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is considerable challenge in the synthesis of control laws for the nonholonomic systems
since as pointed out in a famous paper of Brockett [6], they cannot be stabilized by
continuously differentiable, time invariant, state feedback control laws. To overcome the
limitations imposed by the Brockett’s result, a number of approaches have been proposed
for the stabilization of nonholonomic control systems to equilibrium points, see [11] for
a comprehensive survey of the field. Among the proposed solutions are smooth time
varying controllers [16, 17, 8, 12, 13, 15, 4], discontinues or piecewise smooth control laws
[3, 5, 7, 9, 19], and hybrid controllers [5, 10, 20].

Despite the vast amount of papers published on the stabilization of nonholonomic
systems, the majority has concentrated on the kinematics models of mechanical systems
controlled directly by velocity inputs. Although in certain circumstances this can be
acceptable, many physical systems (where forces and torques are actual inputs) will not
perform well if their dynamics are neglected.

As a contribution to overcome this limitation, this paper derives a time-varying control
law for the so-called the extended nonholonomic double integrator (ENDI) system. The
extended nonholonomic double integrator (ENDI) system can be viewed as an extension
of the so-called nonholonomic integrator [6]. Its importance stems from the fact that it
captures the dynamics and kinematics of a nonholonomic system with three states and
two first-order dynamics control inputs, (e.g., the dynamics of a wheeled robot subject
to force and torque inputs).

This article presents a feedback stabilization control strategy based on model reference
approach for ENDI. The trajectory of the extended system for ENDI model is chosen as
the model reference trajectory. The extended system has equal number of inputs and
state variables i.e. m = n therefore can be made asymptotically stable by choosing
an arbitrary Lyapunov function. This classical state feedback is then combined with a
periodic continuation of a parameterized solution to an open loop steering problem for the
comparison of flows of the original and extended systems. In combination with the time
invariant state feedback for the extended system, the solution to this open loop problem
delivers a time varying control, which provides for periodic intersection of the trajectories
of the controlled extended system and the original system. For stabilizing the original
system, the extended system trajectory serves as a reference. The time-invariant feedback
for the extended system dictates the speed of convergence of the system trajectory to
the desired terminal point, the open loop solution serves the averaging purpose in that
it ensures that the “average motion” of the original system is that of the controlled
extended system. The construction proposed here demonstrates that synthesis of time
varying feedback stabilizers for ENDI with two control input can be viewed as a procedure
of combining static feedback laws for a Lie bracket extension of the system with a solution
of an open loop trajectory interception control problem.

2 The Kinematics Model of the Extended Nonholonomic Double Integrator

In [6], Brockett introduced the nonholonomic integrator system

ẋ1 = u1, ẋ2 = u2, ẋ3 = x2u1 − x1u2,

where (x1, x2, x3)T ∈ R3 is the state vector and (u1, u2)T ∈ R2 is a two-dimensional
input. This system displays all basic properties of nonholonomic systems and is often
quoted in the literature as a benchmark for control system design [3, 10, 14].
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The nonholonomic integrator captures (under suitable state and control transforma-
tions) the kinematics of a wheeled robot. However, the nonholonomic integrator model
fails to capture the case where both the kinematics and dynamics of a wheeled robot
must be taken into account. To tackle this realistic case, the nonholonomic integrator
model must be extended. It is shown in [2] that the dynamic equations of motion of a
mobile robot of the unicycle type can be transformed into the system

ÿx1 = u1, ÿx2 = u2, ÿx3 = x1ẋ2 − x2ẋ1. (1)

By defining the state variables x = (x1, x2, x3, x4, x5)T = (x1, x2, x3, ẋ1, ẋ2)T, system
(1) becomes as ẋ1 = x4, ẋ2 = x5, ẋ3 = x1x5 − x2x4, ẋ4 = u1, ẋ5 = u2, which can be
written in the following standard form:

ẋ = g0(x) + g1(x)u1 + g2(x)u2, (2)

where

g0(x) = (x4, x5, x1x5 − x2x4, 0, 0)T, g1(x) = (0, 0, 0, 1, 0)T, g2(x) = (0, 0, 0, 0, 1)T.

As in [1], the system (2) will be referred to as the extended nonholonomic double inte-
grator (ENDI).

The ENDI system (2) satisfies the following properties:
H1. The vector fields g0, g1, g2 are real analytic and complete and, additionally,

g0(0) = 0.

H2. The ENDI system is locally strongly accessible for any x ∈ R5 as this satisfies
the LARC (Lie algebra rank condition) for accessibility (see [18]), namely that
L(g0, g1, g2), the Lie algebra of vector fields generated by g0(x), g1(x) and g2(x),
spans R5 at each point x ∈ R5 that is

span{g1, g2, g3, g4, g5}(x) = R5 for all x ∈ R5, (3)

where

g3(x) = [g0(x), g1(x)] = (1, 0,−x2, 0, 0)T, g4(x) = [g0(x), g2(x)] = (0, 1, x1, 0, 0)T,

g5(x) = [[g0(x), g1(x)], [g0(x), g2(x)]] = [g3(x), g4(x)] = (0, 0, 2, 0, 0)T.

H3. The controllability Lie algebra L(g0, g1, g2) is locally nilpotent i.e. all other Lie
brackets which are not involve in accessibility rank condition are zero when eval-
uated at zero.

3 The Control Problem

(SP) Given a desired set point xdes ∈ R5, construct a feedback strategy in terms of
the controls ui : R5 → R, i = 1, 2, such that the desired set point xdes is an
attractive set for (2), so that there exists an ε > 0, such that x(t; t0, x0) → xdes,
as t →∞ for any initial condition (t0, x0) ∈ R+ ×B(xdes; ε).
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Without the loss of generality, it is assumed that xdes = 0, which can be achieved by
a suitable translation of the coordinate system.

4 Basic Approach of Designing Stabilizing Control Law for ENDI

4.1 Extended system

The construction of the stabilizing feedback, presented in the next section, employs as its
base a Lie bracket extension for the original system (2). This extension is a new system
whose right hand side is a linear combination of the vector fields, which locally span the
state space. The “coefficients” of this linear combination are regarded as “extended”
controls. The extended system can be written as:

ẋ = g0(x) + g1(x)ν1 + g2(x)ν2 + g3(x)ν3 + g4(x)ν4 + g5(x)ν5. (4)

Henceforth, equations (2) and (4) are referred to as the “original system”, and the “ex-
tended system”, respectively. The importance of the extended system for the purpose of
control synthesis lies in the fact that, unlike the original system, it permits instantaneous
motion in the “missing” Lie bracket directions g3, g4 and g5.

4.2 Stabilization of the extended system

The extended system (4) can be made globally asymptotically stable if we define the
following control inputs

ν(x) = (ν1(x), ν2(x), ν3(x), ν4(x), ν5(x))T

= {G(x)}−1(−x− g0(x)) =
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(5)

where

ν5 = −1
2
x2(x1 + x4) +

1
2
x1(x2 + x5)−

1
2
(x3 + x1x3 − x2x4)

G(x) = (g1(x, ) g2(x, ) g3(x, ) g4(x, ) g5(x, )).

The existence of {G(x)}−1 is guaranteed by the LARC condition.
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Lemma The extended system (4) can be made asymptotically stable by using the
feedback control as given in (5).

Proof By considering a Lyapunov function V (x) = 1
2 xTQx, where Q is some sym-

metric and positive definite matrix, it follows that, along the controlled extended system
trajectories,

d
dt

V (x) = xTQ(g0(x) + G(x){G(x)}−1(−x− g0(∗x))) = −xTQx = −2V (x) < 0,

∀x ∈ R5 \ {0}.

Confirming the asymptotic stability of (4) with feedback controls (5).

The discretization of the above control in time, with sufficiently high sampling fre-
quency 1/T , does not prejudice stabilization in that if the feedback control (5) is substi-
tuted by the discretized control

νT
i (x(t)) , νi(x(nT )), t ∈ [nT, (n + 1)T ), n = 0, 1, 2, . . . , i = 1, 2, . . . , 5.

This leads to a parameterized extended system

ẋ = g0(x) + g1(x)a1 + g2(x)a2 + g3(x)a3 + g4(x)a4 + g5(x)a5, (6)

where ai = νT
i (x(t)), i = 1, 2, . . . , 5, (which are constant over each interval [nT,

(n+1)T )). For a sufficiently small T , the discretization of the extended controls preserves
their stabilizing properties.

4.3 The trajectory interception problem

(TIP) Find control functions mi(a, t), i = 1, 2, in the class of functions which are con-
tinuous in a = (a1, a2, a3, a4, a5) and piece-wise continuous and locally bounded
in t, such that for any initial condition x(0) = x0 the trajectory xa(t; x0, 0) of
the extended, parameterized system (6) intersects the trajectory xm(t; x0, 0) of
the system (2) with controls mi, i = 1, 2, i.e. the trajectory of the system

ẋ = g0(x) + g1(x)m1(a, t) + g2(x)m2(a, t) (7)

intercept with the trajectory of

ẋ = g0(x) + g1(x)a1 + g2(x)a2 + g3(x)a3 + g4(x)a4 + g5(x)a5

precisely at time T , so that

xa(T ; x0, 0) = xm(T ;x0, 0). (8)
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4.4 The TIP in logarithmic coordinates of flows

To solve the TIP, we employ the formalism of [21] by considering a formal equation for
the evolution of flows for the system (6)

U̇(t) = U(t)
( 5

∑

i=0

giwi

)

, w0 = 1, U(0) = I, (9)

and its solution can be expressed locally as

U(t) =
5

∏

i=0

eγi(t)gi , (10)

where the functions γi, i = 0, 1, . . . , 5, are the logarithmic coordinates for this flow and
can be computed approximately as follows.

Equation (10) is first substituted into (9) which yields

g0w0 + g1w1 + · · ·+ g5w5 = γ̇0g0 + γ̇1(eγ0Adg0)g1 + γ̇2(eγ0Adg0eγ1Adg1)g2 + . . .

+ γ̇5(eγ0Adg0eγ1Adg1eγ2Adg2eγ3Adg3eγ4Adg4)g5,
(11)

where (eAdX)Y = eXY e−X and (AdX)Y = [X, Y ].
Employing the Campbell-Baker-Hausdorff formula

(eAdX)Y = eXY e−X = Y + [X,Y ] + [X, [X,Y ]]/2! + . . . ,

and ignoring all other Lie brackets which are not involved in LARC equation (3). This
gives

(eγ0Adg0)g1 = eγ0g0g1e−γ0g0 = g1 + (γ0/1!)[g0, g1] + (γ2
0/2!)[g0, [g0, g1]] + . . .

≈ g1 + γ0g3.
(12)

Similarly

(eγ0Adg0eγ1Adg1)g2 = eγ0Adg0(eγ1Adg1g2) = eγ0Afg0(g2)
(13)

≈ g2 + γ0[g0, g2] = g2 + γ0g4,

(eγ0Adg0eγ1Adg1eγ2Adg2)g3 = eγ0Adg0eγ1Adg1(eγ2Adg2g3)

≈ eγ0Adg0eγ1Adg1(g3 + γ2[g2, g3]) = eγ0Adg0eγ1Adg1(g3) (14)

≈ eγ0Adg0(g3) ≈ g3.

In a similar way we can obtain

(eγ0Adg0eγ1Adg1eγ2Adg2eγ3Adg3)g4 ≈ g4 + γ3g5, (15)

(eγ0Adg0eγ1Adg1eγ2Adg2eγ3Adg3eγ4Adg4)g5 ≈ g5. (16)
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Substituting (12) – (15) into equation (11) and comparing the coefficients of gi, i =
0, 1, . . . , 5, yields the following approximate equations for the evolution of the logarithmic
coordinates γi, i = 0, 1, . . . , 5,

γ̇0 = 1,

γ̇1 = w1,

γ̇2 = w2,

γ̇3 = −γ0w1 + w3,

γ̇4 = −γ0w2 + w4,

γ̇5 = γ0γ3w2 − γ3w4 + w5 with γi(0) = 0, i = 0, 1, . . . , 5.

(17)

The TIP problem can thus be recast in the logarithmic coordinates as follows.
[TIP in LC :] On a given time horizon T > 0, find control functions mi(a, t), i = 1, 2,

in the class of functions which are continuous in a = [a1, a2, a3, a4, a5], and piece-
wise continuous, and locally bounded in t, such that the trajectory t 7→ γa(t)
of

γ̇ = M(γ)a, γ(0) = 0, (18)

intersects the trajectory t 7→ γm(t) of

γ̇ = M(γ)m(a, t), γ(0) = 0, (19)

in which m(a, t) = [m1(a, t), m2(a, t), 0, 0, 0] at time T , so that

γa(T ) = γm(T ). (20)

The TIP in logarithmic coordinates now takes the form of a trajectory interception
problem for the following two control systems

γ̇0 = 1,

γ̇1 = w1,

γ̇2 = w2,

γ̇3 = −γ0w1 + w3,

γ̇4 = −γ0w2 + w4,

γ̇5 = γ0γ3w2 − γ3w4 + w5 with γi(0) = 0, i = 0, 1, . . . , 5.

CS1 : γ̇0 = 1, CS2 : γ̇0 = 1,
γ̇1 = m1, γ̇1 = a1,
γ̇2 = m2, γ̇2 = a2,
γ̇3 = −γ0m1, γ̇3 = −γ0a1 + a3,
γ̇4 = −γ0m2, γ̇4 = −γ0a2 + a4,
γ̇5 = γ0γ3m2, γ̇5 = γ0γ3a2 − γ3a4 + a5

(21)

with initial conditions γi(0) = 0, i = 0, 1, . . . , 5.
A solution to TIP is calculated by approximating the flow of ẋ = g0 + [g0, g1] by

the flow of ẏ = g0 + kg1 sin
2πt
T

, and the flow of ẋ = g0 + [[g0, g1], [g0, g2]] by ẏ =
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g0+kg1 sin
2πt
T

+kg2 cos
2πt
T

, where k is some constant. Therefore we adopt the following

parameterizations of mi, i = 1, 2:

m1 = c1 + (c3 + c5) sin
2πt
T

and m2 = c2 + c4 sin
2πt
T

+ c5 cos
2πt
T

, (22)

where ci, i = 1, 2, . . . , 5, are found as c1 = a1, c2 = a2, c3 = 6.28319 a3/T , c4 =
6.28319 a4/T and c5 = 6.28319 a5/T , or c1 = a1, c2 = a2, c3 = ka3, c4 = ka4 and
c5 = ka5, where k = 6.28319/T .

The time varying stabilizing controls for model (2), are thus given by

u1 = c1 + c3 sin
2πt
T

+ c5 cos
2πt
T

,

u2 = c2 + c4 sin
2πt
T

+ c5 cos
2πt
T

.
(23)

Theorem 4.1 Suppose that a solution to the TIP problem can be found. Then, there
exists an admissible time horizon Tmax and a neighborhood of the origin R such that
for any T < Tmax the time-varying feedback controls given in (23) are asymptotically
stabilizing the system (2) with the region of attraction R.

Proof By considering a trivial Lyapunov function V (x) = 1
2 xTx, x ∈ R5 it follows

that along the controlled system trajectories,

d
dt

V (x) = xTẋ = xT(g0(x) + g1(x)u1 + g2(x)u2)

= xT
(

g0(x) + g1(x)
(

c1 + c3 sin
2πt
T

+ c5 cos
2πt
T

)

+ g2(x)
(

c2 + c4 sin
2πt
T

+ c5 cos
2πt
T

))

= xT
(

g0(x) + g1(x)a1 + k3a3g1(x) sin
2πt
T

+ k5a5g1(x) sin
2πt
T

+ g2(x)a2 + k4a4g2(x) sin
2πt
T

+ k5a5g2(x) cos
2πt
T

)

≈ xT(g0(x) + g1(x)a1 + g2(x)a2 + g3(x)a3 + g4(x)a4 + g5(x)a5)

= xT(g0(x) + Gν) = −xTx < 0,

where G = [g1 g2 g3 g4 g5](x), ν = G−1{−x− g0(x)} for all x ∈ R5 \ {0}.

Confirming the asymptotic stability of (2) with feedback controls (23).
The simulation results employing the above controls are depicted in Figures 4.1 – 4.6.

In first simulation we choose x(0) = [0.9 0.7 0.4 0.8 0.6]T and T = 0.9. The results are
shown in Figures 4.1 – 4.4. In 2nd simulation we choose x(0) = [0.5 0.5 0.5 0.5 0.5]T

and T = 0.9. The results are shown in Figures 4.5 – 4.8.
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5 Conclusion

A time varying control law is derived for the extended nonholonomic double integrator
(ENDI) system that captures any kinematics completely nonholonomic model with three
states and two first order dynamic control inputs, e.g., the dynamics of a wheeled robot
subject to force and torque inputs. The controller yields asymptotic stability and con-
vergence of the closed loop system to an arbitrarily small neighborhood of the origin.
Simulation results captured some of the features of the proposed control laws and their
performance.
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