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1 Introduction

Takagi-Sugeno (TS) fuzzy models, proposed by Takagi and Sugeno [16] and further de-
veloped by Sugeno and Kang [15], are nonlinear systems described by a set of IF–THEN
rules which gives a local linear representation of an underlining system. It is well known
that such models can describe or approximate a wide class of nonlinear systems. Hence,
it is important to study their stability or to synthesize their stabilizing controllers.

In fact, the stability study constitutes an important phase in the synthesis of a control
law, as well as in the analysis of the dynamic behavior of a closed loop system. It has
been one of the central issues concerning fuzzy control, refer to the brief survey on the
stability issues given in [14].

Based on the stability conditions, model-based control of such systems has been de-
veloped for the continuous case in [5 – 7, 13, 19, 20] by using state-space models.

In recent literature, Tanaka and Sugeno [17], have provided a sufficient condition for
the asymptotic stability of a fuzzy system in the sense of Lyapunov through the existence
of a common Lyapunov function for all the subsystems.

This kind of design methods suffer mainly from a few limitations:

(1) one can construct a TS model if local description of the dynamical system to be
controlled is available in terms of local linear models;

(2) a common positive definite matrix must be found to satisfy a matrix Lyapunov
equation, which can be difficult especially when the number of fuzzy rules required
to give a good plant model is large so that the dimension of the matrix equation
is high;

(3) it appears that a necessary condition, for the existence of this common positive
definite matrix, is that all subsystems must be asymptotically stable.

To overcome those difficulties, we propose, in this paper, to study the stability of TS
fuzzy nonlinear model through the study of the convergence of a regular vector norm.

If the vector norm is of dimension one, then this is like the second Lyapunov method
approach; therefore, if it is of higher dimension, then we deal with a vector-Lyapunov
function [9 – 12].

The vector norm approach, based on the comparison/overvaluing principle, has a ma-
jor advantage: it deals with a very large class of systems, since no restrictive assumption
is made on the matrices of state equations, except that they are bounded for bounded
states, in such a way that a unique continuous solution exists.

Nevertheless, although the overvaluing principle allows the simplification of the study,
it also presents the corresponding drawback: overvaluation means losing information on
the real behavior of the process. Thus, the cases of state equations which are the most
resistant of this type of method are the ones in which replacement of coefficients by their
absolute values leads to an overvaluing system which is far from reality, for instance an
unstable one, whereas the initial system was stable. In many cases, this type of drawback
can be bypassed by using changes of state variables leading to a good performance of the
representation [2 – 4]. For instance, for continuous control, a particularly interesting case
is the one in which the off-diagonal elements are naturally positive or equal to zero; in
this case, the overvaluing is carried out without loss of information.

This paper is organized as follows: TS fuzzy nonlinear continuous model description
is presented in Section 2. Section 3 reviews some existing stability conditions of such
system. In Section 4, the vector norm approach combined with the arrow form matrix
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are employed to give the new stability criterion for TS fuzzy nonlinear continuous mod-
els. The case of Lur’e–Postnikov continuous system is studied in Section 5. Finally,
conclusions are drawn in Section 6.

2 TS Fuzzy Nonlinear Continuous Model Description

Consider a TS fuzzy model when local description of the plant to be controlled is available
in terms of nonlinear autonomous models

Ẋ(t) = Ai(X)X(t) (1)

where X ∈ Rn describes the state vector, Ai(·) are matrices of appropriate dimensions,
Ai(·) = {aij(·)} and aij(·) : Rn → R, are nonlinear elements.

It is assumed that X = 0 is the unique equilibrium state of the studied system.
The above information is then fused with the available IF–THEN rules, where the i-th

rule, i = 1, . . . , r, can have the form:

Rule i: IF {X(t) is Hi(X)} THEN
{

Ẋ(t) = Ai(·)X(t)
}

,

where Hi(X) is the grade of the membership of the state X(t).
The final output of the fuzzy system is inferred as follows:

Ẋ(t) =
r

∑

i=1

hi(X)Ai(·)X(t) (2)

with, for i = 1, . . . , r, 0 ≤ hi(X) ≤ 1 and
r
∑

i=1
hi(t) = 1.

3 Stability Conditions — Problem Statement

It is straightforward to show that a sufficient condition for asymptotic stability in the
large of the equilibrium state X = 0 of the unforced fuzzy model, obtained by lineariza-
tion of (2),

Ẋ(t) =
r

∑

i=1

hiAiX(t) (3)

is that there exists a common symmetric positive definite matrix P such that, for i =
1, 2, . . . , r

AT
i P + P Ai < 0. (4)

The necessary condition for the existence of matrix P is that each matrix must be asymp-
totically stable [17], i.e. all the subsystems are stable, or that matrices:

k
∑

j=1

Aij (5)

where ij ∈ {1, 2, . . . , r} and k = 2, 3, . . . , r, are asymptotically stable [18].
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The linear matrix inequality (LMI) based approaches have been used to determine the
existence of a common symmetric positive definite matrix [20]. Their computation can
be expensive in the case of high number of rules.

As it was shown, the stability study of the nonlinear model (2) requires the lineariza-
tion of the nonlinear subsystems described by the instantaneous characteristic matrices
Ai. If those matrices are in arrow form [2], stability conditions of the nonlinear system
(2), as we will see in the next section, can be formulated easily.

4 New TS Fuzzy Nonlinear Model Stability Criterion

Let us consider the continuous process whose model is in the controllable form, that
matrices Ai(·), of equation (2), are written as

Ai(·) =













0 1 0 . . . 0
...

. . .
. . .

. . .
...
0

0 . . . 0 1
−ai,0(·) . . . −ai,n−1(·)













. (6)

A change of base under the form:

T =













1 1 · · · 1 0
α1 α2 · · · αn−1 0

. . . . . . . . . . . . . . . . . . . . . . . . . . .
αn−2

1 αn−2
2 · · · αn−2

n−1 0
αn−1

1 αn−1
2 · · · αn−1

n−1 1













(7)

allows the new state matrices, denoted by Fi(·), to be in arrow form (2)

Fi(·) = T−1Ai(·)T =









α1 β1
. . .

...
αn−1 βn−1

γi,1(·) · · · γi,n−1(·) γi,n(·)









, (8)

where

βj =
n−1
∏

k=1
k 6=j

(αj − αk)−1 ∀ j = 1, 2, . . . , n− 1, (8a)

γi,j(·) = −PAi(·, αj) ∀ j = 1, 2, . . . , n− 1, (8b)

γi,n(·) = −ai, n−1(·)−
n−1
∑

i=1

αi. (8c)

PAi(·, λ) is the Ai(·) instantaneous characteristic polynomial such that

PAi(·, λ) = λn +
n−1
∑

l=0

ai,l(·)λl (9)
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and αj , j = 1, 2, . . . , n− 1, are distinct arbitrary parameters.
Let us note that the determinant of the arrow form matrix Fi(·) is computed as [2]

|Fi(·)| =
[

γi,n(·)−
n−1
∑

j=1

α−1
j γi,j(·) βj

] n−1
∏

k=1

αk. (10)

The final output of the fuzzy system is then inferred as follows

Ẏ (t) = Q(·)Y (t) (11)

where Y (t) is the new state vector such that X(t) = TY (t),

Q(·) =
r

∑

i=1

hiFi(·), (11a)

Q(·) =













α1 β1
. . .

...
αn−1 βn−1

r
∑

i=1
hiγi,1(·) · · ·

r
∑

i=1
hiγi,n−1(·)

r
∑

i=1
hiγi,n(·)













. (11b)

In such conditions, if p(Y ) denotes a vector norm of Y , satisfying component to compo-
nent the equality

p(Y ) = |Y | (12)

it is possible, by the use of the aggregation techniques [2, 9], to define a comparison
system (13), Z ∈ Rn, of (11)

Ż = M(·)Z. (13)

In this expression, the matrix M(·) is deduced from the matrix Q(·) by substituting
only the off-diagonal elements by their absolute values; it can be written as

M(·) =













α1 |β1|
. . .

...
αn−1 |βn−1|

∣

∣

∣

∣

r
∑

i=1
hiγi,1(·)

∣

∣

∣

∣

· · ·
∣

∣

∣

∣

r
∑

i=1
hiγi,n−1(·)

∣

∣

∣

∣

r
∑

i=1
hiγi,n(·)













. (14)

Noting that the non-constant elements are isolated in the last row of matrix M(·), then
the stability condition of the continuous nonlinear system (2) can be easily deduced from
the Borne and Gentina criterion [8, 11]. It comes

(−1)i∆i > 0, i = 1, 2, . . . , n, (15)

with ∆i the i-th M(·) principal minor.
It is clear that, for i = 1, 2, . . . , n − 1, the condition (15) is verified for αi ∈ R−,

therefore, for i = n and using the relation (10), it leads to the stability condition (16).
Then, the TS fuzzy nonlinear model stability, in the continuous case, can be studied

by the following proposed theorem.
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Theorem 4.1 If there exist αi ∈ R−, i = 1, 2, . . . , n− 1, αi 6= αj for all i 6= j and
ε ∈ R+ such that the inequality

−
r

∑

i=1

hiγi,n(·) +
n−1
∑

j=1

∣

∣

∣

∣

r
∑

i=1

hiγi,j(·)βj

∣

∣

∣

∣

α−1
j ≥ ε ∀X ∈ Rn (16)

is satisfied, the equilibrium state of the studied continuous nonlinear system (3) and (7)
is asymptotically globally stable.

If there exist αj , j = 1, 2, . . . , n− 1, such that

r
∑

i=1

hiγi,j(·)βj > 0 j = 1, 2, . . . , n− 1, (17)

the Theorem 4.1 can be simplified and the comparison system (13) can be chosen iden-
tically to (11).

Since for Q(·)

∆n =
r

∑

i=1

hiPAi(·, 0), (18)

−
r

∑

i=1

hiγi,n(·) +
n−1
∑

j=1

α−1
j

r
∑

i=1

hiγi,j(·)βj =
n−1
∏

j=1

(−αj)−1
r

∑

i=1

hiPAi(·, 0). (19)

Hence to Corollary 4.1.

Corollary 4.1 If there exist αj ∈ R−, αj 6= αk for all j 6= k and ε ∈ R+ such
that:

(i) the inequalities (17) are satisfied for all X ∈ Rn,

(ii)
r
∑

i=1
hi(t)PAi(·, 0) ≥ ε for all X ∈ Rn, (20)

the equilibrium state of the continuous system described by (2) and (6) is globally asymp-
totically stable.

Example 4.1. Unstable TS fuzzy model case
Given the unforced fuzzy linear system model described by (3), where r = 2 and

A1 =
[

0 1
2 −1

]

, A2 =
[

0 1
−1 −1

]

.

Obviously, the first subsystem is unstable whereas the second one is stable. However,
there is no common positive definite matrix P to verify the stability condition (4).

The matrices A1 and A2 can be transformed to arrow form matrices F1 and F2, by
the same change of base under the form

T =
[

1 0
α 1

]

, F1 = T−1A1T =
[

α 1
−(α2 + α− 2) −1− α

]

,

F2 = T−1A2T =
[

α 1
−(α2 + α + 1) −1− α

]
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Di(s) = sn +
n−1
∑

j=0

di,jsj ≡
n

∏

j=1

(s− pi,j), (21)

N(s) = sn−1 +
n−2
∑

j=0

cjsj ≡
n−1
∏

j=1

(s− zj). (22)

Thus, the i-th unforced Lur’e–Postnikov system can be described by

Di(s)y(s) = f(e) = f∗(·)e = −f∗(·)N(s)y(s) (23)

witch leads to the nonlinear differential equation

y(n) +
n−1
∑

j=0

(di,j + f∗(·)cj)y(j) = 0. (24)

With the choice of arbitrary parameters α′j such that

αj = zj , j = 1, . . . , n− 1, (25)

this system can be described [1], in the state space arrow form, by

F ′i (·) =











z1 β′1
. . .

...
zn−1 β′n−1

γ′i,1(·) · · · γ′i,n−1(·) γ′i,n(·)











(26)

with

β′j =
n−1
∏

k=1
k 6=j

(zj − zk)−1, ∀ j = 1, . . . , n− 1, (26a)

γ′i,n(·) = −(di,n−1 + f∗(·))−
n−1
∑

j=1

zj , (26b)

γ′i,j(·) = −P ′Ai
(·, zj), ∀ j = 1, . . . , n− 1, (26c)

P ′Ai
(·, zj) = Di(zj) + f∗(·) Ni(zj) ≡ Di(zj). (26d)

The final output of the fuzzy Lur’e–Postnikov system is then inferred as (11)

Ẏ (t) =
r

∑

i=1

hiF ′i (·)Y (t) (27)

with

r
∑

i=1

hiF ′i (·) =













z1 β′1
. . .

...
zn−1 β′n−1

r
∑

i=1
hiγ′i,1(·) . . .

r
∑

i=1
hiγ′i,n−1(·)

r
∑

i=1
hiγ′i,n(·)













. (27a)

The stability conditions of the studied Lur’e–Postnikov system can be deduced by using
the following proposed theorem.
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Theorem 5.1 The Lur’e–Postnikov system described by (24) is globally asymptoti-
cally stable if there exist ε ∈ R+ such that the following conditions are verified

zj ∈ R−, j = 1, . . . , n− 1, zi 6= zj ∀ i 6= j; (28)

−
r

∑

i=1

hi(t)γ′i,n(·) +
n−1
∑

j=1

(zj)−1
∣

∣

∣

∣

β′j
r

∑

i=1

hi(t)γ′i,j(·)
∣

∣

∣

∣

≥ ε > 0. (29)

Proof The non-constant elements in (27a) are isolated in the last row. Hence, the
stability conditions can be easily deduced from the Theorem 4.1.

If for parameters zj , j = 1, . . . , n, the following condition is verified

β′j
r

∑

i=1

hiγ′i,j(·) > 0 (30)

the inequality (29) can then be written:

n−1
∏

i=1

(−zj)−1
r

∑

i=1

hiP ′Ai
(·, 0) ≥ ε > 0. (31)

Hence to Corollary 5.1.

Corollary 5.1 If zj ∈ R−, j = 1, 2, . . . , n− 1, zj 6= zk, ∀ j 6= k, and ε ∈ R+ such
that ∀X ∈ Rn

(i) the inequality (30) is satisfied; (32)

(ii)
r
∑

i=1
hiP ′Ai

(·, 0) ≥ ε, (33)

the Lur’e–Postnikov continuous system described by (24), (26) and (27) is globally asymp-
totically stable.

Example 5.1 Consider the Lur’e–Postnikov system shown in Figure 5.1 with n = 2,
r = 2, f(e) = f∗(·)e, p1,1 = −1, p1,2 = −3, p2,1 = −2, p2,2 = −4 and z1 = −2.5.

From (21) and (22), one can obtain then d1,1 = 4, d1,0 = 3, d2,1 = 6, d2,0 = 8,
and c0 = 2.5.

According to (26), the characteristic matrices, in the arrow form, are given by

F ′1(·) =
[

z1 1
−(z2

1 + 4z1 + 3) −4− f∗(·)− z1

]

=
[

−2.5 1
0.75 −1.5− f∗(·)

]

,

F ′2(·) =
[

z1 1
−(z2

1 + 6z1 + 8) −6− f∗(·)− z1

]

=
[

−2.5 1
0.75 −3.5− f∗(·)

]

.

The global fuzzy system is then described by

F ′(·) =
2

∑

i=1

hiF ′i (·)
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For an important class of Lur’e–Postnikov continuous system, the stability criterion
corresponds to a simple instantaneous characteristic polynomial condition.

The considered illustrative examples showed the efficiency of the proposed new ap-
proaches.

Other similar results can be obtained easily for nonlinear TS fuzzy discrete systems.
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Engineer Thesis, USTL, Lille, France, 1976.
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systèmes de grande dimension. Fonctions de Lyapunov vectorielles. RAIRO Aut./Sys.
Analysis and Control 12(4) (1978) 319 – 348.

[12] Hahn, W. Stability of the Motion. Springer Verlag, Berlin, 1967.
[13] Rehfuess, U. and Palm, R. Design of Takagi-Sugeno controllers based on linear quadratic

control. Proc. 1st Symp. Fuzzy Logic, Zurich, Switzerland, C10 –C15, 1995.
[14] Sugeno, M. On stability of fuzzy systems expressed by fuzzy rules with singleton conse-

quents. IEEE Trans. Fuzzy Systems 7(2) (1999) 201– 224.
[15] Sugeno, M. and Kang, G.T. Structure identification of fuzzy model. Fuzzy Sets and

Systems 28 (1988) 15 – 33.
[16] Takagi, T. and Sugeno, M. Fuzzy identification of systems and its applications to modeling

and control. IEEE Trans. Syst. Man Cyber 15(1) (1985) 116 –132.
[17] Tanaka, K. and Sugeno, M. Stability analysis and design of fuzzy control systems. Fuzzy

Sets and Systems 48 (1992) 135 –156.
[18] Teixeira, M.C.M. and Zak, S.H. Stabilizing controller design for uncertain nonlinear sys-

tems using fuzzy models. IEEE Trans. Fuzzy Systems 7(2) (1999) 133 –142.
[19] Wang, H.O., Tanaka, K. and Griffin, M.F. Parallel distributed compensation of nonlinear

systems by Takagi–Sugeno fuzzy model. Proc. Int. Joint Conf. 4th FUZZ-IEEE / 2nd
IFES, Yokohama, Japan, (1995) 531– 538.

[20] Wang, H.O., Tanaka, K. and Griffin, M.F. An approach to fuzzy control of nonlinear
systems: Stability and design issues. IEEE Trans. Fuzzy Systems 4 (1996) 14 – 23.




