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Abstract: This paper studies the stability of a class of nonautonomous neutral
delay difference equation. The case of several variable delays is mainly consid-
ered, and the sufficient conditions of uniform stability and uniform asymptoti-
cal stability are obtained. Some results with a constant delay in the literature
are extended and improved.
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1 Introduction

Consider the nonautonomous neutral variable delay difference equation

A(z(n) —cx(n — k) + f(n, z(n —l1(n)), ... z(n —ln(n)) =0, n €N, (1)
where ¢ € (=1,1); k€ N; {l;(n)} is a positive integer sequence and satisfies I;(n) <1,
t=1,...,m, n € N; lis a given positive integer, f(n,z1,... Zm): N X R™ — R, and
f(n,0,...0) satisfies f(n,z1,...zm) =0, n € N.
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In recent years there are lots of researches on stability of special-formed zero solution
to the equation (1) (see [1-9]). In 1999, Z. Zhou and J.S. Yu studied the equation

A(xz(n) —cx(n — k) + h(n,z(n —1)) =0

where c€ (=1,1); k€ N; L € N; f(n,z): NxR— R and f(n,0) satisfies f(n,0) =0,
n € N, and obtained a sufficient condition of the stability and asymptotical stability for
zero solution to this equation [7]. It will be more practical for the fact that if the function
f(n,z) is replaced by function f(n,x1,... z,,) and the constant delay is replaced by the
variable delay. Based on the above-mentioned consideration, we studied the stability of
equation (1) and discovered that the concerned conclusion can be extended to the more
general equation (1) and obtained a sufficient condition of the stability and asymptotical
stability of equation (1).

For simplicity, the basic conceptions and symbols which occur in the paper will be
introduced as follows: “A” stands for the forward difference operator, say, Ay(n) =
y(n + 1) —y(n); Z is the integer number set; R is the real number set. Suppose that
a€Z,let Na)={a,a+1,...}, N=N(0). For any given a,b € Z and a <b, let
N(a,b) ={a,a+1, ..., b}.

Definition 1.1 Sequence {z(n)} is said to be the solution of equation (1) if for a
certain ng € N, the sequence is defined on the N(ng —r), where r = max{l,k} and
satisfies equation (1). Obviously, equation (1) has zero solution permanently.

Definition 1.2 If for any ¢ > 0 and ng € N, there exists a d(g,n9) > 0, such that
when |z(no + j)| < 0, j € N(—r,0), the solution of equation (1) satisfies |z(n)| < e,
n € N(ng), then the zero solution of equation (1) is said to be stable. If 6 can be chosen
independent of ng, then the zero solution of equation (1) is said to be uniformly stable.

Definition 1.3 The zero solution of equation (1) is said to be attractive, if for any
ng € N, there exists a d(e,ng) > 0, such that when ||z(no + j)| < J, j € N(-r,0),
the solution of equation (1) satisfies lirJIrl x(n) = 0, then the zero solution of equation

n—-1+oo

(1) is said to be attractive. If 6 can be chosen independent of ng, the zero solution of
equation (1) is said to be uniformly attractive.

Definition 1.4 The zero solution of equation (1) is said to be uniformly asymptoti-
cally stable, if its zero solution is uniformly stable and uniformly attractive.

Let

(n —li(n))=max{z(n — l1(n)),...,z(n —ln(n))}}, (2)
(n —l;(n))=min{z(n —l1(n)),...,x(n —l,u(n))}}, (3)

n— a(n)=min{n — l;(n):
n— f(n)=min{n — l;(n):

8

8

S is a real number sequence, for any = = {z(1),...,x(n),... } € S, let ||z| = sup{|z(7)|},
for a given H > 0, denote

Sy ={resS: |z| <H. (4)

If m > n, we assume that C]' = 0.



NONLINEAR DYNAMICS AND SYSTEMS THEORY, 5(3) (2005) 299-314 301
2 Main Results and Proofs

Theorem 2.1 Suppose that there exists a nonnegative real number sequence {p(n)},
such that

(1) for positive constant H and any x € Sy, when n € N, we have

p(n)z(n = B(n)) < fn, z(n —L(n)),... z(n —ln(n)) < p)z(n —a(n)); (5

(2) the following inequalities are satisfied

n _ c 2
@~ e+ Y p<i><§+%, nen, (©)
i=n—a(n)
n _ c 2
2@~ le)+ > p<i><§+%, neN. )
i=n—pB(n)

Then the zero solution of equation (1) is uniformly stable.

Theorem 2.2 Suppose that there exists a nonnegative real number sequence {p(n)},
such that

(1) for positive constant H and any x € Sy, when n € N, we have

p(n)z(n = B(n)) < f(n,2(n = Li(n)),...,x(n —lm(n))) <p(n)z(n —a(n));  (8)

+oo
2) Zp(n) = +o0; 9)
n _9le 2
(3) ﬂd@_kw+f22mf@%<g+%m%%%3 nen, (10)
n —9lel)?
2lel2—1lc)+ > (i) <g+%, neN. (11)

i=n—p(n)

Then the zero solution of equation (1) is uniformly asymptotically stable.
Proof of Theorem 2.1 For any 0 < ¢ < H, ng € N, there is a § > 0, when the
solution {z(n)} to the equation satisfies |x(no + )| <9, i = —r,—r+1,...,0, we get
|z(n)] <e, n € N(no). (12)

We select )
P R
(14 [e)(2]e] +3)*
In the following, we will prove that when n € N(ng+1,n¢+ 3r), (12) holds. In fact,
from(1), we can see that

|z(ng + 1)| = |cx(no + 1 — k) — cx(ng — k) + x(no)
— f(no,x(no — l1(ng)), - - ., x(ng — lm(no)))]
< (14 2le| + p(n))d < (2|¢] +3)d < e < H.
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Generally, when ¢ € N(1,3r), we have
lz(no + 1) < (2|¢| +3)'0 < e < H. (13)

In the following, we will prove that when n € N(ng + 3r + 1), (12) holds. In fact,
otherwise, there must be a n; € N(ng + 3r + 1) such that |z(n;)] > e and when
n € N(ng,n1 — 1), such that

|z(n)] < e. (14)

Suppose z(n1) > 0, we then have z(n1) > e. Let
y(n) =z(n) —cx(n—k), n e N(no), (15)

then
y(n) = o(m) — co(my — k) = (1 - |e])e, (16)

Because
y(no + 3r) < |z(ng + 3r)| + |c||z(no +3r — k)| < (14 |c))(2]e| +3)*"6 = (1 — |c|)e

then there is a n* € N(no + 3r + 1,n1), such that

y(n* —1) < (1 —|c])e,

( * ) < (1 —el) an
y(n®) = (1 —cl)e,

and when n € N(n* + 1, nq), we have y(n) > (1 — |c|)e, thus we get
Ay(n™ —1) > 0. (18)

1
From (6) we can see that |c| < 5 such that
w(n*) = y(n") + cx(n® — k) 2 y(n*) — |cfe = (1 —2[c|)e. (19)

From (5) and (18) we can see that

p(n” = Da(n” —1-4(n" -1))
<f(n*=1l,z(n* —1—-5L(n* —=1)),...,2(n" —=1—1,(n* = 1)) = -Ay(n* - 1) <0,

then we have
z(n* —1-p(n*—-1)) <0. (20)

Therefore from (19) and (20) we can see that there exists ng € N(n* — B(n* —1),n*)
and £ € (0,1), such that z(ny —1) < 0. And when n € N(ng,n*), we have

x(n) >0, (21)
x(ng — 1)+ &(xz(ne — 2(ne — 1)) =0, (22)

then from (22) and (15), we get

—[y(n2 = 1) +&(y(n2 —y(na — 1))} = =[(1 = a(nz — k — 1) + Lx(ne — k)le < [cle (23)
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and
[y(n2 — 1) + &(y(n2 —y(na — )] = [(1 = §z(n2 — k = 1) + {x(na — k)|e < |cfe

that is
y(no — 1) < |cle = £(y(n2 — y(ng — 1)). (24)

In the following we will prove that when n € N(ng +r, n* — 1), we have
’n2—1
~a() < (2l + 3 0l0) + 6plna — 1)) (25)

In fact, from (21) we can see that when n € N(ng, n*—1), obviously the above inequality
holds.
In the following we will prove that when n € N(ng+r, na — 1), inequality (25) holds.
From (5) we can see that when n € N(ng + r), we have

Ay(n) < =p(n)z(n — B(n)), (26)
thus when n € N(ng+r, n2 — 1), we get
Ay(n) < p(n)e. (27)
Then when n € N(ng+r, ng — 1), we have

~ly(m) — ylnz — 1) — E(ylnz) — y(na — 1)]
= 3 Ayt +eaun 0 < (3 90+ eplna—1) ).

From (14) and (15), when n € N(ng + r, ng — 1), we have
—z(n) = =(y(n) + cx(n —k)) = =[y(n) —y(nz — 1) — {(y(n2)
—y(n2 — 1)) = [y(n2 — 1) + £(y(n2) — y(n2 — 1))] — cx(n — k)
ng—2
< | 3 )+ eplon = 1)z + 20l

Therefore, inequality (25) holds.

Suppose
_ 2 (1-2f)?
8= 3+ gy — 2=l (28)
Then from (7), we have
> pli)<B, neN. (29)
i=n—B(n)
Let
n*—1
d= Y p(i)+(1-&p(nz —1). (30)

i:ng
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There are two situations needed to be contemplated.

Case 1 d<1-2|c|.
From (24), (25) and (26), we can see that

y(n") =y(n2 — 1) Z Ay(n) < [cle = &(y(n2) — y(n2 — 1)) Z Ay(n

n=ns—1 n=ns—1

=lele+ (1 =&§Ay(n2 — 1) + Z Ay(n) < [cle = (1 = &p(n2 — 1)
X a(ny —1— B(ns —1)) = 3 p(n)e(n — B(n))
<lele + (1 — Oplnz - 1)[ S () +ep(ns— 1) + 2|2

'L‘:nzflfﬁ(nzfl)

n*—1 na—2
+ Z p(”){ Z p(i)+§p(”2—1)+2|c|} £
n=na Lisni(n)

From (29) we get

y(n") < |C|€ + (1 - p(nz -1[g ( —&p(nz — 1) + 2[cfle

)
[ S (i) — (1— Ep(na — 1)+ 2|c|}s
i=n— ﬁ(n i=ng

<lele+ (1 =&plnz = D[F - (1 = p(nz — 1)

ol S o W8 3 p) = (1= Oplna — 1)+ 20

n=nsg 1=ng

nng

From (30), we have

n*—1 n

) < el + |3+ 2e)d = (1= 92— 1) = 3 plo) - 500
n*—1
— (L= pln=1) 3 plo)|e = e + | (9+ 2l — (1 - 92— 1)
5T m) 5 00 - (- Optma = 1) 3 o)
Because
3 P+ (-0~ 1) 2 e (3 p) 40 Gptna )
= L d* > L d?

n*—nsg+1 ~I+1
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we have
1 1
: 2lc)d - ( = d*|e. 31
yit) <[+ 5+ 2~ (5 + 50 ) e 31)
Because the function g(z) = |c| + (2|c| + B)x — 2(1—:_ 1)3:2 is monotonously increasing

on the interval [0, 1 — 2|¢|], then we have
i) < [+ (94 241~ 20e) = (5 + g ) 01— 2]
<[ Il Jel(1 ~ 20ef?) < (1~ Je])e

which contradicts inequality (17). Therefore, Case 1 is impossible.

Case 2 d>1-2|c|.
In this case there exists a positive integer ns € N(ng,n*), which satisfies

n*—1 n*—1
2|e| + Z p(n) <1 and 2c|+ Z p(n) > 1,
n=ns n=ng—1

then there is a 7 € (0,1], such that

n*—1
2lc[+ > p(n)+ (1 —n)p(ns —1) = 1. (32)
Because
ns— -2
y(n*) =ylna — 1)+ Z Ay(n) +nAy(nz — 1) + (1 —n)Ay(ns — 1) + Z Ay(n
n=ng—1 n=mns

and making use of (24), we get

nz—2 n*—1
y(n") < |cle+nAy(ns—1)+(1-§)Ay(na—1 Z Ay(n)+(1—n)Ay(ns—1)+ > Ay(n)

From (27), we get

nAy(nz—1)+(1-§)Ay(n2—1 i Ay(n [ —&p(n2—1)+ i p(n)+np(n3—1)}€

n=ns3 n=ns3

and from (25) and (26), we have

(1= ) Ay(ns — 1) Z Ay(n) < (1 - n)p(ns - 1)[2|c|
na—2 g n*—1 no—2
S p<i>+sp<n2—1>}s+Zp<n>[2|c|+ S (i) + €plna — 1)

i=ng—1—08(n3z—1) n=ns i=n—p3(n)
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We then have

y(n*) < |ele + [(1 a1+ Y pln) + mplns — 1)}:—
s — 1) [2|c| Y )+ e - 1>]a
i=nz3—1—pB(n3—1)

n272

S Wl + Y b0 +en- 1)
n=ns i=n—p3(n)
From (29) and (32), we get
(") < e+ (1= Optna = 1)+ 3 plo) + vl — D]
(1 = 2lef2le] — (1~ Ep(nz ~ Ve + (1~ n)plns 1) l > pli) - p)|e
zﬁ:(?lg;’—_ll)— 1=no
n*—1 n n nz—1
EDIOIED SINTOED STOED SETUIE
n=ng i=n—pB(n) i=ng i=ng

’ﬂg—l

< lefe + 2[el(1 = 2lel)e + 2le|(1 = E)p(nz — 1) +2[e Y p(i)

— L= plea — 1)+ 21— n)p(na — 1)+ Y- plo)|5— 3 )¢
~ Ide + 21l(1 — 2c)e — 2Llep(rna Do+ 21l | 35 )= 3 p(0)]e
1 n*—1 _22 171*—1 o
et aplna = 1)+ (=2l — [ 3 90 e- 3 3 G0
Because
n*—1 . 1 n*—1 ' 2 1n*71 -
2l 3 o)~ (- aploa =) - 5| 3 )]~ 3 3 #0

= 2|1 =20l = (1 = 1) = (1 ~pfrs —
R R WA S et

Z’Ilg

1 n 1
— —20el(1 — 2/e) — 21 - 2le]? ——[Zp ) 2<n3—1>}

=n3
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and
X 0+ (0= - 1) 2 | 3 p(0) + (1= miptna 1)
o 1 n*—l_ ’ 2
> 3| & p0+ 0 - mplos - 1)
we get

y(n*) <elle| +2e[(1 = 2Je]) + 2lelB + (1 = 2lc]) 8 = 2|e|(1 = 2[c])

1 1(1—2|c|)?
— (1 =22 - s = (1 - .

(1= 20e)* = 5] = (1= ele
This inequality contradicts (17). Therefore Case 2 is also impossible.

Based on the above two cases, we see that (12) holds. Hence the zero solution of
equation (1) is uniformly stable.

Proof of Theorem 2.2 From Theorem 2.1, we see that the zero solution of equation
(1) is uniformly stable, thus we only need to prove that the zero solution of equation (1)
is uniformly attractive.

Select
(1 —lel)

O AT @d 3%

In the following, we prove that for any ng € N, if the solution {x(n)} of the equation

satisfies |x(no+14)| <48, i =—r,—r+1,...,0, we have
hr—? x(n) =0. (33)

The following proof is similar to that of Theorem 2.1, so we have

z(n)| < H, n € N(no). (34)
Let
y(n) =z(n) —cx(n—k), n e N(ng), (35)
then
ly(n)] < (L +[e)H, n e N(no). (36)

There are two situations that needed to be contemplated.

Case 1 {y(n)} is eventually monotonous.
Let
A= liIE infx(n), B= lirf supz(n). (37)
We will prove that A =B =0 and A <0.
In fact, if A > 0, then for any 0 < e < A, there is ny € N(ng +1), such that

x(ni—1)>A—e>0.
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Hence, when n € N(nq —1), we have

z(n) > A—e. (38)
Therefore from (35), we get

y(n) —y(n +1) = f(ni,z(n1 — lL(n)),...,z(n1 — ln(n)))
p(ni)z(ny — B(n1)) > p(ni)(A —e).

Y

In general, for m =0,1,..., we have
y(n1+m) =y +m+1) > p(ni +m)(A—e).

Then we have

y(n1) —yni +m+1) > Zp(nl +1i)(A—e).
=0

From (36) and {y(n)} being eventually monotonous, we can see that the limit value of
{y(n)} exists. Therefore from (9), we know that the above inequality doesn’t hold and
hence A <0.

In the following we will prove A = 0. Suppose

lim y(n) =y*.

n—-+o0o

We will prove that
y* =0. (39)

In fact, if (39) doesn’t hold, we assume that y* > 0, from the definition of A. We can
see that there is a positive integer sequence {n;}, such that

lim n; =400, lim z(n;) = A4,
j—+oo n—-+oo

then when j — +o00, we have

cx(n; — k) = x(n;) —y(n;) — A—y", (40)
and since
i [, an — B0, a(n = Ie(n) = T (Ay(m) =0 (41)

from(40), we see that there must exist ¢ # 0.
If ¢ =0, we must have
dim cx(n; —k)=0=A—y"
=00

that is A = y*, which obviously doesn’t hold.
Hence

A—y"
1. y k == .
; im cx(n; ) c
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From the definitions of A and B, we see that

*

A= lim inf < I i— k)= <1 = B. 43
i infe(n) < T aln, — ) = S < tim_supa(n) (43)
If ¢>0, from A < (A—y*)/c we have (1 —c)A > y*, then we see that the inequality
doesn’t hold.

If ¢<0, from z(n) =y(n)+cx(n—k),n € N(ng), we get

lim supz(n) = lim sup(y(n)+ cx(n —k)),

n—-+oo n—-+oo

then B = y* + c¢B.

From (43), we can see that cA > ¢B, then we have B < y*+cA. Since B > (A—y*)/c,
we have (1 + c)y* < (1 — ¢®)A which can not hold. Therefore (39) must hold. Hence,
A=y*+cA=cA, thatis (1—¢)A=0 or A=0.

In the following we will prove B = 0.

In fact, according to the definition of B, we can see that there is a positive integer
sequence {l;}, such that

lim [; = d lim z(l) = B.
Jim lj=-+oo and  lim (i)

If ¢ =0, obviously, we get B =0. If ¢ <0, while j — 400, we get
y(ly) =yl — k) = x(l;) = (L+ )a(ly — k) + cx(l; — 2k) — 0,
then for j — 400, we have
14zl — k) —cx(ly — k) —

Since the line (1 + ¢)z — cy = B, ¢ > 0 and the region 0 < z,y < B only have one
crossover point (B, B), s

lim z(l; — k)= lm z(l; —2k)=B.

j—+oo j—+oo
Therefore
lim y(; —k)=(1—-¢)B=0,
j—+oo
that is B = 0.

If ¢ > 0, we can similarly prove that B = 0.
In conclusion, if {y(n)} is eventually monotonous, then

lim inf =1 =
Jm in x(n) nililmsupx( n) =0,

that is

li =0.
w2 7

Case 2 {y(n)} is not eventually monotonous. Let

M = lim suplz(n)], N = lirf sup |y(n)|.

n—-+o0o
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If (33) doesn’t hold, we must have M > 0. Then for any ¢ > 0, and ¢ satisfies ¢ <
1 -2
14|

we have

M, e < I, there must exist a ny € N(ng +r), such that when n € N(ng —r),

|z(n)] < M +e¢. (44)
Therefore, when n € N(n3), we get
y(n) = |z(n)| = [e|(M + 1) (45)
and we have I > M — |¢|(M + 1). Because of the arbitrariness of e, we have
I>(1—|c)M. (46)

Since {y(n)} is not eventually monotonous, for the above ¢, there must exist a n* €
N(n2 + 2r + 1), which satisfies
y(n*) > 1 —¢, (47)

such that
y(n*) >y +1), yn") =yn" -1). (48)

Therefore, we have

x(n*)=yn*) —cx(n* —k)>T—e—|c|(M+e)>(1—|c|)M —e—|c|(M+¢)>0

z(n* —1—-p(n*—1)) <0. (49)
Thus there must be a ng € N(n* — g(n* — 1), n*) and a £ € [0,1), such that
z(ng —1) <0, z(n)>0, where ne€ N(ng,n"), (50)
x(ng — 1) + &(xz(ng) — x(ng — 1)) = 0. (51)
Then from (35) and (44), we have

—[y(ns = 1) + (y(ns) —y(ns — 1)) = c[(1 = z(ns — 1 — k) + &x(ns — 1)] < |¢[(M + ),
y(ns — 1) +&(y(n3) —y(ns — 1)) = —c[(1 = a(ng — 1L = k) + Ex(ng — 1] < |c|(M + ).

(52)
That is
y(ng — 1) < |c|(M +¢) — EAy(ng — 1). (53)
Now we will prove that, when n € N(ng,n*), we have
n3—2
o) < |2l + X 900+ €p(oa = )| O +2) (54)

In fact, when n € N(ns,n*), from (50) we can see that the above equality holds. In the
following, we will prove that, when n € N(ng, ng—1), (54) holds. From (1) and (6), we
see that, when n € N(n2), we have

Ay(n) < —p(n)az(n — B(n)). (55)
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Thus, from (44) we see that, when n € N(n2), we have
Ay(n) < p(n)(M + ¢).

Therefore, for any n € N(ng, n3 — 1), we have

n32

—[y(n) —y(ns — 1) — £(y(ns) — y(ns — 1)) Z Ay(i) +EAy(ng — 1)

n372

311

<= Y pli)a(i — (i) — &p(ns — Da(ng — 1 — Blns — 1)) (57)

i=n

< [ngzzpu) + €plns - 1>} (M + ).

i=n

Then from (35), (44), (52) and (57), we know that if n € N(nz2), we have

—x(n) = —(y(n) + cx(n — k)) = =[y(n) —y(ns — 1) + &(y(ns

—y(nz —1) = &(y(ns) —y(nz — 1)) — cz(n — k)

< 3™ pi) + €plns — 1) + 20| (M +<).

i=n

Therefore (54) holds.
Suppose

3 (1 =2)?
B = 3 + m = 2[¢|(2 = [e]).

Then from (11), we have

n

> p(i)<B, neN.
i=n—B(n)

Denote

n*—1

d= Y pli)+ (1 —&p(ns —1).

i:’n,g
In the following, we have two situations to contemplate.

Case 2-a d <1 —2|c|.
From (53), we obtain

n*—1

y(n*) =ylnz —1) + Z Ay(i) < |c|(M +¢) — EAy(ns — 1) +

i=nz—1

—y(nz —1))]
£ st

(58)
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From (54) and (55), we get

n*—1
y(n*) < [el(M +e) + (1 = &)Ay(ng — 1) + ZAy
<A 49+ (1= Oplma =] X pl0) +plna — 1)+ 24el| 01 +)
1)
n*—1 nz—2
£ 00| Y w0+ epna 1)+ 20l O +)
i=ng Jj=i—PB(i)

The following proof is similar to Case 1 of Theorem 2.1, we have
y(n*) < (1 = [e)(M +e).

Case 2-b d>1-2|c|.
Now there exists a positive integer n4 € N(ng,n*), such that

n*—1 n*—1
2+ Y p(i) <1 and 2lc[+ > p(i) > 1.
i:n4 i:n4—1

Therefore there is a € (0,1), such that

n*—1
2le[+ > p(i) + (1= n)p(ng — 1) = 1. (60)
Since
n4—2 n*—1
y(n*) =yms+1)+ Y Ay(n)+nAy(ng — 1)+ (1 —n)Ay(na — 1)+ > Ay(n)
n=n4—1 n=ngq

then from (53), (54) and (56), we obtain

Ng— 2
y(n*) < le|(M +e)(1—Ay(ns — 1)+ > Ay(n) +nAy(ng — 1)
n=ns—2
n*—1
+ (1 +n)Ay(ng — 1) + ZAy

< el(M +¢) + [(1 =&pns — 1) + i p(n) +np(ns — 1)] (M +e¢)
n=ng—2
n3—2
(1= mplns — 1) [2|c| LY i)+ g — 1)] (M +e)

i=ng—1—pF(ns—1)
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n*—1 nz—2

£ 30 s+ Y pli)+ €~ D] 40
n=ng i=n—08(n)
ng—2
— Je(M + )+ [(1 COpns D+ Y p(n) + mp(na — 1>] (M +2)
n=ng—2

+ (1 =2[c])2]e] = (1 = &p(ns — D](M +¢)

n4—1 n4—1

(1= )l 1>[ Y -y p(z')} (M + <)
i=ng—1—p(ns—1) i=ng
n*—1 n n ng—1
s p<n>[ I CED CEDS p(z')} (M +2).
n=n4 i=n—/08(n) =Ny i=ng

The following proof is similar to Theorem 2.1. We have

y(n®) < (1 =|e)(M +e¢).
Based on the two cases a and b, we have

y(n*) < (1 = [e)(M +e).
Hence, from (47), we have

I—e<yn™) <(1—|e))(M+e).
From the arbitrariness of €, we have
I<(1-|c)M,

which contradicts (46). Therefore Case 2 is impossible. Thus when {y(n)} is not even-
tually monotonous, (33) also holds.

Based on these two cases, we can see that (33) must hold. Thus the zero solution of
the equation is uniformly attractive. Therefore the zero solution of equation (1) is said
to be uniformly asymptotically stable.

3 Conclusions

According to the above analysis, in the cases of several variable delay, we have obtained
the sufficient conditions of uniform stability and uniform asymptotical stability. These
results extent and improve the relative theorem in the literature [7]. And the methods
used in this paper can have important significances in the studies of the stabilities of
difference equation with several variable delays.
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