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Ekeland in [1] proved that the system (H) has for any T > 0 at least one nonconstant
T -periodic solution.

In the present paper, we try to find the same result under some more general hypothe-
ses. Precisely, we assume that H satisfies the following hypotheses:

(H1) H is convex;
(H2) ∀x ∈ R2N , x 6= 0, H(x) > H(0) = 0;
(H3) there exist α > 2 and β > 2 such that:

∀ (p, q) ∈ R2N , H(p, q) ≤ 1
α

∂H
∂p

(p, q)p +
1
β

∂H
∂q

(p, q)q;

(H4) There exists l > 0 such that ∀ (p, q) ∈ R2N

|H ′
p(p, q)| ≤ l

(

1 + |p|α−1 + |q|β
(α−1)

α

)

,

|H ′
q(p, q)| ≤ l

(

1 + |q|β−1 + |p|α
(β−1)

β

)

;

(H5) there exist m > 0, n > 0 such that ∀(p, q) ∈ R2N

|H ′
p(p, q)| ≥ m|p|α−1 − n.

|H ′
q(p, q)| ≥ m|q|β−1 − n.

Example 1.1 This is an example of Hamiltonian H which verifies the hypotheses
(H1) – (H5). Let G,K : RN → R be two functions of class C1, convex such that:

∀x ∈ RN , x 6= 0, G(x) > G(0) = 0, K(x) > K(0) = 0,

∀x ∈ RN ,
1
α

G′(x)x ≥ G(x),
1
β

K ′(x)x ≥ K(x),

∃ a, b > 0: ∀x ∈ RN , G(x) ≤ a|x|α, K(x) ≤ b|x|β .

Then the Hamiltonian H(p, q) = G(p) + K(q), verifies the hypotheses (H1) – (H5).

Our main result is the following.

Theorem 1.1 Under the hypotheses (H1) – (H5), the system (H) possesses for any
T > 0 a non constant T -periodic solution. Moreover, the energy h verifies the condition:

h ≤ α + β
αβ − α− β

[

(

1
2
− 1

α

)[

4π
a2T

] α
α−2

+
(

1
2
− 1

β

)[

4π
b2T

]
β

β−2
]

+
(α + β)aα

α(αβ − α− β)
= h̄

with
aα

α
=

bβ

β
= min{H(p, q), |p|α + |q|β = 1}.
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2 Preliminaries

Definition 2.1 Let E be a Banach space and f : E → R be a function of class C1.
The function f satisfies the Palais–Smale condition (PS) if every sequence (xn) such
that (f(xn)) is bounded and f ′(xn) → 0 as n goes to infinity, possesses a convergent
subsequence.

Theorem 2.1 (Ambrosetti–Rabinowitz Theorem) [7] Let E be a Banach space and
f : E → R be a function of class C1. Assume that:

(i) there exists α > 0 such that:

m(α) = inf{f(x) : ‖x‖ = α} > f(0),

(ii) there exists z ∈ E such that ‖z‖ ≥ α and f(z) ≤ m(α),
(iii) f satisfies the Palais–Smale condition (PS).

Then there exists x̄ ∈ E such that f ′(x̄) = 0 and f(x̄) ≥ m(α). Moreover

f(x̄) = inf
γ∈Γ

max
t∈[0,1]

f(γ(t)),

where Γ = {γ ∈ C([0, 1], E) : γ(0) = 0 et γ(1) = z}.

We have the version of the theorem of Krasnoselskii [5].

Theorem 2.2 Let Ω be a measurable bounded set of Rn and f : Ω×RN ×RN → R
be a function verifying the following condition.

For almost every t ∈ Ω, f(t, ·, ·) is convex, of class C1, and that for all (x, y) ∈
RN ×RN , f(·, x, y) is measurable.

Let α, β > 1 be two reals, we assume that there exist ξ̄ ∈ Lα(0, T ;RN ), µ̄ ∈
Lβ(0, T ;RN ), ū ∈ Lα∗(0, T ;RN ), v̄ ∈ Lβ∗(0, T ;RN ) where α−1 + α∗−1 = 1, β−1 +
β∗−1 = 1, such that

∫

Ω

|f(t, ξ̄(t), µ̄(t))| dt < ∞,
∫

Ω

|f∗(t, ū(t), v̄(t)) dt < ∞,

and there exists a constant a > 0 such that for all t ∈ Ω and (p, q) ∈ R2N ,

∣

∣

∣

∣

∂f
∂p

(t, p, q)
∣

∣

∣

∣

≤ amax{1, |p|α−1, |q|β
(α−1)

α },
∣

∣

∣

∣

∂f
∂q

(t, p, q)
∣

∣

∣

∣

≤ amax{1, |p|α
(β−1)

β , |q|β−1},

so the functional

F : Lα × Lβ → R,

(p, q) 7→
∫

Ω

f(t, p(t), q(t)) dt
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is of class C1 and

[F ′(p, q)](t) =
∂f

∂(p, q)
(t, p(t), q(t)).

3 Proof of Theorem 1.1

We will proceed by successive lemmas.
The hypothesis (H3) is equivalent to the following

(H6) ∀λ ≥ 1, ∀ (p, q) ∈ R2N , H(λ1/αp, λ1/βq) ≥ λH(p, q).

Let ε0 ∈ ]0,m[ be a fixed real. For all 0 < ε ≤ ε0, we consider the Hamiltonian

Hε(p, q) = H(p, q) + ε(|p|α + |q|β).

It’s clear that Hε is strictly convex and verifies (H2) – (H5).
Set

aα
ε

α
=

bβ
ε

β
=

aα

α
+ ε, lε = l + ε, mε = m− ε.

Lemma 3.1 Let α∗ and β∗ be such that 1
α + 1

α∗ = 1
β + 1

β∗ = 1, so

(7) H∗
ε is of class C1;

(8) ∀(r, s) ∈ R2N , 1
α∗ (H

∗
ε )′r(r, s)r + 1

β∗ (H
∗
ε )′s(r, s)s ≤ Hε

∗(r, s);

(9) Hε(p, q) ≥ aε
α

α |p|α + bε
β

β |q|β for all |p|α + |q|β ≥ 1, Hε(p, q) ≥ aα
ε
α (|p|α + |q|β − 1)

for all (p, q) ∈ R2N ;
(10) ∀ (r, s) ∈ R2N , H∗

ε (r, s) ≤ aα
ε
α + 1

α∗aα∗
ε
|r|α∗ + 1

β∗bβ∗
ε
|s|β∗ ;

(11) there exists kε > 0 such that ∀ (p, q) ∈ R2N , Hε(p, q) ≤ kε(|p|α + |q|β);
(12) ∀ (r, s) ∈ R2N H∗

ε (r, s) ≥ 1
α∗cα∗

ε
|r|α∗ + 1

β∗dβ∗
ε
|s|β∗ , where cε and dε are given

by cα
ε
α = dβ

ε
β = kε.

Proof (9) Set S = {(p, q) ∈ R2N : |p|α + |q|β = 1}. For (p, q) ∈ R2N such that
|p|α + |q|β ≥ 1, we set s = |p|α + |q|β , so (s−1/αp, s−1/βq) ∈ S and by (H6) we have

Hε(p, q) ≥ s min
(p,q)∈S

{Hε(p, q)}.

For |p|α + |q|β ≤ 1, we have Hε(p, q) ≥ 0 ≥ aα
ε
α (|p|α + |q|β−1). This is the desired result.

(7) By the inequality (9) we have for |p|α + |q|β ≥ 1

Hε(p, q)
|p|+ |q|

≥ aα
ε

α

(

|p|α

|p|+ |q|
+

|q|β

|p|+ |q|

)

and since α, β > 1, so

lim
|(p,q)|→∞

Hε(p, q)
|p|+ |q|

= +∞.
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Since Hε is strictly convex and of class C1, so by a result of convex analysis the conjugate
H∗

ε of Hε is of class C1.
(8) Let (r, s) ∈ R2N and (p, q) = H∗

ε
′(r, s) = ((Hε

∗)′r(r, s), (Hε
∗)′s(r, s)), so by the

Fenchel reciprocity and the hypothesis (H3) we obtain

Hε
∗(r, s) ≥

(

1− 1
α

)

(Hε
∗)′r(r, s)r +

(

1− 1
β

)

(Hε
∗)′s(r, s)s,

hence the result.
(10) Let (r, s) ∈ R2N , we have

H∗
ε (r, s) = sup

(p,q)∈R2N
{pr + sq −Hε(p, q)},

thus by the inequality (9)

Hε
∗(r, s) ≤ sup

(p,q)∈R2N

{

pr + sq − aα
ε

α
|p|α − bβ

ε

β
|q|β +

aα
ε

α

}

≤ 1
α∗aα∗

ε
|r|α

∗
+

1

β∗bβ∗
ε
|s|β

∗
+

aα
ε

α
.

(11) For (p, q) ∈ R2N such that |p|α + |q|β ≥ 1, there exists θ ∈ ]0, 1[ such that

Hε(p, q) =
∂Hε

∂p
(θ(p, q))p +

∂Hε

∂q
(θ(p, q))q

≤
∣

∣

∣

∣

∂Hε

∂p
(θ(p, q))

∣

∣

∣

∣

|p|+
∣

∣

∣

∣

∂Hε

∂q
(θ(p, q))

∣

∣

∣

∣

|q|

so by the hypothesis (H4)

Hε(p, q) ≤ lε
(

|p|+ |p|α + |p‖q|β
(α−1)

α + |q|+ |q|β + |q‖p|α
(β−1)

β

)

≤ lε

(

|p|+ |q|+ |p|α + |q|β +
|p|α

α
+
|q|β

α∗
+
|q|β

β
+
|p|α

β∗

)

.

So there exists k̃ε > 0 such that

Hε(p, q) ≤ k̃ε(|p|α + |q|β).

For (p, q) ∈ R2N such that , s = |p|α + |q|β ≤ 1, we have by (H6)

H(p, q) ≤ sH(s−1/α, s−1/β)

≤ s max
(p,q)∈S

{H(p, q)} ≤ k(|p|α + |q|β),

where k = max
(p,q)∈S

{H(p, q)}.

Hence, by picking kε = max(k̃ε, k + ε), we obtain the result.



400 N. KALLEL AND M. TIMOUMI

(12) Let (r, s) ∈ R2N ,

H∗
ε (r, s) = sup

(p,q)∈R2N
{pr + sq −Hε(p, q)}

≥ sup
(p,q)∈R2N

{pr + sq − kε(|p|α + |q|β)}

≥ 1
α∗cα∗

ε
|r|α

∗
+

1

β∗dβ∗
ε
|s|β

∗
.

Denote for µ a real ≥ 1

Lµ
0 =

{

p ∈ Lµ(0, T ; RN )/

T
∫

0

p(t)dt = 0
}

.−−−???

We define on Lα∗
0 × Lβ∗

0 the dual action functional fε by

fε(p, q) =
1
2

T
∫

0

〈J(p, q), π(p, q)〉dt +

T
∫

0

H∗
ε (p, q) dt,

where

(πy)(t) =

t
∫

0

y(s) ds− 1
T

T
∫

0

dt

t
∫

0

y(s) ds

is the primitive of y with zero mean.
We are interested in the search of a non trivial critical point of fε, by using the

Ambrosetti–Rabinowitz theorem.

Lemma 3.2 fε is of class C1 and for all (p, q) ∈ Lα∗
0 × Lβ∗

0 , there exists (ξε, µε) ∈
RN ×RN such that

f ′ε(p, q) = −Jπ(p, q) + H∗′
ε (p, q) + (ξε, µε).

The proof is a simple application of the version of the theorem of Krasnoselskii.

Lemma 3.3 There exist ρ > 0 and γ > 0 such that

‖(p, q)‖Lα∗
0 ×Lβ∗

0
= ρ ⇒ fε(p, q) ≥ γ.

0 < ‖(p, q)‖Lα∗
0 ×Lβ∗

0
≤ ρ ⇒ fε(p, q) > fε(0, 0) = 0

Proof It’s easy to verify that for all (p, q) ∈ Lα∗
0 × Lβ∗

0 we have
∣

∣

∣

∣

∣

T
∫

0

≺ p(t), πq(t) � dt
∣

∣

∣

∣

=

∣

∣

∣

∣

∣

−
T

∫

0

≺ πp(t), q(t) � dt

∣

∣

∣

∣

∣

≤ T
1
α + 1

β (|p|2Lα∗ + |q|2Lβ∗ ).

So, by the inequality (12) for all ε ∈ ]0, ε0] and (p, q) ∈ Lα∗
0 × Lβ∗

0 ,

fε(p, q) ≥ −T
1
α + 1

β (|p|2Lα∗ + |q|2Lβ∗ ) +
1

α∗cα∗
ε0
|p|α

∗

Lα∗ +
1

β∗dβ∗
ε0

|q|β
∗

Lβ∗

≥ −T
1
α + 1

β |p|2Lα∗ +
1

α∗cα∗
ε0
|p|α

∗

Lα∗ − T
1
α + 1

β |q|2Lβ∗ +
1

β∗dβ∗
ε0

|q|β
∗

Lβ∗

hence, since α∗ < 2, β∗ < 2, the desired result is obtained.
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Lemma 3.4 There exists (p0, q0) ∈ (Lα∗
0 × Lβ∗

0 ) \ {(0, 0)} such that fε(p0, q0) = 0.

Proof Let Z = (p, q) ∈ R2N , setting ω(t) = Z sin
(

− 2π
T t

)

+ JZ cos
( 2π

T t
)

, we have

∀ t ∈ [0, T ], |ω(t)|2 = |Z|2 = |p|2 + |q|2.

Thus

1
2

T
∫

0

≺ −Jπω, ω � dt = − T
4π

T
∫

0

|ω(t)|2dt = −T 2

4π
|Z|2.

So, it follows by the inequality (10), that for all s ≥ 0 we have

fε(sω) ≤ −T 2

4π
s2|Z|2 +

T
α∗aε

α∗ sα∗ |Z|α
∗

+
T

β∗bβ∗
ε

sβ∗ |Z|β
∗

+
aα

ε

α
T.

Since α∗ < 2 and β∗ < 2, we obtain the result by applying the Lemma 3.3.

Lemma 3.5 fε verifies the Palais–Smale condition.

Proof Let (ωn)n∈N = ((pn, qn))n∈N a sequence of Lα∗
0 ×Lβ∗

0 verifying (fε(ωn))n is
bounded and f ′ε(ωn) converges to zero as n goes to infinity. So, there exist two constants
A and B such that

A ≤ −1
2

T
∫

0

≺ Jπωn(t), ω(t) � dt +

T
∫

0

H∗
ε (ωn(t)) dt ≤ B, (13)

and
(−πqn, πpn) + ((Hε

∗)′p(ωn), (Hε
∗)′q(ωn)) + (ξε,n, µε,n) = (λn, ηn) (14)

converges to zero in Lα∗
0 × Lβ∗

0 as n goes to infinity.
By taking πpn and πqn from the expression (14) and substituting it into (13), we

obtain:

(

1
α∗

+
1
β∗

)
T

∫

0

H∗
ε (ωn(t)) dt +

1
β∗

T
∫

0

[≺ ηn, qn � − ≺ µε,n, qn �] dt

− 1
β∗

T
∫

0

≺ (Hε
∗)′q(ωn), qn � dt +

1
α∗

T
∫

0

[≺ λn, pn � − ≺ ξε,n, pn �] dt

− 1
α∗

T
∫

0

≺ (Hε
∗)′p(ωn), pn � dt ≤

(

1
α∗

+
1
β∗

)

B,

thus

(

1
α∗

+
1
β∗

)
T

∫

0

H∗
ε (ωn(t)) dt−

T
∫

0

[

1
α∗

≺ (Hε
∗)′p(ωn), pn � +

1
β∗

≺ (Hε
∗)′q(ωn), qn �

]

dt

+
1
α∗

T
∫

0

≺ λn, pn � dt +
1
β∗

T
∫

0

≺ ηn, qn � dt ≤
(

1
α∗

+
1
β∗

)

B.
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We deduce by the inequality (8) that:

(

1
α∗

+
1
β∗

− 1
)

T
∫

0

H∗
ε (ωn(t)) dt− 1

α∗
|λn|Lα |pn|Lα∗ −

1
β∗
|ηn|Lβ |qn|Lβ∗

≤
(

1
α∗

+
1
β∗

)

B.

Hence, since 1
α∗ + 1

β∗ − 1 > 0 and by the inequality (12), we have

(

1
α∗

+
1
β∗

− 1
)[

1
α∗c∗ε

|p|α
∗

Lα∗ +
1

β∗dβ∗
ε
|q|β

∗

Lβ∗

]

− 1
α∗
|λn|Lα |p|Lα∗ −

1
β∗
|ηn|Lβ |qn|Lβ∗

≤
(

1
α∗

+
1
β∗

)

B.

Since α∗, β∗ < 2 and |λn|Lα → 0, |ηn|Lβ → 0 as n → ∞, we deduce that there exists
a constant d > 0 such that for all n ∈ N |pn|Lα∗ , |qn|Lβ∗ ≤ d and up to a subsequence,
we may assume that (pn, qn) is weakly convergent to ω = (p, q) in Lα∗

0 × Lβ∗
0 .

Consider the set

D = {−Jπ(pn, qn), n ∈ N} ⊂ C([0, T ], R2N ).

By (H5), we verify that (Hε
∗′(pn, qn)) is bounded in Lα

0 × Lβ
0 and since (λn, ηn) goes

to zero in Lα
0 ×Lβ

0 as n goes to infinity, so by the formula (14), (ξε,nk , µε,nk) is bounded
in R2N and therefore we can suppose that (ξε,nk , µε,nk) converges to (ξ, µ).

Finally, since

H∗′
ε (pnk , qnk) = (λnk , ηnk) + Jπ(pnk , qnk)− (ξε,nk , µε,nk),

we have by the Fenchel reciprocity:

(pnk , qnk) = H ′
ε((λnk , ηnk) + Jπ(pnk , qnk)− (ξε,nk , µε,nk)),

By (H4) and the version of the theorem of Krasnoselskii, the map (u, v) 7−→ H ′
ε(u, v)

defined on Lα
0 × Lβ

0 into Lα∗ × Lβ∗ is continuous. Thus the sequence (pnk , qnk) =
H ′

ε((λnk , ηnk) + Jπ(pnk , qnk)− (ξε,nk , µε,nk)) is convergent in Lα∗ ×Lβ∗ and the lemma
is proved.

The functional fε verifies all the hypotheses of the Ambrosetti–Rabinowitz theorem,
consequently there exists ȳε = (p̄ε, q̄ε) ∈ Lα∗

0 × Lβ∗
0 such that

f ′ε(ȳε) = 0

and
fε(ȳε) ≥ γ.

By the Lemma 3.2, there exists (ξε, µε) ∈ R2N such that

0 = −Jπ(ȳε) + H∗′
ε (ȳε) + (ξε, µε),
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which gives by the Fenchel reciprocity

ȳε = H ′
ε(Jπ(ȳε)− (ξε, µε)).

Setting x̄ε = (ūε, v̄ε) = Jπ(ȳε)− (ξε, µε), we have

˙̄xε = ( ˙̄uε, ˙̄vε) = J(ȳε) = JH ′
ε(ūε, v̄ε) = JH ′

ε(x̄ε).

Thus the Hamiltonian system

(Hε) ẋ = JH ′
ε(x)

possesses a T -periodic solution.

Lemma 3.6 Let hε be the energy of the found solution x̄ε. Then

hε ≤
α + β

αβ − α− β

[

(

1
2
− 1

α

)[

4π
Ta2

ε

] α
α−2

+
(

1
2
− 1

β

)[

4π
Tb2

ε

]
β

β−2
]

+
α + β

αβ − α− β
aα

ε

α
. (15)

Proof We have

(

1
α

+
1
β

)

fε(ȳε) =
(

1
α

+
1
β

)

[ T
∫

0

1
2
≺ H ′

ε(x̄ε), x̄ε � dt−
T

∫

0

Hε(x̄ε) dt

]

=
1
α

T
∫

0

≺ (Hε)′u(x̄ε), ūε � dt +
1
β

T
∫

0

≺ (Hε)′v(x̄ε), v̄ε � dt− (
1
α

+
1
β

)

T
∫

0

Hε(x̄ε) dt

and by (H3) we obtain

(

1
α

+
1
β

)

fε(ȳε) ≥
(

1− 1
α
− 1

β

)
T

∫

0

Hε(x̄ε) dt,

which implies that

fε(ȳε) ≥
αβ − α− β

α + β
hεT.

On the other hand, by the Ambrosetti–Rabinowitz theorem we have

fε(ȳε) = inf
γ∈Γ

max
s∈[0,1]

fε(γε(s)),

where Γ = {γ ∈ C([0, T ], Lα∗
0 × Lβ∗

0 )/γ(0) = 0 and γ(1) = (p0, q0)}.
For s ∈ R+, we set ωs(t) = sω(t) where ω is defined in the proof of Lemma 3.4. We

have

fε(ȳε) ≤ sup
s∈[0,1]

fε(s(p0, q0)) ≤ sup
s≥0

fε(sω)

≤ sup
s≥0

{

− T 2

4π
s2|Z|2 +

T
α∗aα∗

ε
sα∗ |Z|α

∗
+

T

β∗bβ∗
ε

sβ∗ |Z|β
∗

+
aα

ε

α
T

}

≤ sup
s≥0

{

−T 2

8π
s2|Z|2 +

T
α∗aα∗

ε
sα∗ |Z|α

∗
}

+
aα

ε

α
T

+ sup
s≥0

{

− T 2

8π
s2|Z|2 +

T

β∗bβ∗
ε

sβ∗ |Z|β
∗
}

.
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Setting

ϕ(s) = −T 2

8π
s2|Z|2 +

T
α∗aα∗

ε
sα∗ |Z|α

∗
, ψ(s) = −T 2

8π
s2|Z|2 +

T

β∗bβ∗
ε

sβ∗ |Z|β
∗
.

So ϕ attains its maximum at

s̄ =
[

4π
aα∗

ε T

] 1
2−α∗ 1

|Z|
,

and ψ attains its maximum at

¯̄s =
[

4π

bβ∗
ε T

] 1
2−β∗ 1

|Z|
.

A simple computation gives

ϕ(s̄) = T
(

1
2
− 1

α

)[

4π
aα∗

ε T

] α
α−2

and

ψ(¯̄s) = T
(

1
2
− 1

β

)[

4π

bβ∗
ε T

]
β

β−2

,

so

fε(ȳε) ≤ T
[(

1
2
− 1

α

)[

4π
aα∗

ε T

] α
α−2

+
(

1
2
− 1

β

)[

4π

bβ∗
ε T

]
β

β−2
]

+
aα

ε

α
T.

Consequently

hε ≤
α + β

αβ − α− β

[(

1
2
− 1

α

)[

4π
aα∗

ε T

] α
α−2

+
(

1
2
− 1

β

)[

4π

bβ∗
ε T

]
β

β−2
]

+
α + β

αβ − α− β
aα

ε

α

and the Lemma 3.6 is proved.

Lemma 3.7 The set E = {x̄ε : 0 < ε ≤ ε0} is relatively compact in C([0, T ], R2N ).

Proof We have for all ε ∈ ]0, ε0],

0 <
aα

α
<

aα
ε

α
<

aα

α
+ ε0.

Thus, by (15), there exists R ∈ R∗+ such that

H(x̄ε(t)) ≤ R

for all t ∈ [0, T ] and ε ∈ ]0, ε0].
Since lim

|x|→∞
H(x) = +∞, so there exists λ ∈ R∗+ such that for all t ∈ [0, T ] and

ε ∈ ]0, ε0] x̄ε(t) ∈ B(0, λ). Consequently, for all t ∈ [0, T ], the set E(t) is relatively
compact in R2N .
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On the other hand, since H ′ is continuous, there exists η > 0 independent of ε such
that for all ε ∈ ]0, ε0] and t, t′ ∈ [0, T ], ‖x̄ε(t)− x̄ε(t′)‖ ≤ η|t− t′|1/2. Thus E is equicon-
tinuous. Hence, by the theorem of Ascoli, E is relatively compact in C([0, T ], R2N ).

So, we may extract from E a subsequence (x̄εn), εn → 0, which is convergent uniformly
in [0, T ]. Let x̄ = (ū, v̄) be its limit; we have

˙̄xεn = JH ′
εn

(x̄εn) = J(H ′(x̄εn) + εn(α|ūεn |
α−2ūεn , β|v̄εn |

β−2v̄εn))

→ JH ′(ū, v̄) uniformly,

which implies that
˙̄x = JH ′(x̄).

So it’s clear that H∗
εn

(p̄εn , q̄εn) is convergent uniformly to H∗( ˙̄x) and

0 < γ ≤ lim
n→∞

fεn(ȳεn) = f( ˙̄x).

Since f(0, 0) = 0, so ˙̄x 6= 0 and x̄ is not constant.
Finally, we have lim

n→∞
aεn = a and lim

n→∞
bεn = b, thus lim

n→∞
h̄εn = h̄ and so h =

H(x̄) ≤ h̄.
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