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Abstract: In this paper we study the periodic solutions of an autonomous
Hamiltonian system

(M) &= JH'(z)

where H is convex and superquadratic.

We prove by using the Ambrosetti—-Rabinowitz theorem and perturbation
techniques that for all T > 0 the system (H) has a nontrivial T-periodic
solution.
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1 Introduction

In this paper we consider the Hamiltonian system:
(H) &= JH' (x)

where H: R?N — R is a continuously differentiable function and

(0 —Iy
(o)
is the standard symplectic matrix.

In 1979, under the following assumptions:

(1) H is strictly convex,

(2) Vo e R*N, H(x) > H(0

(3) v > 2: Vm€R2N H’(m)az>7H( )
(4) 3k >0: Vo € R*N, H(z) < k|2,
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Ekeland in [1] proved that the system () has for any T > 0 at least one nonconstant

T-periodic solution.

In the present paper, we try to find the same result under some more general hypothe-
ses. Precisely, we assume that H satisfies the following hypotheses:

(H1) H is convex;
(Hy) Yz € R?N, . #0, H(z) > H(0) = 0;
(H3) there exist a > 2 and (> 2 such that:

V(p.q) € R*N, H(p,q) <

[@5)
SIS

R+

(Hy) There exists [ > 0 such that V(p,q) € R?N

[Hy(pa)| <1 (1+1p°7" + gl

|Hy(p ) < 1(1+ gl + [p|°

(Hs) there exist m >0, n > 0 such that ¥Y(p,q) € R?N

|H,(p,q)| = mlp|*~" —n.
|H)(p,q)| > ml|q|®~" —n.

Ezample 1.1 This is an example of Hamiltonian H

1
(p,q)p +

(a—1)

B

o o D
5ag PO

@

).
).

—1)
B

which verifies the hypotheses

(Hy)—(Hs). Let G, K: RY — R be two functions of class C!, convex such that:

Vo e RN,

x#0, G(z)>G(0)=0,

Vz € RV, lG'(x)glc > G(x), %K’(m
a

Ja,b>0: Yz e R, G(z)<alz|*,

K(z) > K(0) =0,

)z = K(z),

K(z) < blz|°.

Then the Hamiltonian H(p, q) = G(p) + K(q), verifies the hypotheses (Hy)— (Hs).

Our main result is the following.

Theorem 1.1 Under the hypotheses (Hy) —(Hs), the

system (H) possesses for any

T > 0 a non constant T-periodic solution. Moreover, the energy h verifies the condition:

1

2

1
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b2T
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=min{H (p,q), |p|* + |¢|® = 1}.
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2 Preliminaries

Definition 2.1 Let £ be a Banach space and f: E — R be a function of class C*.
The function f satisfies the Palais-Smale condition (PS) if every sequence (x,) such
that (f(x,)) is bounded and f'(x,) — 0 as n goes to infinity, possesses a convergent
subsequence.

Theorem 2.1 (Ambrosetti-Rabinowitz Theorem) [7] Let E be a Banach space and
f: E — R be a function of class C*. Assume that:
(i) there exists a >0 such that:

m(a) = inf{f(z): ||z = a} > f(0),

(i) there exists z € E such that ||z]| > a and f(z) < m(w),
(iii) f satisfies the Palais-Smale condition (PS).

Then there exists T € E such that f'(z) =0 and f(z) > m(«). Moreover

1(@) = inf max f(v(2)),

where ' = {y € C([0,1], E): v(0) =0 et v(1) = z}.
We have the version of the theorem of Krasnoselskii [5].

Theorem 2.2 Let Q be a measurable bounded set of R™ and f: Qx RN x RN — R
be a function verifying the following condition.

For almost every t € Q, f(t,-,-) is convez, of class C*, and that for all (x,y) €
RN x RN, f(-,x,y) is measurable.

Let o, > 1 be two reals, we assume that there evist ¢ € LY(0,T;RN), i €
LP(0,T;RY), w € L* (0,T;RN), © € L?(0,T;RN) where o' +ax' =1, g~ +
Bt =1, such that

/\ftf 1) dt < oo, /If a(t)) dt < oo,

and there exists a constant a > 0 such that for all t € Q and (p,q) € RV,

of
7
of
a

(a—1)

2

(t,p. q>| < amax{1, [p/~, |q’?

(8-1) _
(t,p,q)‘ﬁamaX{L P 1glP),

so the functional
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is of class C* and

P l(t) = 507 t.pl0).a(t).

3 Proof of Theorem 1.1

We will proceed by successive lemmas.
The hypothesis (Hs) is equivalent to the following

(He) VA>1, Y(p,q) € R*™, HW\/p, \'Pq) > XH(p,q).

Let ey € ]0,m[ be a fixed real. For all 0 < € < ¢y, we consider the Hamiltonian

He(p,q) = H(p,q) + (|p|* + [q]*).

It’s clear that H, is strictly convex and verifies (Hz)— (Hs).

Set
ag b e
== ——i—e le=l4+¢, m¢=m—e.

a p
Lemma 3.1 Let a* and B* be such that é i = % + BL* =1, so
(7) H? is of class C*;
(8) V(r,s) € R?N, L (H*) (r s)r 4 4 3= (HZ)y(r, s)s < H ™ (r, 8);
(9) He(p,q) > pl“ +1g® > 1, He(p, q) > “=(Ip|* +|g|” — 1)
for all (p,q) € R*N;
(10) ¥V (r,s) € RN, H*(r,s) < Ir|” + ﬁ bﬁ* |58

(11) there exists ke > 0 such that V(p, q) € R2N H(p,q) < kc(Ip|* + |q|®);
(12) VY (r,s) € R?*N H*(r,s) > W s|%", where c. and d. are given

a®

@ a* aa*

r|a

g dﬁ*

o dﬁ
by %:ﬁ:ké.

Proof (9) Set S = {(p,q) € R*™: |p|* +q|® = 1}. For (p,q) € R?>N such that
Pl +1gl? > 1, we set 5= lp|" +|gl?, so (s~/*p, s1/7g) € § and by (Hg) we have

Hc(p,q) > s min {H(p,q)}.

(p,q)

For |p|®+|q|® < 1, we have H.(p,q) > (|p\a +]g|® —1). This is the desired result.
(7) By the inequality (9) we have for |p|“ +1q/® >1

He(p.q) . a“( pl*, _ld” )
Ipl +1lgl = a \|pl+lgl  I|p| +lql
and since «, 3 > 1, so
Hc(p,q) _

lim
(p.a)|—oo [p| +la]
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Since H, is strictly convex and of class C', so by a result of convex analysis the conjugate
H? of H, is of class C*.

(8) Let (r,s) € R*N and (p,q) = H}'(r,s) = (H.*).(r,s),(H.*),(r,s)), so by the
Fenchel reciprocity and the hypothesis (H3) we obtain

1) 2 (1= D)+ (15 )t

hence the result.
(10) Let (r,s) € R?N, we have

H:(’I‘,S) = sup {pr+5q7He(p7Q)}a
(p,.@) RN

thus by the inequality (9)

i} o b al
HA(rs)<  sup {pr+sq—|p —q|ﬁ+}
(p,q)ER2N B o

S
a*al

* 1 * a
|+ 7@*|3|ﬁ +
f*be
(11) For (p,q) € R?*N such that [p|® + |g|® > 1, there exists 6 € |0, 1[ such that

fe (0(p,q))p + %(9(% 9))q

H =
(p.q) o a4

<122 (65 9))| 1p] + | 22 (0p.0)) | I
< 6p pa P 3(] p, q

so by the hypothesis (Hy)

1)
He(p,0) <1 (Ip] + ol + [pllal” = + lal + lal” + lallpl* )

Ip|* IqIﬁ lq|? Ipo‘>
a B B*

(p| g+ ol 4+ 1l +

So there exists l;;e > 0 such that

H(p,q) < k(Ip|* + |q|?).

For (p,q) € R*V such that ,s = [p|* + |q|® < 1, we have by (Hp)

H(p,q) < sH(s~/°, 571/7)
< max, {H(p,q)} < k(Ip|* + |q|?),

where k = max {H(p,q)}.
(p9)€s

Hence, by picking k. = max(k, k + €), we obtain the result.
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(12) Let (r,s) € R*,
Hi(r,s)= sup A{pr+sq— Hc(p,q)}

(p,a) RN
> sup  {pr+sq—ke(|p|* +1a]”)}
(p,@)ER?N
o 1 8
> — I+ —5lsl”
aree® B*de
Denote for p a real > 1
T
LS—{pEL“OTRN//p }———???
0
We define on L§~ x Lg " the dual action functional f. by
. T T
felp,a) = §/<J(p, q)m(p,Q)>dt+/H§(p, q) dt,
0 0
where
t ) T
()t = [wtsyds = 1 [t [y(s)as
0 0o 0

is the primitive of y with zero mean.
We are interested in the search of a non trivial critical point of f., by using the
Ambrosetti-Rabinowitz theorem.

Lemma 3.2 f. is of class C* and for all (p,q) € L§ x Lg*, there exists (&, pe) €
RN x RN such that

Jip.a) = —Jm(p,q) + HZ (p,q) + (&, pe)-
The proof is a simple application of the version of the theorem of Krasnoselskii.
Lemma 3.3 There exist p >0 and v >0 such that
1 D o= o =P = fe(p,q) 2 -
0 < |l(p, q)HLg*ng* <p= fp,q) > f(0,0)=0

Proof Tt’s easy to verify that for all (p,q) € L§ x Lg* we have

T T
1.1
/ < p(t ) - dt‘ = ‘ — / < mp(t),q(t) = dt| <T=T5(|p|3ex + |q|3s-).
0 0
So, by the inequality (12) for all € € ]0, €] and (p,q) € L§ x Lg*,
1 1 1 *
> —Tat5(|p2 .- 20+ ——|p|%as + .
fe(p,q) > (Iplpax + lalgs-) + o plT > dg* lal7
141 1 . 1 "
> —TO‘+B|p|2La* + =Pl — T“+ﬁ|CI|L5* + 5*|Q|§ﬁ*
CEO 6 d60

hence, since a* < 2, % < 2, the desired result is obtained.
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Lemma 3.4 There exists (po,qo) € (L§ X Lg*) \ {(0,0)} such that f.(po,qo) = 0.
Proof Let Z = (p,q) € R*N, setting w(t) = Zsin (— 25t) + JZ cos (25t), we have

Vte[0,T), |wt)®=12]*=|p* +|ql*.
Thus
1 ’ T ’ T2
- — dt = —— t|?dt = ——|Z|%.
2/-< Jrw,w = 47T/|<,u()| 471_| |
0 0

So, it follows by the inequality (10), that for all s > 0 we have
T

a*a.®

T2 . * * * a®
fe(sw) < 7—52|Z|2 + sT|Z1* + _gP |Z|B 4+ =T
47 «

Since a* < 2 and (* < 2, we obtain the result by applying the Lemma 3.3.

Lemma 3.5 f. verifies the Palais—Smale condition.

Proof Let (wn)nen = ((Pn,qn))nen a sequence of L§ x Lg verifying (fe(wn))n is
bounded and f!(w,,) converges to zero as n goes to infinity. So, there exist two constants
A and B such that

A< _%/ < Jrwn(t),w(t) > dt+/H:(wn(t))dt < B, (13)
0 0
and
(_ﬂ'qn,ﬂ'pn) + ((HE*);(wn), (HE*);(wn)) + (fe,nvﬂle,n) = ()\nvnn) (14)

converges to zero in LOO‘* X Lg T asn goes to infinity.
By taking 7p, and mg, from the expression (14) and substituting it into (13), we
obtain:

T
<+ *)/H* w’ﬂ dt+7*/[-<77n7Qn>'_‘<Me,n7Qn >']dt
B B
1 ) 1 T
_§/<(He*);(wn),qn>dt+5/[< Ay Pn = — = &eny P > dt
0 0
1 ’ 1 1
- H < B,
[ =) p i < ( ﬂ*>

0

thus

(;ﬁ—i—;‘)/TH:(wn(t))dt—/T[al*<(H€ )p(w )pn>+%<(H )’(wn),qn>}dt
0 0

T
1 1
+*/'</\n7pn>'dt+*/'<77naQn>'dt<( *>B
ar ) B g
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We deduce by the inequality (8) that:

T
11 . 1 1
(2 + 5 1) [ Hu@)at = L alueblzer = 3 bluslanl oo
0

O[* I@*

1 1
<(=+—)B
<(a+7)

1

Hence, since — + ,8% —1 >0 and by the inequality (12), we have

L ) e =il | = S alie Plier — — [l ool
a* 3 arcr Plrax ﬂ*d?* d\ys* oF Lo |PlLe 3 Mn|Ls|dn|Ls

1 1
< <04*+5*>B.

Since a*,* < 2 and |A\;|pe — 0, |9n|ps — 0 as n — oo, we deduce that there exists
a constant d > 0 such that for all n € N |p,|e*, |gn|s= < d and up to a subsequence,

we may assume that (p,,q,) is weakly convergent to w = (p,q) in L§ x Lg*.
Consider the set

D = {~J7r(pn,qn), n € N} C C([0,T], R*M).

By (Hs), we verify that (HE*/ (Pn,qn)) is bounded in Lg x Li and since (An,7,) goes
to zero in LT x Lg as n goes to infinity, so by the formula (14), (&cn,, the,n,) is bounded
in R?N and therefore we can suppose that (&, , fen,) converges to (&, ).

Finally, since

H: (pnk7an) = (/\nkannk) + Jﬂ-(pnk7an) - (Ee,nk7,u'e,nk)7

we have by the Fenchel reciprocity:

(pnk bl an) == Hé((ATLk b nnk) + Jﬂ'(pnk I’ an) - (ge,nk bl ,Ue,nk ))a

By (H,) and the version of the theorem of Krasnoselskii, the map (u,v) — H/(u,v)
defined on L§ x Lg into L® x L? is continuous. Thus the sequence (Prgs @ny) =
H (M i)+ IT (D> @y ) — Ecomps Hemy,)) is convergent in L x LP" and the lemma
is proved.

The functional f. verifies all the hypotheses of the Ambrosetti-Rabinowitz theorem,
consequently there exists 7. = (pe,Gc) € L§ X Lg such that

and
fe (ge) >7.
By the Lemma 3.2, there exists (&, u.) € R*V such that

0= —Jﬂ'(ﬂg) + He*/(ﬂe) + (557#5)7
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which gives by the Fenchel reciprocity
Je = Hi(Jm(Fe) — (&, he))-
Setting Z. = (te, Ve) = J7(Ye) — (&, pte), we have
Te = (e, V) = J(Pe) = TH((te, 0e) = JH{(Zc)-
Thus the Hamiltonian system
(He) & = JH(x)
possesses a T-periodic solution.

Lemma 3.6 Let h. be the energy of the found solution T.. Then

o 8
a+ 1 1 4 =2 1 1 4 P2 a+pB af
heﬁaﬁ—a—ﬁ[@‘aﬂm] “(3-5) %) ]+aﬂ—a—ﬂa'(15)

Proof We have

- T
: 1 Ye) = l L 1 1=\ = B B
( + /B)fe(ye> = ( + ﬂ) 0/2 < He(l'e)al‘e = dt O/HE('TE) dt‘|
1 [ 1 ’ 1 ) T
= O‘o/ < (He)u(Te), ue >dt+50/< (He )y (Te), ve >dt—(a+/8)0/H€(xe)dt

which implies that

On the other hand, by the Ambrosetti-Rabinowitz theorem we have

«(ye) = inf e\"Ve y
Je(ge) = Inf, max fe(ve(s)
where T = {y € C([0,T], L§” x Ly )/7(0) =0 and ~(1) = (po,qo)}-
For s € R, we set w,(t) = sw(t) where w is defined in the proof of Lemma 3.4. We
have

fe(@e) < sup fe(s(po,qo)) < sup fe(sw)
s€10,1] $>0

T x X « . o
< sup{ — =2 4 5120+ — 5712 + aeT}
$>0 m *ag B*bE @
2 T . . «
<sup{32|22+ —s* | Z|* }—I—CLET
5>0 a*a¥ o

T? T 50,5
—l—sup{ - 8782|Z|2+ o VA }

€
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Setting

et T , T g5
o o _ B 8
— —=s" 121, (s) = — 2P+ 57121

T2 2 12 T
=-—s|z
Plo) = ~ o1+ o .

So ¢ attains its maximum at

@l
Il

Ar 1T 1
a® T |Z|’

and 1 attains its maximum at

VAl

{ Ar rlﬁ* 1
LT 1Z|

A simple computation gives

and

SO
B

~ 1 IN\[ 47 ]5=2 /1 1\[ 4r 172] a
fe(yf)STKfa){a?*T] +<2‘,3)L§*T] ]+QT~

Consequently

a B8
a+ 0 1 1 4 |2 1 1 4 |72 a+p  a?
heﬁaﬁaﬂ[(z‘aﬂag*ﬂ +(2_5)L}?*T} }Jraﬂaﬂa

and the Lemma 3.6 is proved.
Lemma 3.7 The set E={7.: 0<e<ey} is relatively compact in C([0,T], R*N).
Proof We have for all € € ]0, eg],

aa aOt «
0< — < =< —+e¢.
o o o

Thus, by (15), there exists R € R’ such that
H(z(t)) < R

for all t € [0,7] and € € ]0, €g].
Since lim H(x) = 400, so there exists A € RY such that for all ¢t € [0,7] and

|z]— o0
€ € 10,e] Zc(t) € B(0,\). Consequently, for all ¢t € [0,T], the set E(t) is relatively
compact in R?N.



NONLINEAR DYNAMICS AND SYSTEMS THEORY, 5(4) (2005) 395-405 405

On the other hand, since H’ is continuous, there exists 1 > 0 independent of € such
that for all € €]0, €] and t,t' € [0,T)], ||Z(t) —Z(t")|| < n|t —t'|*/2. Thus E is equicon-
tinuous. Hence, by the theorem of Ascoli, E is relatively compact in C([0,T], R*V).

So, we may extract from E a subsequence (Z, ), €, — 0, which is convergent uniformly
in [0,7T]. Let Z = (@,v) be its limit; we have

Fe, = JH! (Zc,) = J(H'(Ze,) + en(a]c, |* @, flo., " *5.,))
— JH'(1,v) uniformly,

which implies that

r=JH'(z).

So it’s clear that H7 (p,,qc,) is convergent uniformly to H*(Z) and

0<y< lim fe,(Fe,) = f(2).

Since f(0,0) =0,s0 T # 0 and T is not constant. B B
Finally, we have lim a., = a and lim b, = b, thus lim h., = h and so h =

H(z) < h.

n—oo n—0o0 n—0o0

References

1
[2
3
[

]
]
]
4]

Aubin, J.P. and Ekelend, 1. Applied Nonlinear Analysis. Wiley, 1986.

Aze, D. and Blot, J. Systémes Hamiltoniens: Leurs Solutions Périodiques. Cedic, 1982.
Ekeland, I. and Temam, R. Analyse Convexe et Problémes Variationnels. Paris, 1974.
Felmer, P.L. Periodic solutions of super-quadratic Hamiltonian systems. J. Diff. Eqns
102 (1993) 188-207.

Krasnosel’skii, M.A. Topological Methods in the Theory of Nonlinear Integral Equations.
Pergamon Press, 1964.

Kunze, M. Periodic solutions of a singular Lagrangian system related to dispersion-
managed fiber communication devices. Nonlinear Dynamics and Systems Theory 1(2)
(2001) 159-168.

Mawhin, J. and Willem, M. Critical Point Theory and Hamiltonian System. Springer—
Verlag, 1987.

Rabinowitz, P.H. Minimax methods in critical point theory with application to differential
equations. CBMS Reg. Conf. Ser. in Math. 65, Amer. Math. Soc., Providence, R.I., 1986.
Timoumi, M. Oscillations de systémes Hamiltoniens surquadratiques non coercitifs. De-
monstratio Mathématica XXVII(2) (1994) 293 -300.





