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position and momentum coordinates are constants. A particular type of transformation
is chosen in such a way that the new equations of motion retain the same form as in the
former coordinates; such a transformation is called canonical or contact and can greatly
simplify the solution to the equations of motion. Hamilton (1838) has developed the
method for obtaining the desired transformation equations using what is today known as
Hamilton’s principle. It turns out that the required transformation can be obtained by
finding a smooth function S called a generating function or Hamilton’s principal function,
which satisfies a certain nonlinear first-order partial-differential equation (PDE) also
known as the Hamilton–Jacobi equation (HJE).

Unfortunately, the HJE being nonlinear, is very difficult to solve; and thus, it might
appear that little practical advantage has been gained in the application of the HJ-theory.
Nonetheless, under certain conditions, and when the Hamiltonian is independent of time,
it is possible to separate the variables in the HJE, and the solution can then always be
reduced to quadratures. Thus, the HJE becomes a useful computational tool only when
such a separation of variables can be achieved.

The aim of this paper is two-fold. First, to give an overview of the essentials of
Hamilton–Jacobi theory, namely; (i) the Hamiltonian reformulation of the equations of
motion of a mechanical system; and (ii) the Hamiltonian transformation of the equations
of motion. Secondly, to present an approach for solving the HJE for a fairly large class of
Hamiltonian systems in which the variables in the equation may not be separable and/or
the Hamiltonian is not time-independent. We apply the approach to a class of integrable
Hamiltonian systems known as the Toda lattice. Computational results are presented to
show the usefulness of the method.

The rest of the paper in organized as follows. In the remainder of this section, we
introduce notations. In Section 2, we discuss the Hamiltonian formulation of the equa-
tions of motion of a natural mechanical system. Then we discuss Hamiltonian coordinate
transformations and generating functions of the transformations in Section 3. In Sec-
tion 4, we discuss the Hamilton–Jacobi equation which is the central focus of the paper.
In Section 5, we review the Toda lattice as a Hamiltonian system, and discuss the method
of Lax for solving the system. Then in Section 6, we discuss the main results of the paper,
which is a parametrization approach for solving the HJE. We also apply the results to
the A2-Toda lattice. Finally, in Section 7, we give conclusions.

Notation The notation is fairly standard except where otherwise stated. Moreover,
R, Rn will denote respectively, the real line and the n-dimensional real vector space,
t ∈ R will denote the time parameter. Let Mn, Nn, . . . denote Riemannian manifolds
with dimension n, which are compact. Let TM =

⋃

x∈M TxM , T ?M =
⋃

x∈M T ?
x M

respectively denote the tangent and cotangent bundles of M with dimensions 2n. More-
over, πM and π?

M will denote the natural projections TM → M and T ?M → M
respectively. SO(n,M) and sl(n,M) will denote the special orthogonal group and the
lie-algebra of the special linear group of matrices over M respectively. A C∞(M) vector-
field is a mapping f : M → TM such that π ◦ f = IM (the identity on M), and f has
continuously differentiable partial derivatives of arbitrary order. A vector field f also
defines a differential equation (or a dynamic system) ẋ(t) = f(x), x ∈ M , x(t0) = x0.

A differential k-form ωk
x, k = 1, 2, . . . , at a point x ∈ M is an exterior product of

k-vectors from TxM to R i.e. ωk
x : TxM × . . .×TxM (k copies) → R, which is a k-linear

skew-symmetric function of k-vectors on TxM . The space of all smooth k-forms on M
is denoted by Ωk(M). The F-derivative (Frèchet derivative) of a real-valued function
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U : Rn → R is defined as any % such that lim
v→0

1
‖v‖

[U(x + v) − U(x) − 〈%, v〉] = 0, for

any v ∈ Rn. For a smooth function f : Rn → R, fx =
∂f
∂x

= ( ∂f
∂x1

, . . . , ∂f
∂xn

). Further,

let ‖ · ‖1, ‖ · ‖2, ‖ · ‖∞ : M → R denote respectively, 1, 2, and ∞ norms on M , where

‖v(q)‖1 =
n

∑

i

|vi(q)|, ‖v(q)‖2 =
n

∑

i=1

|vi(q)|2

and ‖v(q)‖∞ = maxi{vi(q) : i = 1, . . . , n} for any vector v : Mq → TqM . Also, if
f : [0, 1] → R, then

‖f(s)‖Lp =

(

∫ 1

0
|f(s)|p

) 1
p

, 1 ≤ p < ∞,

while ‖f(s)‖L∞ = sups∈[0,1] |f(s)|.

2 The Hamiltonian Formulation of Mechanics

To review the approach, let the configuration space of the system be defined by a smooth
n-dimensional Riemannian manifold M . If (ϕ,U) is a coordinate chart, we write ϕ = q =

(q1, . . . , qn) for the local coordinates and q̇i =
∂

∂qi
in the tangent bundle TM |U = TU .

We shall be considering natural mechanical systems which are defined as follows.

Definition 2.1 A Lagrangian mechanical system on a Riemannian manifold is called
natural if the Lagrangian function L : TU ×R → R, with U ⊂ M open, is equal to the
difference between the kinetic energy and the potential energy of the system as

L(q, q̇, t) = T (q, q̇, t)− V (q, t), (2.1)

where T : U → R is the kinetic energy which is given by the quadratic form

T =
1
2
〈v, v〉, v ∈ TqU

and V : M × R → R is the potential energy of the system (which may be independent
of time).

For natural mechanical systems, the kinetic energy is a positive-definite symmetric
quadratic form of the generalized velocities,

T (q, q̇, t) =
1
2

q̇TΨ(q, t)q̇. (2.2)

It is further known from Lagrangian mechanics and as can be derived using the D’Alem-
bert’s principle of virtual work or Hamilton’s principle of least action [3, 7, 8], that the
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motion of a holonomic conservative1 mechanical system satisfies Lagrange’s equations of
motion given by

d
dt

(

∂L
∂q̇i

)

− ∂L
∂qi

= 0, i = 1, . . . , n. (2.3)

Then the above equation (2.3) may always be written in the form

ÿq = g(q, q̇, t), (2.4)

for some function g : TU ×R → Rn.
On the other hand, in the Hamiltonian formulation, we choose to replace all the q̇i by

independent coordinates, pi, in such a way that

pi =
∂L
∂q̇i

, i = 1, . . . , n. (2.5)

If we let
pi = hi(q, q̇), i = 1, . . . , n, (2.6)

then the Jacobian of h with respect to q̇, using (2.1), (2.2) and (2.5), is given by Ψ(q)
which is positive definite, and hence equation (2.5) can be inverted to yield

q̇i = gi(q1, . . . , qn, p1, . . . , pn, t), i = 1, . . . , n, (2.7)

for some continuous functions g1, . . . , gn. The coordinates q = (q1, q2, . . . , qn)T, in this
framework, are referred to as the generalized coordinates and p = (p1, p2, . . . , pn)T are
the generalized momenta. Together, these variables form a new system of coordinates for
the system known as the phase space of the system. If (U,ϕ) where ϕ = (q1, q2, . . . , qn)
is a chart on M , then since pi : TU → R, they are elements of T ?U , and together with the
qi’s form a system of 2n local coordinates (q1, . . . , qn, p1, . . . , pn), where pi(q) ∈ T ?

q M ,
i = 1, . . . , n, for the phase-space.

We now define the Hamiltonian function of the system H : T ?M × R → R as the
Legendre transform [3, 5] of the Lagrangian function with respect to q̇ by

H(q, p, t) = pTq̇ − L(q, q̇, t). (2.8)

Consider now the differential of H with respect to q, p and t as

dH =
(

∂H
∂p

)T

dp +
(

∂H
∂q

)T

dq +
∂H
∂t

dt. (2.9)

The above expression must be equal to the total differential of H = pq̇−L for p =
∂L
∂q̇

:

dH = q̇Tdp−
(

∂L
∂q

)T

dq −
(

∂L
∂t

)T

dt. (2.10)

1Holonomic if the constraints on the system are expressible as equality constraints. Conservative if

there exists a time-dependent potential.
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Thus, in view of the independent nature of the coordinates, we obtain a set of three
relationships:

q̇ =
∂H
∂p

,
∂L
∂q

= −∂H
∂q

, and
∂L
∂t

= −∂H
∂t

.

Finally, applying Lagrange’s equation (2.3) together with (2.5) and the preceding results,

one obtains the expression for ṗ. Since we used Lagrange’s equation, q̇ =
dq
dt

and ṗ =
dp
dt

.

The resulting Hamiltonian canonical equations of motion are then given by

dq
dt

=
∂H
∂p

(q, p, t), (2.11)

dp
dt

= −∂H
∂q

(q, p, t). (2.12)

Thus, we have proven the following theorem.

Theorem 2.1 [3] The system of Lagrange’s equations (2.3) is equivalent to the system
of 2n first-order Hamilton’s equations (2.11), (2.12).

In addition, for time-independent conservative systems, H(q, p) has a simple physical
interpretation. From (2.8) and using (2.5), we have

H(q, p, t) = pTq̇ − L(q, q̇, t) = q̇T ∂L
∂q̇

− (T (q, q̇, t)− U(q, t))

= q̇T ∂T
∂q̇

− T (q, q̇, t) + U(q, t)

= 2T (q, q̇, t)− T (q, q̇, t) + U(q, t) = T (q, q̇, t) + U(q, t),

(2.13)

i.e., the total energy of the system. This completes the Hamiltonian formulation of the
equations of motion, and can be seen as an off-shoot of the Lagrangian formulation. It can
also be seen that, while the Lagrangian formulation involves n second-order equations,
the Hamiltonian description sets up a system of 2n first-order equations in terms of the
2n variables p and q. This remarkably new system of coordinates gives new insight and
physical meaning to the equations. However, the system of Lagrange’s equations and
Hamilton’s equations are completely equivalent as the above theorem asserts.

Furthermore, because of the symmetry of Hamilton’s equations (2.11), (2.12) and
the even dimension of the system, a new structure emerges on the phase space T ?M
of the system. This structure is defined by a nondegenerate closed differential 2-form
ω2 ∈ Ω2(M) which in the above local coordinates is defined as

ω2 = dp ∧ dq =
n

∑

i=1

dpi ∧ dqi. (2.14)

Thus, the pair (T ?M, ω2) form a symplectic manifold [1, 3, 11], and together with a Cr

Hamiltonian function H : T ?M → R define a Hamiltonian mechanical system. With this
notation we have the following representation of a Hamiltonian system.
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Definition 2.2 Let (T ?M,ω2) be a symplectic manifold and H : T ?M → R the
Hamiltonian function. Then the vector field XH determined by the condition

ω2(XH , Y ) = dH(Y ) (2.15)

for all vector fields Y , is called the Hamiltonian vector field with energy function H. The
tuple (T ?M, ω2, XH) is called a Hamiltonian system.

Remark 2.1 It is important to note that, the nondegeneracy of ω2 guarantees that
XH exists, and is a Cr−1 vector field. Moreover, on a connected symplectic manifold,
any two Hamiltonians for the same vector field XH have the same differential (2.15), so
differ by a constant only.

We also have the following proposition [1].

Proposition 2.1 Let (q1, . . . , qn, p1, . . . , pn) be canonical coordinates so that ω2 is
given by (2.14). Then, in these coordinates

XH =
(

∂H
∂p1

, . . . ,
∂H
∂pn

, −∂H
∂q1

, . . . , − ∂H
∂qn

)

= J · ∇H

where

J =
(

0 I
−I 0

)

.

Thus, (q(t), p(t)) is an integral curve of XH if and only if Hamilton’s equations (2.11),
(2.12) hold.

Now suppose that a transformation of coordinates is introduced qi → Qi, pi → Pi,
i = 1, . . . , n, defined by

qi = φi(Q,P, t), (2.16)

pi = ψi(Q,P, t) (2.17)

such that every Hamiltonian function transforms as

H(q1, . . . , qn, p1, . . . , pn, t) → K(Q1, . . . , Qn, P1, . . . , Pn, t)

in such a way that the new equations of motion retain the same form as in the former
coordinates, i.e.,

dQ
dt

=
∂K
∂p

(Q,P, t), (2.18)

dP
dt

= −∂K
∂q

(Q,P, t). (2.19)

Such a transformation is called canonical or contact and can greatly simplify the solution
to the equation of motion, especially if Q, P are selected such that K(·, ·, ·) is a constant
independent of Q and P . Should this happen, then Q and P will also be constants and the
solution to the equations of motion are immediately at hand (given the transformation).
We simply transform back to the original coordinates; under the assumption that the
transformation is univalent and invertible. Hamilton (1838) has developed a method for
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obtaining the desired transformation equations using what is today known as Hamilton’s
principle [3, 7, 8, 10].

3 The Transformation Generating Function

A given Hamiltonian system can often be simplified considerably by a suitable transfor-
mation of variables such that all the new position and momentum coordinates (Qi, Pi)
are constants. A particular type of transformation is discussed in this section.

Accordingly, define the Lagrangian function of the system L : TU × R → R as the
Legendre transform [3] of the Hamiltonian function by

L(q, q̇, t) = pTq̇ −H(q, p, t). (3.1)

Then, in the new coordinates, the new Lagrangian function is

L̄(Q, Q̇, t) = PTQ̇−K(Q,P, t). (3.2)

Since both L(·, ·, ·) and L̄(·, ·, ·) are conserved, each must separately satisfy Hamilton’s
principle. However, L(·, ·, ·) and L̄(·, ·, ·) need not be equal in order to satisfy the above
requirement. Indeed we can write [8]

L(q, q̇, t) = L̄(Q, Q̇, t) +
dS
dt

(q, p, Q, P, t) (3.3)

for some arbitrary function S : X × X ×R → R, where X ⊂ T ?M is open.
The next step is to show that, first, if such a function is known, then the transformation

we seek follows directly. Secondly, that the function can be obtained by solving a certain
partial differential equation.

The generating function S relates the old to the new coordinates via the equation

S =
∫

(L− L̄) dt = σ(q, p, Q, P, t) (3.4)

for some function σ : X×X×R → R. Thus, S is a function of 4n+1 variables, and hence
no more than four independent sets of relationships among the dependent coordinates
can exist. Two such relationships expressing the old sets of coordinates in terms of the
new set are given by (2.16), (2.17). Hence only two independent sets of relationships
among the coordinates remain for defining S and no more than two of the four sets of
coordinates may be involved. Therefore, there are four possibilities

S1 = f1(q, Q, t); S2 = f2(q, P, t), (3.5)

S3 = f3(p,Q, t); S4 = f4(p, P, t). (3.6)

Any one of the above four types of generating functions may be selected, and a transfor-
mation obtained from it. For example, if we consider the generating function S1, taking
its differential, we have

dS1 =
n

∑

i=1

∂S1

∂qi
dqi +

n
∑

i=1

∂S1

∂Qi
dQi +

∂S1

∂t
dt. (3.7)
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Again, taking the differential as defined by (3.1), (3.2) (3.3), we have

dS1 =
n

∑

i=1

pi dqi −
n

∑

i=1

Pi dQi + (K −H) dt. (3.8)

Finally, using the independence of coordinates, we equate coefficients, and obtain the
desired transformation equations

pi =
∂S1

∂qi
(q, Q, t)

Pi = −∂S1

∂Qi
(q,Q, t)

K −H =
∂S1

∂t
(q, Q, t), i = 1, . . . , n.

(3.9)

Similar derivation can be applied to the remaining three types of generating functions.

4 The Hamilton–Jacobi Equation

In this section, we turn our attention to the last missing link in the Hamiltonian trans-
formation theory; an approach for determining the transformation generating function,
S. There is only one equation available for this purpose

H(q, p, t) +
∂S
∂t

= K(P,Q, t). (4.1)

However, there are two unknown functions in this equation: S and K. Thus, the best
we can do is to assume a solution for one and then solve for the other. In this regard,
suppose we arbitrarily introduce the condition that K is to be identically zero? Under
this condition, Q̇ and Ṗ vanish; resulting in Q = α, and P = β, constants. The inverse
transformation then yields the motion q(α, β, t), p(α, β, t) in terms of these constants of
integration, α and β.

Consider now generating functions of the first type. Having forced a solution on K,
we must now solve the partial differential equation (PDE)

H
(

q,
∂S
∂q

, t
)

+
∂S
∂t

= 0 (4.2)

for S, where
∂S
∂q

=
(

∂S
∂q1

, . . . ,
∂S
∂qn

)T

. This equation is known as the Hamilton–Jacobi

equation (HJE), and was improved and modified by Jacobi in 1838. For a given func-
tion H(q, p, t), this is a first-order PDE in the unknown function S(q, α, t) which is
customarily called Hamilton’s principal function. We need a solution for this equation
which depends on n arbitrary constants α1, α2, . . . , αn in such a way that the Jacobian

determinant of
∂S
∂qi

with respect to (wrt) the αj satisfies

∣

∣

∣

∣

∂2S
∂qi∂αj

∣

∣

∣

∣

6= 0. (4.3)
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The above condition excludes the possibility in which one of the n constants αj is additive;
that is, one must have

S(q, α, t) 6= S(q, α1, α2, . . . , αn−1, t) + αn. (4.4)

A solution S(q, α, t) satisfying (4.3) is called a “complete solution” of the HJE (4.2),
and solving the HJE is equivalent to finding the solutions of the equations of motion
(2.11), (2.12). Conversely, the solution of (4.2) is nothing more than a solution of the
equations (2.11), (2.12) using the method of characteristics [5, 6]. However, it is generally
not simpler to solve (4.2) instead of (2.11), (2.12).

If a complete solution S(q, α, t) of (4.2) is known, then one has

∂S
∂qi

= pi, (4.5)

∂S
∂αi

= −βi, i = 1, . . . , n. (4.6)

Since the condition (4.3) is satisfied, the second algebraic equation above may be solved
for q and the first solved for p(α, β, t). One thus has a canonical transformation from
(α, β) to (q, p). And it follows from the definition of canonical transformation that the
inverse transformation α = α(q, p, t), β = β(q, p, t) also is canonical.

On the other hand, if the Hamiltonian is not explicitly a function of time or is inde-
pendent of time, which arises in many dynamical systems of practical interest, then the
solution to (4.2) can then be formulated in the form

S(q, α, t) = −ht + W (q, α) (4.7)

with h = h(α). Consequently, the use of (4.7) in (4.2) yields the following PDE in W

H
(

q,
∂W
∂q

)

= h, (4.8)

where h is the energy constant (if the kinetic energy of the system is homogeneous
quadratic, the constant equals the total energy, E). Moreover, since W does not involve
time, the new and the old Hamiltonians are equal, and it follows that K = h. The
function W , known as Hamilton’s characteristic function, thus generates a canonical
transformation in which all the new coordinates are cyclic. Further, one may choose
h = αn for example, so that

W = W (q, α1, . . . , αn−1, h) (4.9)

depends on n − 1 additional arbitrary constants besides h. Noting that the Jacobian
determinant of S wrt the n arbitrary coordinates, and the n constants α1, . . . , αn−1, h
may not vanish, then from (4.5), (4.6) and (4.7), we have the following system

∂W
∂αi

= −βi, i = 1, 2 . . . , n− 1,

∂W
∂h

= t− βn,

∂W
∂q

= p.

(4.10)



332 M.D.S. ALIYU AND L. SMOLINSKY

where the term t − βn in the preceding equation follows directly from the fact that
the system is autonomous. The above system of equations may be solved for n − 1
components of q, say, for q1, q2, . . . , qn−1 resulting in

q1 = q1(α1, α2, . . . , αn, h, β1, β2, . . . , βn−1, qn),

q2 = q2(α1, α2, . . . , αn, h, β1, β2, . . . , βn−1, qn),

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

qn−1 = qn−1(α1, α2, . . . , αn, h, β1, β2, . . . , βn−1, qn),

(4.11)

where the time t is replaced as the parameter qn. These equations are then the solution
for the system.

5 The Toda Lattice

The Toda lattice as a Hamiltonian system describes the motion of n particles moving
in a straight line with “exponential interaction” between them. Mathematically, it is
equivalent to a problem in which a single particle moves in Rn. Accordingly, let the
positions of the particles at time t (in R) be q1(t), . . . , qn(t), respectively. We assume
also that each particle has mass 1, and therefore the momentum of the i-th particle at
time t is pi = q̇i. Consequently, the Hamiltonian function for the finite (or non-periodic)
lattice is defined by

H(q, p) =
1
2

n
∑

j=1

p2
j +

n−1
∑

j=1

e2(qj−qj+1). (5.1)

Thus the canonical equations for the system are given by

dqj

dt
= pj j = 1, . . . , n,

dp1

dt
= −2e2(q1−q2),

dpj

dt
= −2e2(qj−qj+1) + 2e2(qj−1−qj), j = 2, . . . , n− 1,

dpn

dt
= 2e2(qn−1−qn).

(5.2)

It may be assumed in addition that
∑n

j=1 qj =
∑n

j=1 pj = 0, and the coordinates
q1, . . . , qn can be chosen so that this condition is satisfied. While for the periodic lattice
in which the first particle interacts with the last, the Hamiltonian function is defined by

˜H(q, p) =
1
2

n
∑

j=1

p2
j +

n−1
∑

j=1

e2(qj−qj+1) + e2(qn−q1). (5.3)

We may also consider the infinite lattice, in which there are infinitely many particles.
Using the inverse scattering method of solving the initial value problem for the

Korteweg-de Vries equation (KdV) formulated by Lax [13], the solution for the lattice
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can be derived using matrix formalism which led to a simplification of the equations of
motion. To introduce this formalism, define the following (n× n) matrices

L =

















p1 Q1,2 0 · · · 0 0
Q1,2 p2 Q2,3 · · · 0 0

0 Q2,3 p3 · · · 0 0
...

...
...

...
...

0 0 0 · · · pn−1 Qn−1,n

0 0 0 · · · Qn−1,n pn

















, (5.4)

M =

















0 Q1,2 0 · · · 0 0
−Q1,2 0 Q2,3 · · · 0 0

0 −Q2,3 0 · · · 0 0
...

...
...

...
...

0 0 0 · · · 0 Qn−1,n

0 0 0 · · · −Qn−1,n 0

















, (5.5)

where Qij = e(qi−qj). We then have the following proposition [9].

Proposition 5.1 The Hamiltonian system for the non-periodic Toda lattice (5.2)
is equivalent to the Lax equation L̇ = [L,M ], where the function L, M take values in
sl(n,R) and [cdot, ·] is the Lie bracket operation in sl(n, R).

Using the above matrix formalism, the solution of the Toda system (5.2) can be
derived [9, 13].

Theorem 5.1 The solution of the Hamiltonian system for the Toda lattice is given
by L(t) = Ad(exp tV )−1

I V , where V = L(0) and I represents the identity matrix.

The can explicitly write the solution for the case of n = 2. Letting q1 = −q, q2 = q,
p1 = −p and p2 = p, we have

L =
(

p Q
Q −p

)

, M =
(

0 Q
−Q 0

)

, (5.6)

where Q = c−2q. The solution of L̇ = [L, M ] with

L(0) =
(

0 v
v 0

)

,

is

L(t) = Ad
[

exp t
(

0 v
v 0

)]−1

I

(

0 v
v 0

)

.

Now

exp t
(

0 v
v 0

)

=
(

cosh tv sinh tv
sinh tv cosh tv

)

,

and hence,

[

exp t
(

0 v
v 0

)]−1

I
=

1
√

sinh2 tv + cosh2 tv

(

cosh tv sinh tv
sinh tv cosh tv

)

.
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Therefore,

L(t) =
v

sinh2 tv + cosh2 tv

(

−2 sinh tv cosh tv 1
1 2 sinh tv cosh tv

)

,

which means that

p(t) = −v
sinh 2tv
cosh 2tv

, Q(t) =
v

cosh 2tv
.

Furthermore, if we recall that Q(t) = e−2q(t), it follows that

q(t) = −1
2

log
( v

cosh 2tv

)

= −1
2

log v +
1
2

log cosh 2vt. (5.7)

6 Solving the Hamilton–Jacobi Equation

It is clear from the preceding discussion that the success of the Hamiltonian approach
to mechanics depends heavily on the ability to solve the HJE. Because the prospects of
success are limited by the inadequate state of the mathematical art in solving nonlinear
PDEs. At present, the only technique of general utility is the method of separation of
variables . If the Hamiltonian is explicitly a function of time, then separation of variables
is not readily achieved for the HJE. However, if on the other hand, the Hamiltonian
is not explicitly a function of time or is independent of time, which arises in many
dynamical systems of practical interest, then the HJE (4.2) degenerates to the HJE
(4.8). Nevertheless, solving this resulting HJE still remains a very difficult problem in
general.

In this section we propose a parametrization approach for solving the Hamilton–Jacobi
equation for a fairly large class of Hamiltonian systems, and then apply the approach
to the A2-Toda lattice as special cases. To present the approach, let the configuration
space of the class of Hamiltonian systems be a smooth n-dimensional manifold M with
local coordinates q = (q1, . . . , qn), i.e. if (ϕ,U) is a coordinate chart, we write ϕ = q and

q̇i =
∂

∂qi
in the tangent bundle TM |U = TU . Further, let the class of systems under

consideration be represented by Hamiltonian functions H : T ?M → R of the form:

H(q, p) =
1
2

n
∑

i=1

p2
i + V (q), (6.1)

where (p1(q), . . . , pn(q)) ∈ T ?
q M , and together with (q1, . . . , qn) form the 2n symplectic

coordinates for the phase-space T ?M of any system in the class, while V : M → R+ is the
potential function which we assume to be nonseparable in the variables qi, i = 1, . . . , n.
The time-independent HJE corresponding to the above Hamiltonian function is given by

1
2

n
∑

i=1

(

∂W
∂qi

)2

+ V (q) = h, (6.2)

where W : M → R is the Hamilton’s characteristic function for the system.
We then have the following theorem concerning the solution of this HJE.
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Theorem 6.1 Let M be an open subset of Rn which is simply connected and let
q = (q1, . . . , qn) be the coordinates on M . Suppose ρ, θi : M → R for i = 1, . . . , bn+1

2 c;
θ = (θ1, · · · , θbn+1

2 c); and ζi : R×Rb
n+1

2 c → R are C2 functions such that

∂ζi

∂qj
(ρ(q), θ(q)) =

∂ζj

∂qi
(ρ(q), θ(q)), ∀ i, j = 1, . . . , n, (6.3)

and
1
2

n
∑

i=1

ζ2
i (ρ(q), θ(q)) + V (q) = h (6.4)

is solvable for the functions ρ, θ. Let

ω1 =
n

∑

i=1

ζi(ρ(q), θ(q))dqi,

ω1 ∈ Ωprime(M), and suppose C is a path in M from an initial point q0 to an arbitrary
point q ∈ M . Then

(i) ω1 is closed;
(ii) ω1 is exact;
(iii) if W (q) =

∫

C
ω1, then W satisfies the HJE (6.2).

Proof (i)

dω1 =
n

∑

j=1

n
∑

i=1

∂
∂qj

ζi(ρ(q), θ(q))dqj ∧ dqi,

which by (6.3) implies dω1 = 0; hence, ω1 is closed.

(ii) Since by (i) ω1 is closed, by the simple connectedness of M (Poincaré’s lemma [1]),
ω1 is also exact.

(iii) By (ii) ω1 is exact, therefore the integral W (q) =
∫

C
ω1 is independent of the

path C. Therefore, W corresponds to a scalar function. Furthermore, dW = ω1 and
∂W
∂qi

= ζi(ρ(q), θ(q)), and thus substituting in the HJE (6.2) and if (6.4) holds, then W

satisfies the HJE.

In the next corollary we shall construct explicitly the functions ζi, i = 1, . . . , n, in
the above theorem.

Corollary 6.1 Assume the dimension n of the system is 2, and M , ρ, θ are as in
the hypotheses of Theorem 6.1, and that conditions (6.3), (6.4) are solvable for θ and ρ.
Also, define the functions ζi, i = 1, 2, postulated in the theorem by ζ1(q) = ρ(q) cos θ(q),
ζ2(q) = ρ(q) sin θ(q). Then, if

ω1 =
2

∑

i=1

ζi(ρ(q), θ(q)) dqi, W =
∫

C

ω1,
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and q : [0, 1] → M is a parametrization of C such that q(0) = q0, q(1) = q, then
(i) W is given by

W (q, h) = γ

1
∫

0

√

(h− V (q(s))
[

cos θ(q(s))q
′

1(s) + sin θ(q(s))q
′

2(s)
]

ds (6.5)

where γ = ±
√

2 and q′i =
dqi(s)

ds
;

(ii) W satisfies the HJE (6.2).

Proof (i) If (6.3) is solvable for the function θ, then substituting the functions
ζi(ρ(q), θ(q)), i = 1, 2 as defined above in (6.4), we get immediately

ρ(q) = ±
√

2(h− V (q)).

Further, by Theorem 6.1, ω1 given above is exact, and W =
∫

C
ω1dq is independent of

the path C. Therefore, if we parametrize the path C by s, then the above line integral
can be performed coordinate-wise with W given by (6.5) and γ = ±

√
2.

(ii) follows from Theorem 6.1.

Remark 6.1 The above corollary constructs one explicit parametrization that may be
used. However, because of the number of parameters available in the parametrization
are limited, the above parametrization is only suitable for systems with n = 2. Other
types of parametrizations that are suitable could also be employed.

If however the dimension n of the system is 3, then the following corollary gives a
procedure for solving the HJEs.

Corollary 6.2 Assume the dimension n of the system is 3, and M , ρ, are as in
the hypotheses of Theorem 6.1. Let ζi : R × R × R → R, i = 1, 2, 3, be defined by
ζ1(q) = ρ(q) sin θ(q) cos ϕ(q), ζ2(q) = ρ(q) sin θ(q) sin ϕ(q), ζ3(q) = ρ(q) cos θ(q), and
assume (6.3) are solvable for θ and ϕ, while (6.4) is solvable for ρ. Then, if

ω1 =
3

∑

i=1

ζi(ρ(q), θ, ϕ)dqi,

W =
∫

C
ω1, and q : [0, 1] → M is a parametrization of C such that q(0) = q0, q(1) = q,

then
(i) W is given by

W (q, h) = γ
∫ 1

0

√

(h− V (q(s)))
{

sin θ(q(s)) cos ϕ(q(s))q
′

1(s)

+ sin θ(q(s)) sin ϕ(q(s))q
′

2(s) + cos θ(q(s))q
′

3(s)
}

ds, (6.6)

where γ = ±
√

2;
(ii) W satisfies the HJE (6.2).

Proof Proof follows along the same lines as Corollary 6.1.

Remark 6.2 Notice that, the parametrization employed in the above corollary is now
of a spherical nature.

The following theorem gives bounds on the solution W and its derivatives.
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Theorem 6.2 Let N ⊂ M be the region in which the solution W of the HJE given
in Corollaries 6.1 and 6.2 exists. Then if C is a path q : [0, 1] → N in N parametrized
by s ∈ [0, 1] such that q(0) = q0, q(1) = q we have the following bounds on the solution
and its derivatives:

(i) ‖W (q(s), h)‖∞ ≤ |γ|
√

h ‖q(s)‖L1 ;

(ii)
∥

∥

∥

∥

∂W
∂q

∥

∥

∥

∥

2
= |
√

2ρ(q)/γ|;

(iii)
∥

∥

∥

∥

∂W
∂q

∥

∥

∥

∥

∞
= |γ|

√
h.

Proof (i) From (6.5) or (6.6),

‖W (q, h)‖∞ ≤ |γ|
n

∑

i=1

1
∫

0

sup
q(s)∈N

∣

∣

∣

√

(h− V (q))
∣

∣

∣ |q′i(s) dqi(s)|

≤ |γ|
√

h

1
∫

0

(|q′1(s) ds|+ |q′2(s) ds|+ . . . + |q′n(s) ds|)

≤ |γ|
√

h‖q(s)‖L1 .

(ii) Using the definition of ∂W/∂qi given in Corollaries 6.1 and 6.2, we have

∥

∥

∥

∥

∂W
∂qi

∥

∥

∥

∥

2

2
=

n
∑

i=1

∣

∣

∣

∣

∂W
∂qi

∣

∣

∣

∣

2

= |
√

2ρ(q)/γ|2,

hence the result.
(iii) Follows by taking the sup over q ∈ M of ∂W/∂qi, i = 1, . . . , n.

Furthermore, the following proposition gives regularity of the solution.

Proposition 6.1 If the functions ρ, θi, i = 1, . . . , bn+1
2 c in Theorem 6.1 and Corol-

laries 6.1 and 6.2, n = 1, 2, or 3 exist and the HJE (6.2) is solvable for W , then if θi,
i = 1, . . . , bn+1

2 c, are C1, then W is C2, and consequently if θi, i = 1, . . . , bn+1
2 c, are

Cr, r ≥ 1, then W is Cr+1.

Proof From the expressions (6.5), (6.6) for W , we see that ρ is a smooth function,
since V is smooth. Hence, the differentiability of W depends on the differentiability of the
θi, i = 1, 2, or 3. Further, it is clear that, the integration increases the differentiability
of W by 1 over that of the θi, i = 1, 2, or 3.

We can combine Corollaries 6.1 and 6.2 for any n in the following proposition.

Proposition 6.2 Let M be an open subset of Rn which is simply connected and let
q0 be a fixed point in M . Suppose there exists a C1 matrix function R : Rl → SO(n,R)
for some smooth vector function θ = (θ1, . . . , θl), θi : M → R, i = 1, . . . , l, and a C1

vector function %(q) = [ρ(q), . . . , ρ(q)], ρ : M → R, such that the Jacobian matrix

∂
∂q
R(θ(q))%(q) (6.7)
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is symmetric and
1
2
〈%(q)|%(q)〉+ V (q) = h. (6.8)

Let

ω̃1 =
n

∑

i=1

[R(θ(q))%(q)]idqi

and suppose C is a path from q0 to an arbitrary point q ∈ M . Then,

(i) ω̃1 is closed;
(ii) ω̃1 is exact;
(iii) if ˜W (q) =

∫

C
ω̃1, then ˜W satisfies the HJE (6.2).

Proof (i)

dω̃1 =
n

∑

j=1

n
∑

i=1

∂
∂qj

[R(θ(q))%(q)]idqj ∧ dqi

which by (6.7) implies that dω̃1 = 0; hence, ω̃1 is closed.

(ii) Again by simple-connectedness of M , (i) implies (ii).

(iii) By (ii) the integral ˜W (q) =
∫

C ω̃1 is independent of the path, and W corre-
sponds to a scalar function. Moreover, if dW = ω̃1 and ∂W/∂qi = [R(θ(q))%(q)]i, then
substituting in the HJE (6.2) and if (6.8) holds, then W satisfies the HJE (6.2).

If the HJE (6.2) is solvable, then the dynamics of the system evolves on the n-
dimensional Lagrangian submanifold [1, 11] ˜N which is an immersed submanifold of max-
imal dimension, and can be locally parametrized as the graph of the function W , i.e.,

˜N =
{(

q,
∂W
∂q

)

: q ∈ N ⊂ M, W is a solution of HJE (6.2)
}

as described in Section 1. Moreover, for any other solution W ′ of the HJE, the volume
enclosed by this surface is invariant. This is stated in the following proposition.

Proposition 6.3 Let N ⊂ M be the region in M where the solution W of the HJE
(6.2) exists. Then, for any orientation of M , the volume form of ˜N

ωn =





√

√

√

√1 +
n

∑

j=1

(

∂W
∂qj

)2


 dq1 ∧ dq2 . . . ∧ dqn

is given by

ωn = (
√

1 + 2(h− V (q)))dq1 ∧ dq2 . . . ∧ dqn.
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Proof From the HJE (6.2), we have

√

√

√

√1 +
n

∑

j=1

(

∂W
∂qj

)2

=
√

1 + 2(h− V (q), ∀ q ∈ N

m

ωn =





√

√

√

√1 +
n

∑

j=1

(

∂W
∂qj

)2


 dq1 ∧ . . . ∧ dqn =
(
√

1 + 2(h− V (q)
)

dq1 ∧ . . . ∧ dqn

∀ q ∈ N.

We now apply the above ideas to solve the HJE for the two-particle A2-Toda lattice.
We consider the nonperiodic system described in Section 5.

6.1 Solution of the Hamilton–Jacobi equation for the A2-Toda system

Consider the two-particle nonperiodic Toda system (or A2 system) given by the Hamil-
tonian (5.1)

H(q1, q2, p1, p2) =
1
2

(p2
1 + p2

2) + e2(q1−q2). (6.9)

Then, the HJE corresponding to the system is given by

1
2

{

(

∂W
∂q1

)2

+
(

∂W
∂q2

)2
}

+ e2(q1−q2) = h2. (6.10)

The following proposition gives the solution of the above HJE corresponding to A2-Toda
lattice.

Proposition 6.4 Consider the HJE (6.10) corresponding to the A2-Toda lattice.
Then a solution to the HJE is given by

W (q′1, q
′
2, h2) = cos

π
4

q′1
∫

1

ρ(q) dq1 + m sin
π
4

q′1
∫

1

ρ(q) dq1

= (1 + m)

{

√

h2 − e−2(b+m−1) −
√

h2 tanh−1
[
√

h2−e−2(b+m−1)
√

h2

]

m− 1

−

√

h2 − e−2b−2(m−1)q′1 −
√

h2 tanh−1
[
√

h2−e−2b−2(m−1)q′1√
h2

]

m− 1

}

, q1 > q2,
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and

W (q′1, q
′
2, h2) = cos

π
4

q′1
∫

1

ρ(q) dq1 + m sin
π
4

q′1
∫

1

ρ(q) dq1

= (1 + m)

{

√

h2 − e−2(b−m+1) −
√

h2 tanh−1
[
√

h2−e−2(b−m+1)
√

h2

]

m− 1

−

√

h2 − e−2b+2(1−m)q′1 −
√

h2 tanh−1
[
√

h2−e−2b+2(1−m)q′1√
h2

]

m− 1

}

, q2 > q1.

Furthermore, a solution for the system equations (5.2) for the A2 with the symmetric
initial conditions q1(0) = −q2(0) and q̇1(0) = q̇2(0) = 0 is

q(t) = −1
2

log
√

h2 +
1
2

log[cosh 2
√

h2(β − t)] (6.11)

where h2 is the energy and

β =
1

2
√

h2
tanh−1

(

2q̇2
1(0)√
2h2

)

.

Proof Applying the results of Theorem 6.1 we have

∂W
∂q1

= ρ(q) cos θ(q),
∂W
∂q2

= ρ(q) sin θ(q)

and substituting in the HJE (6.10) we immediately get

ρ(q) = ±
√

2(h2 − e2(q1−q2))

and

ρq2(q) cos θ(q)− θq2ρ(q) sin θ(q) = ρq1(q) sin θ(q) + θq1ρ(q) cos θ(q). (6.12)

The above equation (6.12) is a first-order PDE in θ and can be solved by the method
of characteristics [5, 6]. However, the geometry of the system allows for a simpler solu-
tion. We make the simplifying assumption that θ is a constant function. Consequently,
equation (6.12) becomes

ρq2(q) cos θ = ρq1(q) sin θ =⇒ tan θ =
ρq2(q)
ρq1(q)

= −1 ⇒ θ = −π
4

.

Thus,
p1 = ρ(q) cos

π
4

, p2 = −ρ(q) sin
π
4

,
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and integrating dW along the straightline path from (1,−1) on the line

L : q2 =
q′2 + 1
q′1 − 1

q1 +
(

1 +
q′2 + 1
q′1 − 1

)

def= mq1 + b

(this follows from the configuration of the lattice) to some arbitrary point (q′1, q
′
2) we

get

W (q′1, q
′
2, h2) = cos

π
4

q′1
∫

1

ρ(q) dq1 + m sin
π
4

q′1
∫

1

ρ(q) dq1

= (1 + m)

{

√

h2 − e−2(b+m−1) −
√

h2 tanh−1
[
√

h2−e−2(b+m−1)
√

h2

]

m− 1

−

√

h2 − e−2b−2(m−1)q′1 −
√

h2 tanh−1
[
√

h2−e−2b−2(m−1)q′1√
h2

]

m− 1

}

.

Similarly, if we integrate from point (−1, 1) to (q′1, q
′
2), we get

W (q′1, q
′
2, h2) = cos

π
4

q′1
∫

−1

ρ(q) dq1 + m sin
π
4

q′1
∫

−1

ρ(q) dq1

= (1 + m)

{

√

h2 − e−2(b−m+1) −
√

h2 tanh−1
[
√

h2−e−2(b−m+1)
√

h2

]

m− 1

−

√

h2 − e−2b+2(1−m)q′1 −
√

h2 tanh−1
[
√

h2−e−2b+2(1−m)q′1√
h2

]

m− 1

}

.

Finally, from (2.11) and (6.9), we can write

q̇1 = p1 = ρ(q) cos
π
4

, (6.13)

q̇2 = p2 = −ρ(q) sin
π
4

. (6.14)

Then q̇1 + q̇2 = 0 which implies that q1 + q2 = k, a constant, and by our choice of initial
conditions, k = 0. Now integrating the above equations from t = 0 to t we get

1
2
√

h2
tanh−1 ρ(q)√

2h2
=

1
2
√

h2
tanh−1 ρ(q(0))√

2h2
− t,

1
2
√

h2
tanh−1 ρ(q)√

2h2
=

1
2
√

h2
tanh−1 ρ(q(0))√

2h2
− t.

If we let

β =
1

2
√

h2
tanh−1 ρ(q(0))√

2h2
,
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then upon simplification we get

q1 − q2 =
1
2

log
[

h2

(

1− tanh2 2
√

h2(β − t)
)]

=
1
2

log [h2 sech2 2
√

h2(β − t)].

Since k = 0, then q1 = −q2 = −q, and we get

q(t) = −1
2

log
√

h2 −
1
2

log[sech 2
√

h2(β − t)]

= −1
2

log
√

h2 +
1
2

log[cosh 2
√

h2(β − t)].

Now, from (6.10) and (6.13), (6.14),

ρ(q(0)) = q̇2
1(0) + q̇2

2(0),

and in particular, if q̇1(0) = q̇2(0) = 0, then β = 0. Therefore,

q(t) = −1
2

log
√

h2 +
1
2

log(cosh 2
√

h2t)

which is of the form (5.7) with v =
√

h.

Next, we consider a more general solution to the HJE for the A2-Toda lattice. We try
to solve the equation (6.12) under the fact that

p1 + p2 = α (6.15)

a constant, which follows from (5.2). Then, from the proceeding, the above equation
implies that

ρ(q) cos θ(q) + ρ(q) sin θ(q) = α. (6.16)

Now suppose we seek a solution to (6.12) and (6.16) for θ(q) such that

∂θ(q)
∂q1

=
∂θ(q)
∂q2

. (6.17)

The above condition is satisfied if

θ(q1, q2) = f(q1 + q2) (6.18)

for some smooth function f : R → R of one variable, and

∂θ(q)
∂q1

=
∂θ(q)
∂q2

= f ′(q1 + q2), (6.19)

where f ′(·) is the derivative of the function with respect to its argument. Then substi-
tuting in (6.12) and using (6.16), we get

ρq2(q) cos f(q1 + q2)− ρq1(q) sin f(q1 + q2) = αf ′(q1 + q2) (6.20)
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which after substituting for ρq1(q) and ρq2(q) and making the change of variables x =
q1 + q2, y = q1 − q2 becomes

√
2e2y

√
h2 − e2y

(cos f(x) + sin f(x)) = αf ′(x). (6.21)

The above equation represents a first-order nonlinear ODE in the function f(x), and can
be integrated in this way

x
∫

0

√
2e2y

√
h2 − e2y

dx =

x
∫

0

αf ′(x)
(cos f(x) + sin f(x))

dx (6.22)

to yield

f(x) = 2 tan−1

[

tanh

( √
2e2y

α
√

h2 − e2y

)

+ 1

]

. (6.23)

This implies that

θ(q1, q2) = 2 tan−1

[

tanh

( √
2e2(q1−q2)

α
√

h2 − e2(q1−q2)

)

+ 1

]

. (6.24)

We can now obtain W by taking the line integral of p1(q) = ρ(q) cos θ(q) and p2 =
ρ(q) sin θ(q) along the straightline path from (1,−1) on the line

L : q2 =
q′2 + 1
q′1 − 1

q1 −
(

1 +
q′2 + 1
q′1 − 1

)

def= mq1 + b

to some arbitrary point (q′1, q
′
2) for q1 > q2 and from (−1, 1) to (q′1, q

′
2) for q2 > q1.

Hence we have

W (q, α, h2) =
∫

L

[ρ(q) cos θ(q) + mρ(q) sin θ(q)] dq1. (6.25)

Using the half-angle formula, we can write

T (q1)
def= tan

θ(q1)
2

= tanh

( √
2e2q1(1−m)−b

α
√

h2 − e2q1(1−m)−b

)

+ 1, (6.26)

cos θ(q1) =
1− T 2(q1)
1 + T 2(q1)

, (6.27)

sin θ(q1) =
2T (q1)

1 + T 2(q1)
. (6.28)

Therefore,

W (q, α, h2) =

q′1
∫

1

√

2(h2 − e2x(1−m)−b)
(

1− T 2(x)
1 + T 2(x)

+ m
2T (x)

1 + T 2(x)

)

dx

=

q′1
∫

1

√

2(h2 − e2x(1−m)−b)
(

1− 2mT (x)− T 2(x)
1 + T 2(x)

)

dx for q1 > q2
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and

W (q, α, h2) =

q′1
∫

−1

√

2(h2 − e2x(1−m)−b)
(

1− 2mT (x)− T 2(x)
1 + T 2(x)

)

dx for q2 > q1.

Unfortunately the above integrals cannot be computed in closed-form.

7 Conclusion

In this paper, we have presented a review of Hamilton–Jacobi theory and a new approach
for solving the HJE for a fairly large class of Hamiltonian systems in which the variables
may not be separable. The approach can also be extended to the case in which the
Hamiltonian is not time-independent, and relies on finding a parametrization that allows
for the equation to be solved.

The approach has been applied to the A2-Toda lattice, and computational results
have been presented to show the usefulness of the method. It has been shown that, for
the two-particle non-periodic A2-Toda system, the HJE can be completely integrated
as expected to obtain the characteristic function and subsequently a complete solution
to the equations of motion. The approach can also be applied to a fairly large class of
Hamiltonian systems.
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