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Abstract: By extension of a fault detection optimization approach to linear
time invariant (LTI) systems, this short paper deals with the fault detection
filter (FDF) problem for linear time-delay systems with L2-norm bounded
unknown inputs. The basic idea is first to introduce a new FDF as the residual
generator; and then based on an objective function to formulate the FDF
design as an optimization problem. Through appropriate choice of the filter
gain matrix and a post-filter, the convergence of the residual generator and
satisfactory FDF performance can be achieved. A numerical example is given
to illustrate the effectiveness of the proposed method.
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1 Introduction

Many significant approaches to the problems of robust fault detection and isolation
(FDI) have been developed during the past two decades, for instance unknown input
observer (UIO), parity space, H∞ optimization, eigenstructure assignment, and H∞ fil-
tering [1, 5, 6, 9, 12]. However, most of these aforementioned works are about delay-free
systems. Time delay is an inherent characteristic of many physical systems, such as
rolling mills, chemical processes, water resources, biological, economic and traffic control
systems. To the best of our knowledge, only few researches on FDI have been carried out
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for time-delay systems [4, 7, 8, 10]. Note that [7] did not consider the influence of unknown
inputs; [10] formulated the fault detection filter (FDF) design problem as a two-objective
nonlinear programing problem where no analytic solution can be constructed in general;
[8] extended the results of [10] to the discrete-time case. The authors’ earlier work in
[4] developed an LMI approach to FDF design for linear time invariant (LTI) time-delay
systems, but the selection of weighting transfer function matrix has strong influence on
FDF performance. Research on fault detection (FD) of time-delay system is as yet an
open and important issue.

The main objective of this short paper is to deal with the FDF design problem for linear
systems with L2-norm bounded unknown input and multiple time delays. An FDF will
be developed such that a robustness/sensitivity based objective function is minimized.
The core of this study is the introduction of a new FDF as a residual generator and an
extension of the optimization FDI method for LTI systems in [2, 3] to time-delay systems.
A sufficient condition to the solvability of FDF is derived and a solution can be obtained
by appropriate choice of a filter gain matrix and post-filter. Finally, a numerical example
is given to illustrate the effectiveness of the proposed method.

Notations. Throughout this paper, the superscript T stands for the matrix trans-
position, Rn denotes the n dimensional Euclidean space. Rn×m is the set of all n × m

real matrices. I is the identity matrix with appropriate dimensions. L2 denotes the
space of square integrable vector functions over [0,∞). For h(t) ∈ L2, ‖h‖2 denotes the
L2-norm of h(t). For a real matrix P, P > 0 (respectively, P < 0), means that P is
real symmetric and positive definite (respectively, negative definite). RH∞ denotes the
set of rational transfer functions analytic in closed right half plane. For G(s) ∈ RH∞,
‖G(s)‖∞ denotes the H∞ norm of transfer function matrix G(s).

2 Preliminaries and Problem Formulation

2.1 Brief review of related FD approach

Consider LTI systems described by

ẋ(t) = Ax(t) + Bu(t) + Bff(t) + Bdd(t) (1)

y(t) = Cx(t) + Du(t) + Dff(t) + Ddd(t) (2)

where x(t) ∈ Rn, u(t) ∈ Rp, y(t) ∈ Rq are the state vector, control input and mea-
surement output respectively. d(t) ∈ Rm denotes the L2-norm bounded unknown input,
f(t) ∈ Rl is the fault to be detected. A, B, Bf , Bd, C, D, Df and Dd are known
matrices with appropriate dimensions. It has been shown by Ding and Frank [3] that the
dynamics of observer-based residual generator for systems (1) – (2) can be expressed as

˙̂x(t) = Ax̂(t) + Bu(t) + H(y(t) − ŷ(t)), (3)

ŷ(t) = Cx̂(t) + Du(t), r(s) = R(s)(y(s) − ŷ(s)) (4)

or the frequency domain description

r(s) = R(s)[(C(sI − A + HC)−1(Bd − HDd) + Dd)d(s)

+ (C(sI − A + HC)−1(Bf − HDf) + Df )f(s)]

= R(s)Gεd(s)d(s) + R(s)Gεf (s)f(s) = Grd(s)d(s) + Grf (s)f(s),
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where x̂(t) ∈ Rn and ŷ(t) ∈ Rq represent the state and output estimation vectors
respectively, r is the so-called residual signal. The transfer function matrix R(s) ∈ RH∞,
also called a post-filter, and observer gain matrix H are parameters to be determined.
In the case of a full decoupling of unknown input being not achievable, the main task
of FDF design is to find a suitable H and R(s) such that the H∞ norm of Grd(s) is
minimized by guaranteeing a desired sensitivity to fault. One widely accepted way is to
formulate the FDF problem as the following optimal problem

J = min
R(s),H

‖R(s)Gεd(s)‖∞
‖R(s)Gεf (s)‖∞

. (5)

Under some assumptions, [2, 3] has developed an optimization method to solve the prob-
lem (5).

Lemma 1 [2, 3] Consider system (1) – (2) and suppose the assumptions

(A1) system (1) – (2) is asymptotically stable when u(t) = 0, d(t) = 0 and f(t) = 0
for t > 0;

(A2) (C, A) is detectable;

(A3)

[
A − jωI Bd

C Dd

]
is of full row rank for ω ∈ [0,∞)

hold, then

R∗(s) = Q−1/2, H∗ = (BdD
T
d + Y CT)Q−1

solve the optimal problem (5), where Q = DdD
T
d and Y ≥ 0 is a solution of the algebraic

Riccati equation

Y (A−BdD
T
d Q−1C)T +(A−BdD

T
d Q−1C)Y −Y CTQ−1CY +Bd(I −DT

d Q−1Dd)B
T
d = 0

Moreover, G∗

rd(s) is a co-inner matrix, where

G∗

rd(s) = R∗(s)
[
C(sI − A + H∗C)−1(Bd − H∗Dd) + Dd

]
.

Remark 1 From the view point of FDI, Assumptions A1 and A2 are trivial and do
not lead to a loss of generality. The results in Lemma 1 are true only under the assump-
tions made, in particular, Assumption A3. Upon removing it, the lemma will lose its
validity [3].

2.2 Problem formulation

In this short paper, we consider the FDF problem for a class of linear time-delay systems
described by

ẋ(t) = Ax(t) +

N∑

i=1

Aix(t − τi) + Bu(t) +

L∑

j=1

Bju(t − µj) + Bff(t) + Bdd(t), (6)

y(t) = Cx(t) + Du(t) + Dff(t) + Ddd(t), (7)

x(−t) = 0, u(−t) = 0, t > 0, (8)
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where x(t) ∈ Rn, u(t) ∈ Rp, y(t) ∈ Rq, d(t) ∈ Rm, f(t) ∈ Rl and matrices A, B,
Bf , Bd, C, D, Df and Dd are defined as in system (1) – (2). Ai (i = 1, 2, . . . , N) and
Bj (j = 1, 2, . . . , L) are known matrices with appropriate dimensions. τi and µj denote
known constant time delays. Throughout this work, Assumptions A1 to A3 corresponding
to system (6) – (8) are also made, that is

(A4) system (6) – (8) is asymptotically stable when u(t) = 0, d(t) = 0 and f(t) = 0
for t > 0;

(A5) (C, A) is detectable;

(A6)

[
A − jωI Bd

C Dd

]
is of full row rank for ω ∈ [0,∞).

The type of filter considered in this paper is given by

˙̂x(t) = Ax̂(t) +
N∑

i=1

Aixu(t − τi) + Bu(t) +
L∑

j=1

Bju(t − µj) + H(y(t) − ŷ(t)), (9)

ẋu(t) = Axu(t) +

N∑

i=1

Aixu(t − τi) + Bu(t) +

L∑

j=1

Bju(t − µj), (10)

ŷ(t) = Cx̂(t) + Du(t), ε(t) = y(t) − ŷ(t), (11)

r(s) = R(s)ε(s), (12)

x̂(−t) = 0, xu(−t) = 0, t > 0, (13)

where x̂(t) ∈ Rn, ŷ(t) ∈ Rq and xu(t) ∈ Rn are vectors, R(s) ∈ RH∞ is a so-called
post-filter, H is the filter gain matrix, r is the generated residual. H and R(s) are
parameters to be determined for achieving perfect FD performance. Especially, in the
case of unknown input full decoupling being not achievable, the main task of FDF design
is to determine H and R(s) such that

(i) When d(t) = 0 and f(t) = 0 for all t, the generated residual r asymptotically
decays to zero for any u(t).

(ii) The residual r achieves best compromise between sensitivity to faults and robust-
ness to known input.

By denoting e(t) = x(t)− x̂(t) and xdf (t) = x(t)− xu(t), the overall dynamics of the
residual generator are governed by

ė(t) = (A − HC)e(t) +

N∑

i=1

Aixdf (t − τi) + (Bd − HDd)d(t) + (Bf − HDf)f(t), (14)

ẋdf (t) = Axdf (t) +

N∑

i=1

Aixdf (t − τi) + Bdd(t) + Bff(t), (15)

ε(t) = Ce(t) + Ddd(t) + Dff(t), (16)

r(s) = R(s)ε(s). (17)

It can be seen from the above that u(t) has no influence on the residual r. The main
problem of FDF can be formulated as to determine H and R(s) such that system (14) –
(17) is asymptotically stable, while an FDF designing performance index as in (5) is
satisfied.
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Remark 2 Compared with the residual generator used in [4, 7, 8, 10], here xdf (t − τi)
(i = 1, 2, . . . , N) in equation (14) is used instead of the time-delay state estimate error
e(t− τi) in [4, 7, 8, 10]. Notice that xdf (t), which describes the effect of d and f in state
x, is independent of filter gain matrix H . Especially, under the assumptions on system
(6) – (8) being asymptotically stable and d, f being L2-norm bounded, xdf (t) is also L2-
norm bounded. Finally, the FDF problem for time-delay system can be solved by an
extension of the optimization FD approach in [2, 3].

3 Design of FDF

In this section, an extension of the FD approach presented in [2, 3] will be performed for
the FDF problem of time-delay system (6) – (8).

3.1 Basic idea of our study

Notice that if system (14) – (17) is asymptotically stable, then residual r(t) is convergent
to zero when d(t) = 0 and f(t) = 0. To express clearly the influences of past unknown
input d(t − τi) and fault signal f(t − τi) on residual r(t), we first separate xdf (t) into
xd(t) and xf (t),

ẋd(t) = Axd(t) +

N∑

i=1

Aixd(t − τi) + Bdd(t), (18)

ẋf (t) = Axf (t) +
N∑

i=1

Aixf (t − τi) + Bff(t) (19)

and denote

θd(t) = [ xT
d (t − τ1) xT

d (t − τ2) · · · xT
d (t − τN ) ]T ,

θf (t) = [ xT
f (t − τ1) xT

f (t − τ2) · · · xT
f (t − τN ) ]

T
,

Aθ = [ A1 A2 · · · AN ] .

It is obvious that θd(t) and θf (t) respectively describe the influences of past unknown
input d(t − τi) and fault signal f(t − τi) (i = 1, 2, . . . , N), while θd(t) and θf (t) are
independent of H . Recall that for L2-norm bounded d and f , the asymptotic stability of
system (6) – (8) ensures that xd(t), xf (t) and, furthermore, θd(t) and θf (t) are also L2-

norm bounded. Introduce vector w(t) = [ dT(t) θT
d (t) ]

T
to describe both the present

and past unknown input, and let Bw , [ Bd Aθ ] , Dw , [ Dd 0 ]. From the above
definitions, we have

ė(t) = (A − HC)e(t) + (Bw − HDw)w(t) + (Bf − HDf )f(t) + Aθθf (t), (20)

ε(t) = Ce(t) + Dww(t) + Dff(t), (21)

r(s) = R(s)ε(s) (22)

and
r(s) = Grw(s)w(s) + Grf (s)f(s), (23)
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where

Grw(s) = R(s)Gεw(s), Gεw(s) = [C(sI − A + HC)−1(Bw − HDw) + Dw], (24)

Grf (s) = R(s)[Gεθf
(s)Gθf (s) + Gεf (s)], Gεθf

(s) = C(sI − A + HC)−1Aθ, (25)

Gθf (s) = [ e−sτ1I e−sτ2I · · · e−sτN I ]
T

(
sI − A +

N∑

i=1

Aie
−sτi

)
−1

Bf , (26)

Gεf (s) = C(sI − A + HC)−1(Bf − HDf) + Df . (27)

As in [3], we use ‖Grw(s)‖∞ to measure the robustness of residual against unknown
inputs, while the sensitivity of residual to faults is represented by ‖Grf(s)‖∞. Then
the FDF problem for time-delay system (6) – (8) can be further formulated as to find H

and R(s) such that system (14) – (17) is asymptotically stable on one hand, while on the
other hand solves the following optimization problem

J = min
R(s),H

‖Grw(s)‖∞
‖Grf (s)‖∞

. (28)

The procedure to solve the FDF problem is made of two steps, namely (a) the choice of
filter gain matrix H to ensure the asymptotic stability of system (14) – (17), and (b) the
derivation of R(s) so that (H, R(s)) is an optimal solution of the problem (28).

Remark 3 By solving the above formulated FDF problem, not only the convergence
of the residual but also the satisfactory robustness and sensitivity criterion of FD system
defined in (28) are achieved.

3.2 Main results

The following Lemmas are required to solve the FDF problem.

Lemma 2 [11] System

ẋ(t) = Ax(t) +

N∑

i=1

Aix(t − τi),

x(t) = 0 for t 6 0,

is asymptotically stable, if there exist matrices P > 0 and Ri > 0, (i = 1, 2, . . . , N) such
that LMI 



ATP + PA +
N∑

i=1

Ri PA1 · · · PAN

AT
1 P −R1

. . .
...

...
. . .

. . . 0
AT

NP · · · 0 −RN




< 0

holds.
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Lemma 3 [2] Given

M̂1(s) = V1 − V1C(sI − A + H1C)−1H1,

M̂2(s) = V2 − V2C(sI − A + H2C)−1H2,

where H1 and H2 are selected such that A − H1C and A − H2C are Hurwitz, V1 and
V2 are invertible, there exists a stable solution Q(s) for the equation

Q(s)M̂1(s) = M̂2(s).

Furthermore, the solution can be expressed by

Q(s) = V2[I + C(sI − A + H2C)−1(H1 − H2)]V
−1
1 .

Now we are ready to present the main results of this short paper, which give a sufficient
condition to solve H and parameterize FDF using the obtained solutions of H . By
applying Lemma 2, we first present the determination of filter gain matrix H ensuring
the asymptotic stability of system (14) – (17) (with proof omitted).

Theorem 1 If there exist matrices P1 > 0, P2 > 0, Ri > 0, Si > 0 (i = 1, 2, . . . , N)
and Y such that LMI




ATP1 + P1A − CTY T − Y C +
N∑

i=1

Ri 0 P1A1 · · · P1AN

0 ATP2 + P2A +
N∑

i=1

Si P2A1 · · · P2AN

AT
1 P1 AT

1 P2 −S1 0 0
...

... 0
. . . 0

AT
NP1 AT

NP2 0 0 −SN




< 0

holds, then system (14) – (17) is asymptotically stable. Moreover, the observer gain ma-
trix is determined by

H = P−1
1 Y.

After designing the filter gain matrix H , the remained important task for FDF design
is the determination of a post-filter R(s). Following studies show that under Assumptions
of A4 to A6, for all H ensuring the stability of system (14) – (17), there exists an R(s) ∈
RH∞ such that (H, R(s)) is an optimal solution of the problem (28).

Theorem 2 Given system (6) – (8) with Assumptions of A4 to A6, there exists
Rh(s) ∈ RH∞ such that (H, Rh(s)) is an optimal solution of (28), where Rh(s) is
given by

Rh(s) = Q−1/2(I + C(sI − A + H∗C)−1(H − H∗)), (29)

H∗ = (BwDT
w + Y CT)Q−1, Q = DwDT

w, (30)

and Y ≥ 0 is a solution of the following algebraic Riccati equation

Y (A − BwDT
wQ−1C)T + (A − BwDT

wQ−1C)Y − Y CTQ−1CY

+ Bw(I − DT
wQ−1Dw)BT

w = 0.
(31)
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Proof Considering system (6) – (8) and the residual generator (20) – (22), define
Grw(s), Gǫw(s), Grf (s), Gǫf (s), Gǫθf

(s), Gθf(s) as in (24) – (27), and

Gyw(s) = C(sI − A)−1Bw + Dw,

G∗

ǫw(s) = C(sI − A + H∗C)−1(Bw − H∗Dw) + Dw,

G∗

rw(s) = R∗(s)G∗

ǫw(s),

G∗

ǫf (s) = C(sI − A + H∗C)−1(Bf − H∗Df ) + Df ,

G∗

εθf
(s) = C(sI − A + H∗C)−1Aθ,

G∗

rf (s) = R∗(s)[G∗

εθf
(s)Gθf (s) + G∗

εf (s)],

N̂w(s) = Gǫw(s),

N̂∗

w(s) = G∗

ǫw(s),

M̂(s) = I − C(sI − A + HC)−1H,

M̂∗(s) = I − C(sI − A + H∗C)−1H∗.

Based on the left coprime factorization of Gyw(s), it is easy to get

Gyw(s) = M̂−1(s)N̂w(s) = (M̂∗(s))−1N̂∗

w(s).

For any available H ensuring the asymptotic stability of system (14) – (17), we then have

Grw(s) = R(s)Gεw(s) = R(s)N̂w(s) = R(s)M̂(s)(M̂∗(s))−1N̂∗

w(s)

= R(s)M̂(s)(M̂∗(s))−1G∗

ǫw(s).
(32)

Moreover, from Lemma 3, it is easy to verify that, for R∗(s) = Q−1/2 and the above

defined M̂(s) and M̂∗(s), there exists a matrix Γ(s),

Γ(s) = [I + C(sI − A + HC)−1(H∗ − H)]Q1/2 (33)

such that
M̂(s) = Γ(s)R∗(s)M̂∗(s). (34)

It follows from (32) – (34) that

Grw(s) = R(s)Γ(s)R∗(s)G∗

ǫw(s) = R(s)Γ(s)G∗

rw(s). (35)

Also, from Lemma 3, Rh(s) in (29) and Γ(s) in (33) satisfy

Rh(s)[I − C(sI − A + HC)−1H ] = Q−1/2[I − C(sI − A + H∗C)−1H∗], (36)

Γ(s)(Q−1/2)(I − C(sI − A + H∗C)−1H∗) = I − C(sI − A + HC)−1H. (37)

It is obtained from (36) – (37) that

Rh(s)Γ(s)(Q−1/2)(I − C(sI − A + H∗C)−1H∗) = (Q−1/2)[I − C(sI − A + H∗C)−1H∗]

⇒ Rh(s)Γ(s) = I.



NONLINEAR DYNAMICS AND SYSTEMS THEORY, 5(3) (2005) 273–284 281

Thus, for R(s) = Rh(s), we have

Grw(s) = G∗

rw(s).

In the same way, we can get

Gǫθf
(s) = Γ(s)R∗(s)G∗

ǫθf
(s),

Gǫf (s) = Γ(s)R∗(s)G∗

ǫf (s),

Grf (s) = R(s)[Gǫθf
(s)Gθf (s) + Gǫf (s)]

= R(s)Γ(s)R∗(s)[G∗

ǫθf
(s)Gθf (s) + G∗

ǫf (s)],

(38)

and for R(s) = Rh(s), we have
Grf (s) = G∗

rf (s).

Under Assumptions of A4 to A6, from Lemma 1 we know that R∗(s) = Q−1/2 and H∗

given in (30) – (31) is an optimal solution of the problem (28) and, in this case, G∗

rw(s)
is a co-inner matrix. Therefore,

‖R∗(s)G∗

ǫw(s)‖∞ = 1, ‖Rh(s)Gǫw(s)‖∞ = 1,

‖R∗(s)(G∗

ǫθf
(s)Gθf (s) + G∗

ǫf (s))‖∞ = ‖Rh(s)(Gǫθf
(s)Gθf (s) + Gǫf (s))‖∞.

On the other hand, for co-inner matrix G∗

rw(s) = R∗(s)G∗

ǫw(s) and for all R(s) ∈
RH∞, from (35) and (38) it is easy to get

‖Grw(s)‖∞ = ‖R(s)Gǫw(s)‖∞ = ‖R(s)Γ(s)G∗

rw(s)‖∞ = ‖R(s)Γ(s)‖∞∥∥R(s)(Gǫθf
(s)Gθf (s) + Gǫf (s))

∥∥
∞

=
∥∥R(s)Γ(s)R∗(s)[G∗

ǫθf
(s)Gθf (s) + G∗

ǫf (s)]
∥∥
∞

6
∥∥R(s)Γ(s)

∥∥
∞

∥∥R∗(s)[G∗

ǫθf
(s)Gθf (s) + G∗

ǫf (s)]
∥∥
∞

,

Therefore,

‖Rh(s)Gǫw(s)‖∞
‖Rh(s)(Gǫθf

(s)Gθf (s) + Gǫf (s))‖∞
=

‖R∗(s)G∗

ǫw(s)‖∞
‖R∗(s)(G∗

ǫθf
(s)Gθf (s) + G∗

ǫf (s))‖∞

=
1

‖R∗(s)(G∗

ǫθf
(s)Gθf (s) + G∗

ǫf (s))‖∞
,

(39)

‖R(s)Gǫw(s)‖∞
‖R(s)(Gǫθf

(s)Gθf (s) + Gǫf (s))‖∞
>

‖R(s)Γ(s)‖∞
‖R(s)Γ(s)t‖∞‖R∗(s)(G∗

ǫθf
(s)Gθf (s) + G∗

ǫf (s))‖∞

=
1

‖R∗(s)(G∗

ǫθf
(s)Gθf (s) + G∗

ǫf (s))‖∞
, ∀R(s) ∈ RH∞. (40)

It concludes from (39) – (40) that both (H∗, R∗(s)) and (H, Rh(s)) are the optimal so-
lutions of problem (28).

Remark 4 The convergence of residual r is guaranteed by a suitable selection of filter
gain matrix H , while the selection of stable post-filter Rh(s) in (29) delivers an optimal
residual vector. Results in Theorem 2 also show that, for all H ensuring the asymptotic
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stability of system (14) – (17), (H, Rh(s)) is one of the optimal solutions of the FDF
problem.

4 Numerical Example

To illustrate the proposed FDF design method, a numerical example is given in this
section. Consider a time-delay system of (6) – (8) with

A =

[
0 1

−1 −2

]
, A1 =

[
0.1 0
0.1 0.2

]
, B =

[
1
1

]
, Bf =

[
0.1
0.1

]
, Bd =

[
0.1 0
0 0.1

]
,

C = [ 1 1 ] , D = 0, Df = 0, Dd = [ 0 0.1 ] , N = 1, L = 0, τ = 1.

By using the proposed approach, we obtain one solution as follows:

H∗ =

[
1

1.6056

]
, H =

[
1.0026

−0.9212

]
, Q = 100,

Rh(s) = Q−1/2(I + C(sI − A + H∗C)−1(H − H∗)).

Over evaluation time window [0, 100] sec, suppose the unknown input is d(t) =

[ d1(t) d2(t) ]
T
, and d1(t), d2(t) are band-limited white noise as in Figure 4.1 (a) and

(b). Two faulty cases are considered, where the fault signals are respectively given in
Figure 4.2 (a) and (b). Figure 4.3 (a) and (b) show the two cases of residual signal
whatever the control input u(t).

Figure 4.1. a) Unknown input signal d1(t); b) Unknown input signal d2(t).

Figure 4.2. a) Fault signal f(t): case I; b) Fault signal f(t): case II.
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Figure 4.3. a) Residual signal r(t): case I; b) Residual signal r(t): case II.

5 Conclusion

In this short paper, the FDF design problem for linear time-delay systems with unknown
input is studied. The main contributions of this work are the introduction of a new
FDF, the formulation of an optimization problem based on a performance index, and the
extension of the FD optimization approach for LTI systems to the time-delay systems.
The convergence of the residual generator is ensured by suitabe choice of the filter gain
matrix, while the FDF performance can be guaranteed by the selection of a corresponding
stable post-filter in terms of a Riccati equation. A simulation example is given to show
the effectiveness of the proposed method.
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