The model is described by
a system of ordinary differential equations, with a classical contact problem.
We conduct a comparison study of the cases where the effect of the gravity is
neglected, versus the cases where the gravity is considered. This mathematical
analysis can further provide useful information for durability study of the
impact on mobile electronic device.
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1 Introduction

In a pioneering study of Goyal, et al. [1, 2], it was found that when a two-dimensional
rod was dropped at a small angle to the ground, the second impact might be as large as
twice of the initial impact under some assumptions. For its consequence in applications,
their surprising result stirred some interest on this otherwise classical problem.

In the related literature, mathematical issues of one impact or first impact have been
considered in a number of papers, see for example, [3 – 5] for rigid body collisions. Even
in single-impact cases, the topic remains a focus of much discussion [6 – 8] as many
theoretical contact dynamics issues involving frictions started to get resolved recently.
Recent attention has been directed to detect and calculate the micro-collisions that occur
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in a short time interval, when the bodies are allowed to be flexible [9, 10]. These micro-
collisions are consequence of the elastic oscillations during one impact, and occur in a
relatively short period of time. During the sequence of micro-collisions, the location and
posture of the bodies change very little.

The study of multiple-impacts, however, is only an emerging area. Goyal, et al. (1998)
[1, 2] used transition matrix method to calculate the clattering sequence and its impacts.
In a surprising way, they showed that when a two dimensional rod with uniform density
is dropped to the ground at a very small angle, the second impact can be as large as twice
of the first impact. Of course, this result is derived based on a number of assumption
and simplifications such as full restitution and ignoring the effect of gravity, etc.

In this paper, we provide a study of the entire multiple-impact sequence of a two-
dimensional rod with/without consideration of gravity, and using a general restitution
coefficient. Our methodology allows us to consider a prototype problem for cell phone
multi-impact dropping by several initial postures. We prove a number of assumptions
required in Goyal’s study are in fact valid, and interesting application is found in studying
of clattering phenomenon of falling rigid bodies referred in [1, 2]. This model is a first step
towards model study for the design and optimization of electronic components for mobile
electronic product, future modeling considerations will involve flexible or multiple-body
impacts.

We outline our article as follows. In Section 2, we state the basic rigid body dynamics
equation. Section 3 includes impacts of analysis in absence of gravity. We give a com-
parison study to see the effect of gravity in Section 4. Discussion and conclusion are in
Section 5.

2 Collision Equations for a Falling Rod

The model presented in this section is based on the linear impulse-momentum principle,
the angular impulse-momentum principle for the rigid body, and some impact parameters
that relates the pre- and post-impact variables, such as the coefficient of restitution,
which is defined as the ratio of the post-impact relative normal velocity to the pre-
impact relative normal velocity at the impact location. The limitation of the model is
such that only sliding friction can occur. We assume that there is no sticking during
the impact process. When sticking does occur, the situation becomes very complex. We
defer discussion to Section 5.

We consider two rigid bodies having masses m1 and m2 respectively. We denote the
initial velocities, before collision, in lower cases, and after collision, with capital letters.
Collision equations are the following:

mi (
−→
V i −

−→v i) =
−→
P i, i = 1, 2, (1)

−→
H i −

−→
h i =

−→
d i ×

−→
P i, i = 1, 2, (2)

where for body i = 1, 2, we denoted: mi is the mass, −→v i and
−→
V i are the pre- and post-

impact velocity,
−→
P i is the impulse,

−→
h i and

−→
H i are the pre- and post- impact angular

momentum,
−→
d i is the position vector from the mass center to the collision contact point.

We can write:
−→
P i = Pn (−→n + µ

−→
t ), (3)
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where µ is the sliding friction coefficient, −→n and
−→
t are the normal and tangential unit

vectors of the contact surface.
The post-impact relative velocity

−→
V r and pre-impact relative velocity −→v r at the

collision contact point are related by:

−→
V r ·

−→n = −e−→v r ·
−→n , (4)

where e is the coefficient of restitution.
Related to the center of mass, velocity and angular velocity,

−→
V r and −→v r can be

written as:

−→
V r =

−→
V 1 +

−→
Ω 1 ×

−→
d 1 − (

−→
V 2 +

−→
Ω 2 ×

−→
d 2), (5)

−→v r = −→v 1 + −→ω 1 ×
−→
d 1 − (−→v 2 + −→ω 2 ×

−→
d 2), (6)

where −→ω i and
−→
Ω i are the vectors of the pre- and post- impact angular velocities,

respectively. For two-dimensional case, −→ω i = ωi

−→
k and

−→
Ω i = Ωi

−→
k , where

−→
k is the

unit vector normal to the two-dimensional work plane.
The equations (1)–(6) form a closed system. Solving the equations above, we derive

(see [4] for example):

V1n = v1n +
m(1 + e)q

m1

vrn, V1t = v1t +
µm(1 + e)q

m1

vrn,

V2n = v2n −
m(1 + e)q

m2

vrn, V2t = v2t −
µm(1 + e)q

m2

vrn,

Ω1 = ω1 +
m(1 + e)q(d1t − µd1n)

I1

vrn, Ω2 = ω2 −
m(1 + e)q(d2t − µd2n)

I2

vrn,

(7)

In the above solution, we denoted:

m =
m1m2

m1 + m2

, vrn = (v2n − d2tω2) − (v1n + d1tω1),

q =

[

1 +
md2

1t

I1

+
md2

2t

I2

− µ

(

md1td1n

I1

+
md2td2n

I2

)]

−1

,

e = −
V2n − V1n

v2n − v1n

, µ =
Pt

Pn

.

The formula for e is called the Newton’s Law of Restitution. The value µ is the relative
ratio of impulses (tangential over normal), and it reflects the friction coefficient, as long
as no sticking is happening during the impact. The terms I1 and I2 represent the mass
moment of inertia with respect to center of mass, for the two rigid bodies. The subscripts
“n” and “t” in the equations (7) stand for the normal and tangential components of the
velocity vector and the position vectors respectively. The Figure 2.1 shows the position

vectors from the mass center to the collision contact point,
−→
d 1 and

−→
d 2 , together with

their normal and tangential components.
If a planar barrier collision occurs, for simplicity, let the moving body be the body 1

and the barrier be the body 2. All velocities related to body 2 are set to zero. The above
approach is now applied to the multiple impacts of a falling rod, see Figure 2.2. In this
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Figure 2.1. Rigid collision between two bodies.

Figure 2.2. A rod colliding with the ground.

study, we consider a rod with uniform density. The mass of the rod m1 = 1, the length
of rod l = 1, the moment of inertia of the rod I1 = 1/12, the friction coefficient µ = 0,
and the restitution coefficient e ∈ [0, 1]. The mass of the ground m2 = ∞.

Hence, for our case, the equations (7) will reduce to

Vn = vn + (1 + e)qvrn, Ω = ω + 12(1 + e)qdtvrn

with

q =
1

1 + 12d2
t

, vrn = −(vn + dtω), dt − µdn = dt = −
cosα

2
.

We dropped the index {1, 2} in the previous text because we will refer just to the normal
and angular velocity of the rod relative to the ground. The tangential velocity remains
zero at all the time. Further, we will be interested in the angle at the moment of the
impact, and a qualitative estimation of the impact. We will be having the initial velocity
v at the moment right before the first impact, as a unit.

3 The First Three Impacts, Disregarding the Effect of Gravity

We assume the impact sequence occurs without gravity. The clattering sequence termi-
nates when the rod will no longer collide with the ground. The impact contact angles at
the first three impacts are denoted as α, β and γ, as shown in Figure 3.1.

Following from the equations (7), for the first bounce, the quantities can be calculated
as

V I
n =

e − 3 cos2 α

1 + 3 cos2 α
v, ΩI = −

6(1 + e) cosα

1 + 3 cos2 α
v, (8)
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Figure 3.1. The succession of the first three impacts of the falling rod. The acute

angle between the rod and the ground will be considered at all the times.

where α is the initial drop angle. Then the first impact is

P I
n = V I

n + v =
1 + e

1 + 3 cos2 α
vI

rn, (9)

where vI
rn = v.

Let us consider hI the vertical height of the rod’s center of mass at first impact, and
hII the vertical height at the center of mass at second impact, without considering the
gravity. These heights are related to the contact angles as

hI =
sin α

2
, hII =

sin β

2
.

For the second impact, we have the equation

hI + V I
n T I = hII ,

where T I is the duration of airborne. It can be analytically written as

T I =
−(α + β)

ΩI
.

We can determine the angle β numerically, for a given initial angle α, using the height
relation, so that

sin α +
e − 3 cos2 α

3(1 + e) cosα
(α + β) = sin β. (10)

The new velocities for the second bounce are

V II
n = V I

n +
1 + e

1 + 3 cos2 β
vII

rn, ΩII = ΩI +
6(1 + e) cosβ

1 + 3 cos2 β
vII

rn,

where

vII
rn = −V I

n −
cosβ

2
ΩI .

This gives the relation between the velocities of first two impacts

V II
n =

−e + 3 cos2 β

1 + 3 cos2 β
V I

n +
− 1+e

2
cosβ

1 + 3 cos2 β
ΩI ,

ΩII =
−6(1 + e) cosβ

1 + 3 cos2 β
V I

n +
1 − 3e cos2 β

1 + 3 cos2 β
ΩI .

(11)
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Hence, by substituting equations (8) into equations (11), we derive

V II
n =

−(e − 3 cos2 α)(e − 3 cos2 β) + 3(1 + e)2 cosα cosβ

(1 + 3 cos2 α)(1 + 3 cos2 β)
v,

ΩII =
−6(1 + e)(cosα + e cosβ)(1 − 3 cosα cosβ)

(1 + 3 cos2 α)(1 + 3 cos2, β)
v,

vII
rn = v + (1 + e)

−1 + 3 cosα cosβ

(1 + 3 cos2 α)
v.

The second angle, β, is numerically determined by solving equation (10) using Math-
ematica [11], and the impulse for second impact is

P II
n = V II

n − V I
n =

1 + e

1 + 3 cos2 β
vII

rn.

The third impact can be calculated in a similar way. The height at the center of mass

at the third impact will be hIII = sinγ
2

, where γ is the third impact angle between the
rod and the floor.

At the third impact
hII + V II

n T II = hIII , (12)

where T II =
β + γ

ΩII
is the elapsed time between the second and the third impacts.

Therefore, we obtain that

V II
n T II =

−(e − 3 cos2 α)(e − 3 cos2 β) + 3(1 + e)2 cosα cosβ

6(1 + e)(cosα + e cosβ)(−1 + 3 cosα cosβ)
(β + γ). (13)

Using the relations in equations (12) and (13), we obtain the following equation that
relates α, β and γ for a general value of the restitution coefficient e

sin β +
−(e − 3 cos2 α)(e − 3 cos2 β) + 3(1 + e)2 cosα cosβ

3(1 + e)(cosα + e cosβ)(−1 + 3 cosα cosβ)
(β + γ) = sin γ. (14)

Once the angle β is obtained by equation (10) for any given α, the angle γ can be
computed numerically by equation (14).

Now we find the center of mass’ velocity and angular velocity, Vn and Ω, for the third
bounce:

V III
n = V II

n +
1 + e

1 + 3 cos2 γ
vIII

rn , ΩIII = ΩII +
6(1 + e) cosγ

1 + 3 cos2 γ
vIII

rn ,

where

vIII
rn = −V II

n +
cosγ

2
ΩII .

Hence,

V III
n =

−e + 3 cos2 γ

1 + 3 cos2 γ
V II

n +
1+e
2

cos γ

1 + 3 cos2 γ
ΩII ,

ΩIII =
−6(1 + e) cos γ

1 + 3 cos2 γ
V II

n +
1 + 3(e + 2) cos2 γ

1 + 3 cos2 γ
ΩII .

(15)
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To derive an explicit expression of V III
n and ΩIII , we substitute the expression of V II

n

and ΩII to get

V III
n =

1

(1 + 3 cos2 α)(1 + 3 cos2 β)(1 + 3 cos2 γ)
[(e − 3 cos2 α)(e − 3 cos2 β)(e − 3 cos2 γ)

− 3(1 + e)2(cosα cosβ(e − 3 cos2 γ) + cosβ cos γ(e − 3 cos2 α)

+ cos γ cosα(e − 3 cos2 β))] v,

ΩIII =
6(1 + e)

(1 + 3 cos2 α)(1 + 3 cos2 β)(1 + 3 cos2 γ)
[−3(1 + e)2 cosα cosβ cos γ

+ cos γ(e − 3 cos2 α)(e − 3 cos2 β) + cosα(1 − 3e cos2 β)(1 + 3(1 + e) cos2 γ)

+ cosβ(1 + 3(2 + e) cos2 γ)(e − 3 cos2 α)]v.

Also, the contact velocity at the third impact is

vIII
rn = v +

(e2 − 1) − 3(e + 1)(cos2 α + cos2 β) − 3(e + 1)2 cosα cosβ

(1 + 3 cos2 α)(1 + 3 cos2 β)
v

+ 3(e + 1)
cos γ(cosα + e cosβ)(−1 + 3 cosα cosβ)

(1 + 3 cos2 α)(1 + 3 cos2 β)
v,

and the impulse at the third impact is

P II
n = V III

n − V II
n =

1 + e

1 + 3 cos2 γ
vIII

rn .

We give numerical examples of the formulae for the impact sequence.

For complete restitution case with e = 1, given a small angle α, the angle β should
be less than or equal to α, as long as 1 − 3 cos2 α < 0. We have the equality α = β at
54.74◦. Numerically, solution β exists until the rod drops on an angle of α = 58.49◦.
Also, up to this value, the impulse keeps a positive value. There is no solution for β
afterwards. From physical point of view, the rod impact sequence ends with just one
impact for α > 58.49◦.

The impulse for the third impact decreases from 0.5 to 0, and it reaches the zero
value for α = 24.79◦. Afterwards, the third impact ceases to exist. The results for full
restitution are expressed graphically in Figure 3.2 and Figure 3.3.

In engineering applications it was found the restitution e = 0.5 is of significance. We
show the impact results for half restitution (e = 0.5) in a comparison study below.

The results when the restitution coefficient is 0.5 are similar to the full restitution
case, although the rebounds at both ends are slower due to energy loss. We can obtain
solution for β until the rod drops on an angle of α = 67.21◦. There is no solution for β
afterwards.

The impulse for the third impact reaches the zero value for α = 35.00◦. The results
for half restitution are expressed graphically in Figure 3.4 and Figure 3.5.
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Figure 3.2. The dropping angles at the second and the third impact are shown

as functions of the angle α, when e=1. When α is small, β is roughly half of angle

α, and γ is nearly the same as angle α.

Figure 3.3. The impulses at the first, second and third impacts are shown as

functions of the initial angle α, when e=1. When α is small, the second impact is

nearly twice of first one, and the third impact is about the same as the first one.

The first two impulses become equal at α = 54.74◦.
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Figure 3.4. The dropping angle at the second and the third impact as function

of initial angle, when e=0.5. They are smaller than those for full restitution. The

angles where second and third impact terminate are relative higher values, when

e=0.5.

Figure 3.5. The impulses at the first, second and third impact are presented as

function of initial angle α, when e=0.5. The impact with half restitution involves

energy loss during the impact process. Still, the second impact shows much larger

impulse when the angle α is relatively small.
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4 The First Three Impacts, with the Gravity

In previous studies [1, 2], it is generally assumed there is no gravity. The validity of such
an assumption needs to be checked. In this section, we compare quantitatively the effect
of gravity for the impacts sequence. Now, with gravitational force, the impact sequence
does not end in finite number, as the rod will fall back again and again. We will still
define the clattering sequence as the same number of impact as the case without gravity.

In order to determine the new angles β and γ, we will use the following equations

hI + V I
n T I −

1

2
gT I2

= hII ,

hII + V II
n T II −

1

2
gT II2

= hIII ,

(16)

respectively.
From (16), we use

V I
n =

e − 3 cos2 α

1 + 3 cos2 α
v,

and

T I =
−(α + β)

ΩI
=

1 + 3 cos2 α

6(1 + e) cosα
(α + β)

1

v
.

Hence the new angle relation for first and second impact is expressed as

sin α + 2

(

e − 3 cos2 α

6(1 + e) cosα
(α + β)

)

−
1

2

g

v2

(

1 + 3 cos2 α

6(1 + e) cosα
(α + β)

)2

= sin β. (17)

To derive the relation from second angle to third angle, we use

V II
n =

−(e − 3 cos2 α)(e − 3 cos2 β) + 3(1 + e)2 cosα cosβ

(1 + 3 cos2 α)(1 + 3 cos2 β)
v

and

T II =
β + γ

ΩII
=

−(1 + 3 cos2 α)(1 + 3 cos2 β)

6(1 + e)(cosα + e cosβ)(1 − 3 cosα cosβ)
(β + γ)

1

v
.

Hence

sin β + 2

(

(e − 3 cos2 α)(e − 3 cos2 β) − 3(1 + e)2 cosα cosβ

(1 + 3 cos2 α)(1 + 3 cos2 β)
(β + γ)

)

−
1

2

g

v2

(

−(1 + 3 cos2 α)(1 + 3 cos2 β)

6(1 + e)(cosα + e cosβ)(1 − 3 cosα cosβ)
(β + γ)

)2

= sin γ.

(18)

Using the equations (17) and (18), we can find the angles β and γ, respectively, given
velocity v.

For example, as we are motivated by the cell phone dropping problem, that phone
typically starts a free fall from the pocket. Supposing it drops from a height of one
meter, we can find v and go on to find the impact angles

1

2
g t2 = 1 ⇒ t =

√

2

g
,

v = g t ⇒ v =
√

2 g ⇒
g

v2
=

1

2
.



NONLINEAR DYNAMICS AND SYSTEMS THEORY, 6(1) (2006) 49–62 59

Figure 4.1. The second and the third angles, for total restitution and in both

cases, with and without gravity, as a function of initial angle α.

So, by plugging in 1/2 for g/v2 value in the above equations, we find the impact angles
and impulses as shown in Figures 4.1 – 4.4 below.

As we observe in Figure 4.1 that the second and third angles change very little for
small initial angles by the effect of gravity. Both angles β and γ are smaller in the case
with gravity, and also the second and third clattering moment exists for slightly wider
ranges of intervals of α, than in the case when gravity is not considered. The difference
between the values for β and also the difference of the values for γ, in the cases without
and with gravity, is less than one degree for roughly half of the interval of existence of β
and γ respectively, which is 12 and 25 degrees respectively.

The results for the impulse are similar, in the sense that for the same landmarks (say
at 12 degree and 25 degree), the difference between the values of impulse in the two cases
is less than 0.003 for the second impact, and less than 0.005 for the third impact, while
the ranges of the impulses for both cases are at (1.000, 1.018) for the second impact when
0◦ ≤ β ≤ 12◦, and are at (0.435, 0.500) for the third impact when 0◦ ≤ γ ≤ 25◦, as we
see in Figure 4.2.

For both figures, the discrepancy is present when the clattering sequence takes longer
time to finish.

When the restitution coefficient equals 0.5, we also compare the results.
As we observe in Figure 4.3, that is similar to the cases with total restitution, the

angles β and γ change very little for small angles of α by the gravity effect. Both impact
angles β and γ are smaller in the case with gravity though, and also the second and third
clattering moment exists for a wider interval for α than in the case without gravity. The
difference between the values for β and also the difference for the values for γ, in the
cases without and with gravity, is less than one degree for roughly half of the interval of
existence of β and γ respectively, which is 17 and 23 degrees respectively, comparing to
12 and 25 in the case with total restitution.
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Figure 4.2. The impulses of the first, second and third impact, for total restitu-

tion and in both cases, with and without gravity, are shown as a function of initial

angle α.

Figure 4.3. The second and the third angle for e=0.5, in both cases, with and

without gravity, are shown as a function of initial angle α.
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The results for impulses are also similar, in the sense that for the same landmarks
(at 17 and 23 degree respectively), the difference between the values in the without
gravity/with gravity cases is less than 0.001 for the second impact, and less than 0.01
for the third impact. The ranges of the impulses are both at (0.6563, 0.6593) for the
second impact when 0◦ ≤ β ≤ 17◦, and at (0.1930, 0.2344) for the third impact when
0◦ ≤ β ≤ 23◦, as we observe in Figure 4.4.

Figure 4.4. The impulse of the first, second and third impact, for e=0.5, in both

cases, with and without gravity, is shown as a function of initial angle α.

5 Discussions

The overall aim of this article is to study analytically the issues surrounding clattering.
Our discussions are limited to a rod with a uniformly distributed mass. Our study
confirms the results of Goyal, et al. [1, 2] that if a rod falls to ground in a small angle,
then its clattering impact series has a much larger second impact than the initial one.
Furthermore, our analytic study finds that same phenomenon is happening to angles
as large as 54 degree. In realistic situations, the range might be small when energy
dissipation and softness of the ground are included in consideration as we indicated in
the case study of e = 0.5.

In both situations of e = 0.5 and e = 1.0 without gravity, there is no forth impact.
With gravity, the forth impact will occur, but it does not belong to the same clattering
sequence of the first three impacts. So we restrict our discussion to first three impacts.
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Through the comparison study at Section 4, we find that gravity plays only a minor
role in our clattering problems. Though friction is not considered in this study, we
understand that the fiction is a much complex issues. Some initial study indicated that
with a certain friction on the ground, when drop angle is small, sticking might occur
during the impact process. If the initial rotation is also included, then there is possibility
of revered sliding as well as sticking, as discussed in [8]. These topics as well as the
clattering of multiple-body and flexible body remain subject of further study.
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