




NONLINEAR DYNAMICS AND SYSTEMS THEORY, 5(4) (2005) 407–417 409

The solution to be found is the coordinate of the point P as a function of the transfer
time. The solution is not unique, and a graph including many solutions was published by
Hénon [6]. He plotted η/π (where η is the redefined “eccentric anomaly” of the point P )
against τ/π (where τ is half of the transfer time). Another problem that is considered in
the present research is the calculation of the ∆V and the time required for each of these
transfers, in a search for transfer orbits with small ∆V . The solution consists of plots of
the ∆V against the time required for the transfer (both in canonical units). A detailed
study of the transfer orbits with small ∆V is included.

2.1 Lambert’s problem formulation

A different approach used in the present research formulates Hénon’s problem as a Lam-
bert’s problem. The Lambert’s problem can be defined as [5]:

“An (unperturbed) orbit, about a given inverse-square-law center of force is to be
found connecting two given points, P and Q, with a flight time ∆t (= t2 − t1) that
has been specified. The problem must always have at least one solution and the actual
number, which is denoted by N , depends on the geometry of the problem — it is assumed,
for convenience and with no loss of generality, that t is positive.”

Using this formulation, Hénon’s problem can be defined in the following way: “Find
an unperturbed orbit for M3, around M1, which leaves the point P at t = −τ and goes
to point Q at t = τ”. Since M2 is assumed to have zero mass, it has no participation
in the equations of motion of the system. Its only use is to relate the time τ with the
eccentric anomaly η, in such a way that M3 has the same position as M2 at P and Q at
the times t = −τ and t = τ , respectively.

3 Mathematical Formulation

In terms of mathematical formulation, Hénon’s problem formulated as a Lambert’s prob-
lem can be described as follows. The following information is available:

1. The position of M3 at t = −τ (point P ). It can be specified by the radius
vector R1 and the angle −τ . R1 can be related to −τ by using the equation R1 =
a(1− e2)/(1+e cos(−τ)) for the orbit of M2, since M2 and M3 occupy the same position
at t = −τ .

2. The position of M3 at t = τ (point Q). It can be specified by the radius vector R2
and the angle τ . R2 can be related to τ by using the same equation used in the above
paragraph.

3. The total time for the transfer, ∆t = 2τ . Remember that the angular velocity of
the system is unity, so τ can be considered to be the time as well as the angle.

4. The total angle the spacecraft must travel to go from P to Q, that is called φ. For
the case where the orbit of M3 is elliptic this variable has several possible values. First
of all, there are two possible choices for the transfer: the one that uses the direction
of the shortest possible angle between P and Q (that is called the “short way”), and
the one that uses the direction of the longest possible angle between these two points
(that is called the “long way”). Which one is the shortest or the longest depends on
the value of τ . After considering these two choices, it is also necessary to consider the
possibilities of multi-revolution transfers. In this case, the spacecraft leaves P , makes
one or more complete revolutions around M1, and then goes to Q. Then, by combining
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these two factors, the possible values for φ are: 2τ + 2mπ and 2(π − τ) + 2mπ, where
m is an integer that represents the number of complete revolutions during the transfer.
There is no upper limit for m, and this problem has an infinite number of solutions. In
the case where the orbit of M3 is parabolic or hyperbolic, φ has a unique value. The
multi-revolution transfer does not exist anymore (the orbit is not closed), and the only
direction of transfer that has a solution is the one that makes the spacecraft goes in a
retrograde orbit passing by periapse at t = 0.

The information needed (the solution of the Lambert’s problem) is the Keplerian orbit
that contains the points P and Q and requires the given transfer time ∆t = 2π for a
spacecraft to travel between these two points. This solution can be specified in several
ways. The velocity vectors at P or Q are two possible choices, since the corresponding
position vectors are available. The Keplerian elements of the transfer orbit is also another
possible set of coordinates to express the solution of this problem. In the implementation
developed here, all three sets of coordinates are obtained, since all of them are useful
later.

To obtain the ∆V s, the following steps are taken:
1. Find the radial and transverse velocity components of M2 at P and Q. They are

also the velocity components of M3 just before the first impulse and just after the second
impulse, respectively, since they match their orbits at these points. They are obtained
from the equations [2]:

Vr =
e sin(ν)

√

a(1− e2)
, (1)

Vt =
1 + e cos(ν)
√

a(1− e
2
)
, (2)

where Vr and Vt are the radial and transverse components of the velocity vector, a and
e are the semi-major axis and the eccentricity of the transfer orbit and ν is the true
anomaly of the spacecraft.

2. Find an unperturbed orbit for M3 that allows it to leave the point P at t = −τ
and arrive at point Q at t = τ . This orbit is found by solving the associate Lambert’s
problem, as explained in the next section. At this point the total time for this transfer,
2τ is already known.

3. Find the velocity components at these points (P and Q) in the transfer orbit
determined above. They are the velocity components for M3 just after the first impulse
and just before the second impulse. They are provided by Gooding’s Lambert routine [5].

4. With the velocity components just after and just before both impulses it is possible
to calculate the magnitude of both impulses (∆V1 and ∆V2) and add them together to
get the total impulse required (∆V ) for the transfer.

4 Gooding’s Implementation of the Lambert’s Problem

The solution of the Lambert’s problem, as defined in the previous paragraphs, has been
under investigation for a long time. The approach to solve this problem is to set up a
set of non-linear equations (from the two-body problem) and start an iterative process
to find an orbit that satisfies all the requirements. There is no closed-form solution
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The same comment about other multi-revolution possible transfer orbits with a lower
∆V made in the previous cases are valid here. In this case M2 does not exist as a real
body. It is only a reference point in orbit and, in consequence, its mass is really zero.
For this reason, this example fits very well the model used and the results found here are
expected to be in close agreement with the real world.

Table 6.1 Transfer orbits with ∆V ≤ 0.1 for the transfer in the geosynchronous orbit.

τ/π η/π a e ν/π L P S A ∆Vc ∆T ∆V

3.500 3.0000 1.1081 0.0976 3.0000 0 1 1 0 0.095 3.49 292

3.500 4.0000 0.9149 0.0931 4.0000 0 0 1 0 0.095 3.49 292

4.500 4.0000 1.0816 0.0755 4.0000 0 0 1 1 0.074 4.49 228

4.500 5.0000 0.9322 0.0727 5.0000 0 1 1 1 0.074 4.49 228

5.500 5.0000 1.0656 0.0616 5.0000 0 1 1 0 0.061 5.49 188

5.500 6.0000 0.9437 0.0597 6.0000 0 0 1 0 0.061 5.49 188

6.500 6.0000 1.0548 0.0520 6.0000 0 0 1 1 0.051 6.49 157

The symbols are the same ones used in the previous tables.

7 Conclusions

The problem previously called “consecutive collision orbits” in the three-body problem is
formulated as a problem of transfer orbits from one body back to the same body. Using
this approach, Hénon’s problem became a special case of the Lambert’s problem.

Gooding’s implementation of the Lambert’s problem [5] is used to solve this problem
with great success.

The ∆V s and the transfer time required for these transfers are calculated. Among a
large number of transfer orbits, a small family is found, such that the ∆V required for
the transfer is very small. These orbits and their properties are shown in detail.

A practical applications for these orbits are studied in detail: a transfer for a satellite
from a point in a circular geosynchronous orbit to another point in this same orbit, 180
degrees ahead of its initial point.

The possibilities of transfers like this one is open for several types of missions and the
algorithm developed here can be used to relocate a satellite to a different position in one
orbit.
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