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stable with the assumption that the nominal system is globally exponentially stable.
Therefore, to obtain stability of the whole system, we shall make some restrictions on
the perturbed term. Suppose that the origin of the nominal system

ẋ = A(t)x (2)

is globally exponentially stable with

W (t, x) = xT P (t)x

as an associate Lyapunov function, where P (t) is a continuous differentiable symmetric
and bounded positive definite matrix, such that

0 < c1I ≤ P (t) ≤ c2I, ∀ t ≥ 0, (3)

which satisfies the matrix differential equation

Ṗ (t) + P (t)A(t) + A(t)T P (t) = −Q(t)

with Q(t) is continuous, symmetric and positive definite that is

Q(t) ≥ c3I > 0, ∀ t ≥ 0.

Here the constants c1, c2, c3 > 0 and I is identical matrix.
Then calculating the derivative of W along the trajectories of the system (1) one can

obtain the definiteness of Ẇ by imposing some conditions on g(t, x).
For the case when

‖g(t, x)‖ ≤ η(t)‖x‖,

where η(t) is a continuous function, we obtain after taking the derivative of W along the
trajectories of the whole system,

Ẇ (t, x) ≤ −xT Q(t)x + 2xT P (t)g(t, x).

Then, one gets the following estimation on the derivative of W ,

Ẇ (t, x) ≤ (−c3 + 2c2η(t))‖x‖2

which implies the global exponential stability of the equilibrium point of (1) under the
condition

η(t) ≤ k <
1
2

c3

c2

with k > 0.
Moreover, one can obtain exponential convergence to zero for system (1) especially,

where
g(t, x) = B(t)x

under the conditions B(t) is continuous and

B(t) → 0 as t →∞.
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Similar conclusions can be obtained (see [5]), where

+∞
∫

0

‖B(t)‖ < ∞

or
+∞
∫

0

‖B(t)‖2 < ∞.

Actually, the synthesis of stability of perturbed systems is based on the stability of
the nominal system with W (t, x) as a Lyapunov function candidate for the whole system
provided that the size of the perturbation is known (see [1, 2, 4 – 7, 11, 12]). Panteley and
Loria [8, 9] studied this problem for cascaded time-varying nonlinear systems, which can
be regarded as perturbed systems, where growth conditions are given to ensure the global
uniform asymptotic stability of some classes of time-varying nonlinear systems.

Our approach is to find more general classes of perturbed systems which can be globally
exponentially stable by considering a new Lyapunov function which has the following
form

V (t, x) = xT P (t)x + Ψ(t, x),

where Ψ(t, x) is a C1-function which will be chosen, for some classes of systems, in such
a way that V (t, x) is positive definite radially unbounded and its derivative along the
trajectories of (1) is negative definite. We use a cross term in the Lyapunov function,
as in [10] introduced for cascade nonlinear systems, to obtain a large class of stable per-
turbed systems. The proposed new method is based on the non uniqueness of Lyapunov
functions with a stable nominal system, which guarantees exponential stability with the
requirement on the upper bound of the perturbed term. We prove that the system can
be globally uniformly exponentially stable. The perturbation term is a known function
which could result in general from errors in modelling, aging of parameters or distur-
bances. Naturally, the choice of the function Ψ(t, x) depends on the perturbation term
g(t, x) and its smoothness is given under some restrictions on the dynamics of the sys-
tem. Furthermore, we give an illustrative example in dimensional one and we show for
a certain class of perturbed systems that the proposed method gives better result than
the classical method.

2 Stability

In this paper the solution of a differential time-varying equation

ẋ = A(t)x + g(t, x)

with initial conditions (t0, x0) ∈ R+ × Rn, x(t0) = x0 is denoted φ(t, t0, x0).
V̇(?)(t, x) is the derivative of Lyapunov function V (t, x) along the trajectories repre-

sented by the differential equation (?).
According to [3, 5], the equilibrium point x = 0 of (1) is uniformly stable if for each

ε > 0 there is δ = δ(ε) > 0 independent of t0, such that

‖x(t0)‖ < δ ⇒ ‖x(t)‖ < ε, ∀ t ≥ t0 ≥ 0.
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The equilibrium point x = 0 of (1) is globally uniformly asymptotically stable if it is
uniformly stable and for any initial state x(t0), one has

x(t) → 0 as t → +∞

uniformly in t0, that is there exists T = T (ε) > 0, such that

‖x(t)‖ < ε, ∀ t ≥ t0 + T (ε), ∀x(t0).

The equilibrium point x = 0 of (1) is globally exponentially stable if the following
estimation holds for any initial state x(t0),

‖x(t)‖ < λ1e−λ2(t−t0), ∀ t ≥ t0 ≥ 0,

where λ1 > 0 and λ2 > 0.
Throughout this paper, we suppose that
(A1). There exists a continuous differentiable, symmetric, bounded, positive definite

matrix P (t) which satisfies (3).
(A2). There exist a continuous function ρ : R+ −→ R+ and k > 0, such that

∀ t ≥ 0, ∀x ∈ Rn, ‖g(t, x)‖ ≤ ρ(t)‖x‖

with
ρ(t) ≤ k, ∀ t ≥ 0

and
+∞
∫

0

ρ(t)dt < +∞.

Note that, the quadratic function

W (t, x) = xT P (t)x

implies by the assumption (A1) the two following inequalities,

c1‖x‖2 ≤ W (t, x) ≤ c2‖x‖2,

Ẇ(2)(t, x) ≤ −c3‖x‖2.
(4)

Our goal is to seek a suitable function Ψ which is of class C1 to compensate the
perturbed term which is not always possible only for some restrictive dynamical sys-
tems. Thus, we will consider a Lyapunov function for system (1) of the form V (t, x) =
xT P (t)x + Ψ(t, x), where Ψ is a C1-function which will be chosen later such that V is
definite positive function and V̇ definite negative for some restriction on g. Notice that,
continuity of the partial derivatives of the cross term can be proven for some classes of
system of the form (1). Thus, if we consider the derivative of V (t, x) along the trajectories
of the system (1) we get

V̇(1)(t, x) = Ẇ(2)(t, x) + 2xT P (t) · g(t, x) + Ψ̇(t, x).
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The first term of the right-hand side constitute the derivative of V (t, x) along the
trajectories of the nominal system, which is negative definite and satisfies (4). The
second term is the effect of the perturbation while the third one is the derivative of the
cross term. We choose

Ψ(t, x) =

+∞
∫

t

2φT (s, t, x)P (s)g(s, φ(s, t, x)) ds.

Thus, one can verify the following statement

2xT P (t) · g(t, x) + Ψ̇(t, x) = 0

for all (t, x) ∈ R+ × Rn.
It follows with this choice, that

V̇(1)(t, x) = Ẇ(2)(t, x) ≤ −c3‖x‖2.
This yields by (A1), the exponential stability of (1) provided that Ψ(t, x) exists and it
is a C1-function or simply uniformly continuous rending V (t, x) definite positive for a
given perturbed function g(t, x).

First, one can state the following proposition which provides a stability result.

Proposition 2.1 If (A1) and (A2) are satisfied, then the origin of the system (1) is
uniformly stable.

Proof Let (t, x) ∈ R+ × Rn be an initial condition. The derivative of W along the
trajectories of (1) is given by

Ẇ(1) =
d
ds

(W (s, φ(s, t, x)))

=
∂W
∂s

(s, φ(s, t, x)) + 2φT (s, t, x)P (s)A(s)φ(s, t, x)

+ 2φT (s, t, x)P (s).g(s, φ(s, t, x)).

Thus,

Ẇ(1) ≤ 2φT (s, t, x)P (s).g(s, φ(s, t, x))

≤ 2c2ρ(s)‖φ(s, t, x)‖2

≤ 2
c2

c1
ρ(s)W (s, φ(s, t, x))

which implies that
W (s, φ(s, t, x)) ≤ MW (t, x),

where

M = exp

{

2
c2

c1

( +∞
∫

0

ρ(u) du

)}

.

We conclude that

‖φ(s, t, x)‖ ≤
√

c2

c1
M ‖x‖, ∀ s ≥ t.

Then the equilibrium point of the system (1) is uniformly stable.

The above proposition is conceptually important because it shows the stability of the
origin for all perturbations satisfying the condition (A2).

Now, concerning the cross term, we have the following lemma.
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Lemma 2.1 Under assumptions (A1) and (A2), the function Ψ(t, x) exists and is
continuous on R+ × Rn.

Proof Observe that, using the above proposition and the fact that for all (t, x) the
function ψ(t, x) exists, we have each solution of (1) which starts at (t, x) is bounded for
all (t, x) ∈ R+ × Rn and for all s ≥ t.

Indeed, on the one hand

|φT (s, t, x)P (s)g(s, φ(s, t, x))| ≤ c2ρ(s)‖φ(s, t, x)‖2

which gives
|φT (s, t, x)P (s)g(s, φ(s, t, x))| ≤ M1ρ(s)‖x‖2

which belongs to L1(R+), where M1 = M c2
2

c1
.

Thus, the integral exists for all (t, x) ∈ R+×Rn and then ψ(t, x) exists.
On the other hand, the continuity of Ψ can be shown by observing that, for all s ≥ t,

the function
(t, x) 7−→ φ(s, t, x)T P (s)g(s, φ(s, t, x))

is continuous on R+ × Rn and the fact that for all (t, x) ∈ R+ ×K, s ≥ t, where K is a
compact set in Rn, we have

|φT (s, t, x)P (s)g(s, φ(s, t, x)| ≤ MKρ(s).

The upper bound MKρ(s) is in L1(R+) where MK is a positive constant which depends
only on K.

Next, the proposed Lyapunov function candidate for (1) must be definite positive and
we will use this fact to show the exponential stability of the origin of system (1).

Theorem 2.1 If the assumptions (A1) and (A2) hold, then there exist some positive
constants d1, d2 such that

d1‖x‖2 ≤ V (t, x) ≤ d2‖x‖2.

It means that, the Lyapunov function V (t, x) is a decreascent function.

Proof Observe that,

s
∫

t

Ẇ(1)(u, φ(u, t, x)) du = W (s, φ(s, t, x))−W (t, x).

Then, we obtain

W (s, φ(s, t, x))−W (t, x) =

s
∫

t

Ẇ(2)(u, φ(u, t, x)) du

+

s
∫

t

2φT (u, t, x)P (u)g(u, φ(u, t, x)) du.



NONLINEAR DYNAMICS AND SYSTEMS THEORY, 5(4) (2005) 357–367 363

Because W (s, φ(s, t, x)) is bounded and Ψ(t, x) exists, it means that the integral

+∞
∫

t

2φT (u, t, x)P (u)g(u, φ(u, t, x)) du

exists.
Then

lim
s→+∞

W (s, φ(s, t, x)) = W∞(t, x)

exists.
It follows that,

V (t, x) = W∞(t, x)−
+∞
∫

t

Ẇ(2)(u, φ(u, t, x)) du,

V (t, x) ≥ −
+∞
∫

t

Ẇ(2)(u, φ(u, t, x)) du

V (t, x) ≥
+∞
∫

t

c3‖φ(s, t, x)‖2ds.

(5)

Remark also that

φ(s, t, x) = x +

s
∫

t

A(u)φ(u, t, x) + g(u, φ(u, t, x)) du

which gives

‖φ(s, t, x)‖ ≥ ‖x‖ −
s

∫

t

(L‖φ(u, t, x)‖+ ρ(u)‖φ(u, t, x)‖)du

Thus,

‖φ(s, t, x)‖ ≥ ‖x‖ −
s

∫

t

(L + k)‖φ(u, t, x)‖du

≥ ‖x‖ − λ(s− t)‖x‖

≥ ‖x‖
2

, for s ∈
[

t, t +
1
2λ

]

,

where

λ = (L + k)

√

Mc2

c1
.
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Hence from (5), we obtain
V (t, x) ≥ d1‖x‖2.

Still to prove the existence of d2, which implies in conjunction with the above expres-
sion that V (t, x) is a decreascent function.

For any (t, x), we have
V (t, x) = W (t, x) + Ψ(t, x).

Thus,

V (t, x) ≤ c2‖x‖2 +

+∞
∫

t

2|φT (s, t, x)P (s)g(s, φ(s, t, x))|ds.

It follows that,

V (t, x) ≤ c2‖x‖2 +

+∞
∫

t

M1ρ(s)‖x‖2ds ≤ c2‖x‖2 + M2‖x‖2

≤ d2‖x‖2.

Theorem 2.2 Suppose that the assumptions (A1), (A2) hold and the function g is
chosen in such a way that

Ψ(t, x) =

+∞
∫

t

2φT (s, t, x)P (s)g(s, φ(s, t, x)) ds

is a C1-function, then x = 0 is globally exponentially stable equilibrium point for (1).

Proof Still to prove that

Ψ̇(t, x) = −2xT P (t)g(t, x).

We have

Ψ̇(t, x) =
d
ds

(Ψ(s, φ(s, t, x)))

∣

∣

∣

∣

∣

s=t

,

Ψ̇(t, x) =
d
ds

( +∞
∫

t

2φT (u, t, x)P (u)g(u, φ(u, t, x))ds

)∣

∣

∣

∣

∣

s=t

.

Since the solutions of (1)
u 7−→ Φ(u, t, x)

and
u 7−→ Φ(u, s, Φ(s, t, x))

are equal for u = s, this implies that, for all u ≥ s ≥ t ≥ 0,

Φ(u, t, x) = Φ(u, s, Φ(s, t, x)).
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Thus,

Ψ̇(t, x) =
d
ds

( +∞
∫

t

2φT (u, t, x)P (u)g(u, φ(u, t, x))ds

)∣

∣

∣

∣

∣

s=t

.

So,
Ψ̇(t, x) = −(2φT (s, t, x)P (s)g(s, φ(s, t, x))ds)

∣

∣

∣

s=t
.

Hence,
Ψ̇(t, x) = −2φT (s, t, x)P (s)g(t, x).

Using the fact that V is a decreascent function in conjunction with the above expres-
sion yields the global exponential stability of (1).

Finally, we give an example to illustrate the applicability of the result of this paper.
Moreover, we will compare in the next section our approach with the classical one for a
certain class of nonlinear system.

Example As a simple example, to compute the cross term, we consider the following
scalar linear equation

ẋ = −ax + ρ(t)x, a > 0, (6)

with ρ(t) satisfies (A2). If we choose

W (x) = x2

as a Lyapunov function of
ẋ = −ax

we obtain

φ(s, t, x) = exp
(

− a(s− t) +

s
∫

t

ρ(u) du
)

x.

Thus,

Ψ(t, x) = x2

+∞
∫

t

ρ(s) exp
(

2

s
∫

t

ρ(u) du
)

e−2a(s−t)ds.

So,

Ψ(t, x) = −x2 + 2ax2

+∞
∫

t

exp
(

2

s
∫

t

ρ(u) du
)

e−2a(s−t)ds.

It follows that, Ψ is a C1-function and then x = 0 is an exponentially stable equilibrium
point for (4).

3 Stability of a Certain Class of Perturbed Systems

Consider the following system

ẋ = Ax + ρ(t)B(x)x, (7)
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where x ∈ Rn, t ≥ 0, A(n× n) is a constant matrix which is supposed Hurwitz and ρ(t)
satisfies (A2).

Moreover, We assume that
(A3). B(·) is a C1-function and there exists a positive constant M , such that

∀x ∈ Rn ‖B(x)‖ ≤ M.

We have the following result of stability for system (7).

Proposition 3.1 If (A1), (A2) and (A3) are satisfied, then Ψ is C1 in R+×Rn and
x = 0 is a globally exponentially stable equilibrium point for (7).

Proof We denote

X(s) =
∂
∂x

(Φ(s, t, x))

and

Y (s) =
∂
∂t

(Φ(s, t, x)), s ≥ t.

Thus, X and Y satisfies the following two statements

Ẋ =
(

A + ρ(s)
∂B
∂x

(Φ(s, t, x))Φ(s, t, x) + ρ(s)B(Φ(s, t, x))
)

X

with
X(t) = I

and

Ẏ =
(

A + ρ(s)
∂B
∂x

(Φ(s, t, x))Φ(s, t, x) + ρ(s)B(Φ(s, t, x))
)

Y

with
Y (t) = 0.

Let K be a compact set of Rn. Because Φ(s, t, x) is uniformly bounded and B(·) is a
C1-function, then there exists MK > 0, such that ∀ s ≥ t ≥ 0, ∀x ∈ K,

∥

∥

∥

∥

ρ(s)
∂B
∂x

(Φ(s, t, x))Φ(s, t, x) + ρ(s)B(Φ(s, t, x))
∥

∥

∥

∥

≤ MKρ(s).

Note that Lemma 2.1 implies that X(s, t, x) and Y (s, t, x) are bounded when x leaves
in K.

Thus, we have

Ψ(t, x) =

+∞
∫

t

∂W
∂x

(φ(s, t, x))ρ(s)B(φ(s, t, x))φ(s, t, x) ds.

Because X and Y are bounded when x ∈ K, then there exist M1 and M2, such that
∥

∥

∥

∥

∂
∂x

(

∂W
∂x

(φ(s, t, x))ρ(s)B(φ(s, t, x))φ(s, t, x)
)∥

∥

∥

∥

≤ M1ρ(s)

and
∥

∥

∥

∥

∂
∂t

(

∂W
∂x

(φ(s, t, x))ρ(s)B(φ(s, t, x))φ(s, t, x)
)∥

∥

∥

∥

≤ M2ρ(s)

for all s ≥ t ≥ 0 and x ∈ K.
Hence, we conclude that Ψ is a C1-function on R+ × Rn and then x = 0 is globally

exponentially stable equilibrium point of system (7).



NONLINEAR DYNAMICS AND SYSTEMS THEORY, 5(4) (2005) 357–367 367

Remark To compare the result given in this paper with the usual techniques of
stability for perturbed systems, we shall consider the Lyapunov function of the nominal
system as a Lyapunov function for the whole system. Let V (t, x) = xT Px, where P > 0
is symmetric and positive definite so that

AT P + PA = −Q

with Q symmetric and positive definite matrix. Then the derivative of V (t, x) along the
solutions of system (7) gives

V̇(2)(t, x) = −xT Qx + ρ(t)xT
(

BT (x)P + PB(x)
)

x.

It follows that,

V̇(2)(t, x) ≤
(

− λmin(Q) + 2λmax(P )ρ(t)‖B(x)‖
)

‖x‖2,

V̇(2)(t, x) ≤ −
(

λmin(Q)− 2kMλmax(P )
)

‖x‖2.

Then, if we choose
λmin(Q)− 2kMλmax(P ) > 0

which implies that k must satisfy the following inequality

k <
λmin(Q)

2Mλmax(P )
. (8)

Hence, the system (7) is globally exponentially stable. Notice that, with our choice of
Lyapunov function we don’t need that the upper bound of ρ(t) is limited as in (8). So, we
obtain a class of stable differential system more large than by using the classical method.
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