On the Bounded Oscillation of Certain Fourth Order Functional Differential Equations

R.P. Agarwal1*, S.R. Grace2 and Patricia J.Y. Wong3

1Department of Mathematical Sciences, Florida Institute of Technology, Melbourne, FL 32901, U.S.A.
2Department of Engineering Mathematics, Faculty of Engineering, Cairo University, Orman, Giza 12221, Egypt
3School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore

Received: November 16, 2004; Revised: March 1, 2005

Abstract: Some new criteria for the bounded oscillation of a fourth order functional differential equation are established. Comparison results with first/second order equations as well as necessary and sufficient conditions are developed.

Keywords: Oscillation; nonoscillation; half-linear; comparison; necessary conditions.

Mathematics Subject Classification (2000): 34C10, 34C15.

1 Introduction

In this paper we are concerned with the oscillatory behavior of the fourth order functional differential equations of the type

\[
\frac{d}{dt} \left(\frac{1}{a_3(t)} \left(\frac{d}{dt} \left(\frac{1}{a_2(t)} \left(\frac{d}{dt} \left(\frac{1}{a_1(t)} \left(\frac{d}{dt} x(t) \right)^{\alpha_1} \right)^{\alpha_2} \right)^{\alpha_3} \right) \right) \right) + q(t)f(x[g(t)]) = 0,
\]

or, written more compactly as

\[
L_4 x(t) + q(t)f(x[g(t)]) = 0, \quad (1.1)
\]

*Corresponding author: agarwal@fit.edu

\textcopyright 2005 Informath Publishing Group/1562-8353 (print)/1813-7385 (online)/www.e-ndst.kiev.ua 215