Stability of Nonautonomous Neutral Variable Delay Difference Equation

Hai-Long Xing1, Xiao-Zhu Zhong1, Yan Shi2\ast, Jing-Cui Liang1 and Dong-Hua Wang1

1School of Science, Yanshan University, Qinghuangdao 066004, China
2School of Information Science, Kyushu Tokai University, 9-1-1, Toroku, Kumamoto 862-8652, Japan

Received: March 12, 2005; Revised: June 9, 2005

Abstract: This paper studies the stability of a class of nonautonomous neutral delay difference equation. The case of several variable delays is mainly considered, and the sufficient conditions of uniform stability and uniform asymptotical stability are obtained. Some results with a constant delay in the literature are extended and improved.

Keywords: Nonautonomous; neutral difference equations; stability.

Mathematics Subject Classification (2000): 35D05, 35E05.

1 Introduction

Consider the nonautonomous neutral variable delay difference equation

$$\Delta(x(n) - cx(n-k)) + f(n, x(n-l_1(n)), \ldots x(n-l_m(n))) = 0, \quad n \in N,$$

where $c \in (-1, 1)$; $k \in N$; $\{l_i(n)\}$ is a positive integer sequence and satisfies $l_i(n) \leq l$, $i = 1, \ldots, m$, $n \in N$; l is a given positive integer, $f(n, x_1, \ldots x_m): N \times R^m \to R$, and $f(n, 0, \ldots 0)$ satisfies $f(n, x_1, \ldots x_m) \equiv 0$, $n \in N$.

\ast Corresponding author: shi@ktmail.ktokai-u.ac.jp

\copyright 2005 Informath Publishing Group/1562-8353 (print)/1813-7385 (online)/www.e-ndst.kiev.ua