On the Bounded Oscillation of Certain Fourth Order Functional Differential Equations

R.P. Agarwal1*, S.R. Grace2 and Patricia J.Y. Wong3

1Department of Mathematical Sciences, Florida Institute of Technology, Melbourne, FL 32901, U.S.A.
2Department of Engineering Mathematics, Faculty of Engineering, Cairo University, Orman, Giza 12221, Egypt
3School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore

Received: November 16, 2004; Revised: March 1, 2005

Abstract: Some new criteria for the bounded oscillation of a fourth order functional differential equation are established. Comparison results with first/second order equations as well as necessary and sufficient conditions are developed.

Keywords: Oscillation; nonoscillation; half-linear; comparison; necessary conditions.

Mathematics Subject Classification (2000): 34C10, 34C15.

1 Introduction

In this paper we are concerned with the oscillatory behavior of the fourth order functional differential equations of the type

\[\frac{d}{dt} \left(\frac{1}{a_3(t)} \left(\frac{d}{dt} \left(\frac{1}{a_2(t)} \left(\frac{d}{dt} \left(\frac{1}{a_1(t)} \left(\frac{d}{dt} x(t) \right)^{\alpha_1} \right)^{\alpha_2} \right)^{\alpha_3} \right) \right) \right) + q(t)f(x[g(t)]) = 0, \]

or, written more compactly as

\[L_4 x(t) + q(t)f(x[g(t)]) = 0, \]

(1.1)

*Corresponding author: agarwal@fit.edu

\copyright 2005 Informath Publishing Group/1562-8353 (print)/1813-7385 (online)/www.e-ndst.kiev.ua 215
where
\[L_0x(t) = x(t), \quad L_4x(t) = \frac{d}{dt}L_3x(t), \]
\[L_kx(t) = \frac{1}{a_k(t)} \left(\frac{d}{dt}L_{k-1}x(t) \right)^{\alpha_k}, \quad k = 1, 2, 3. \]
(1.2)

In what follows, we shall assume that

(i) \(a_i(t), q(t) \in C([t_0, \infty), R^+), \) where \(R^+ = (0, \infty) \), \(t_0 \geq 0 \) and

\[\int_0^\infty a_i^{1/\alpha_i}(s) \, ds = \infty, \quad i = 1, 2, 3; \]
(1.3)

(ii) \(g(t) \in C([t_0, \infty), R), \) where \(R = (-\infty, \infty), \) \(g'(t) \geq 0 \) for \(t \geq t_0 \) and \(\lim_{t \to \infty} g(t) = \infty; \)

(iii) \(f \in C(R, R), \) \(xf(x) > 0 \) and \(f'(x) \geq 0 \) for \(x \neq 0; \)

(iv) \(\alpha_i, \ i = 1, 2, 3, \) are the ratios of positive odd integers.

The domain \(D(L_4) \) of \(L_4 \) is defined to be the set of all functions \(x: [t_x, \infty) \to R, \) \(t_x \geq t_0 \) such that \(L_jx(t), \ 0 \leq j \leq 4 \) exist and are continuous on \([t_x, \infty). \) Our attention is restricted to those solutions \(x \in D(L_4) \) of (1.1) which satisfy \(\sup \{ |x(t)|: t \geq T \} > 0 \) for \(T \geq t_x. \) We make the standing hypothesis that equation (1.1) does possess such solutions.

A solution of equation (1.1) is called \textit{oscillatory} if it has arbitrarily large zeros, otherwise, it is called \textit{nonoscillatory}. Equation (1.1) is called \textit{B-oscillatory} if all its bounded solutions are oscillatory and is called \textit{oscillatory} if all its solutions are oscillatory.

In the last three decades there has been an increasing interest in studying the oscillatory and nonoscillatory behavior of solutions of functional differential equations. Most of the work on the subject, however, has been restricted to first and second order equations, as well as, higher order equations of the type

\[L_kx(t) + q(t)f(x[g(t)]) = 0, \]

where
\[L_0x(t) = x(t), \quad L_kx(t) = \frac{1}{a_k(t)} \frac{d}{dt}L_{k-1}x(t), \quad k = 1, 2, \ldots, n-1, \quad L_nx(t) = \frac{d}{dt}L_{n-1}x(t). \]

For recent contributions, we refer to [1–13] and the references cited therein.

It appears that little is known regarding the oscillation of equation (1.1). Therefore, our main goal here is to present a systematic study of the oscillation of all bounded solutions of equation (1.1). We shall establish some necessary and sufficient conditions for the bounded oscillation and nonoscillation of equation (1.1). Moreover, our equation is quite general and therefore the results of this paper even in some special cases complement and generalize some known results appeared recently in the literature (see [4–8, 10–13]).
2 Main Results

Consider the inequalities
\[\frac{d}{dt} \left(\frac{1}{a_1(t)} \left(\frac{d}{dt} x(t) \right)^{\alpha_1} \right) + q(t)f(x[g(t)]) \leq 0, \] (2.1)
\[\frac{d}{dt} \left(\frac{1}{a_1(t)} \left(\frac{d}{dt} x(t) \right)^{\alpha_1} \right) + q(t)f(x[g(t)]) \geq 0 \] (2.2)
and the equation
\[\frac{d}{dt} \left(\frac{1}{a_1(t)} \left(\frac{d}{dt} x(t) \right)^{\alpha_1} \right) + q(t)f(x[g(t)]) = 0, \] (2.3)
where (ii) and (iii) hold, \(a_1(t) \) and \(\alpha_1 \) are as in (i) and (iv) respectively.

Now we shall prove the following lemma.

Lemma 2.1 If inequality (2.1) (inequality (2.2)) has an eventually positive (negative) solution, then equation (2.3) also has an eventually positive (negative) solution.

Proof Let \(x(t) \) be an eventually positive solution of inequality (2.1). It is easy to see that \(x'(t) > 0 \) eventually. Let
\[y(t) = \frac{1}{a_1(t)} \left(\frac{d}{dt} x(t) \right)^{\alpha_1}. \]
Then,
\[x'(t) = \left(a_1(t)y(t) \right)^{1/\alpha_1} \geq 0 \quad \text{for} \quad t \geq t_0 \geq 0. \] (2.4)
Integrating (2.4) from \(t_0 \) to \(t \), we have
\[x(t) = x(t_0) + \int_{t_0}^{t} \left(a_1(s)y(s) \right)^{1/\alpha_1} ds. \]
Thus, (2.1) becomes
\[\frac{dy}{dt} + q(t)f \left(x(t_0) + \int_{t_0}^{g(t)} \left(a_1(s)y(s) \right)^{1/\alpha_1} ds \right) \leq 0. \] (2.5)
Integrating (2.5) from \(t \) to \(T \geq t_0 \) and letting \(T \to \infty \), we have
\[y(t) \geq \int_{t}^{\infty} q(u)f \left(x(t_0) + \int_{t_0}^{g(u)} \left(a_1(s)y(s) \right)^{1/\alpha_1} ds \right) du. \]
Next, we define a sequence of successive approximations \(\{z_j(t)\} \) as follows:
\[z_0(t) = y(t), \]
\[z_{j+1}(t) = \int_{t}^{\infty} q(u)f \left(x(t_0) + \int_{t_0}^{g(u)} \left(a_1(s)z_j(s) \right)^{1/\alpha_1} ds \right) du, \quad j = 0, 1, \ldots. \]
 Obviously, we can prove that

\[0 < z_j(t) \leq y(t) \quad \text{and} \quad z_{j+1}(t) \leq z_j(t), \quad j = 0, 1, \ldots. \]

Thus the sequence \(\{z_j(t)\} \) is positive nonincreasing in \(j \) for each \(t \geq t_0 \). This means we may define \(z(t) = \lim_{j \to \infty} z_j(t) > 0 \). Since \(0 < z(t) \leq z_j(t) \leq y(t) \) for all \(j \geq 0 \), we see that

\[
f(x(t_0) + \int_{t_0}^{t} (a_1(s)z(s))^{1/\alpha_1} ds) \leq f(x(t_0) + \int_{t_0}^{t} (a_1(s)y(s))^{1/\alpha_1} ds).
\]

Now, by the Lebesgue dominated convergence theorem, one can easily obtain

\[
z(t) = \int_{t}^{\infty} q(u)f(x(t_0) + \int_{t_0}^{u} (a_1(s)z(s))^{1/\alpha_1} ds) du.
\]

Therefore,

\[
\frac{dz}{dt} = -q(t)f(x(t_0) + \int_{t_0}^{t} (a_1(s)z(s))^{1/\alpha_1} ds). \tag{2.6}
\]

We denote by

\[
v(t) = x(t_0) + \int_{t_0}^{t} (a_1(s)z(s))^{1/\alpha_1} ds.
\]

Then, \(v(t) > 0 \) and

\[
\frac{dv}{dt} = (a_1(t)v(t))^{1/\alpha_1},
\]

or

\[
z(t) = \frac{1}{a_1(t)} \left(\frac{dv}{dt} \right)^{\alpha_1}.
\]

Equation (2.6) then gives

\[
\frac{d}{dt} \left(\frac{1}{a_1(t)} \left(\frac{dv}{dt} \right)^{\alpha_1} \right) + q(t)f(v[g(t)]) = 0.
\]

Hence, equation (2.3) has a positive solution \(v(t) \). For the case (2.2) the argument is similar and hence is omitted. This completes the proof.

We set

\[
Q(t) = a_2^{1/\alpha_2}(t) \left(\int_{t}^{\infty} a_3^{1/\alpha_3}(s) \left(\int_{s}^{\infty} q(u) du \right)^{1/\alpha_3} ds \right)^{1/\alpha_2}, \quad t \geq t_0 \geq 0,
\]

and \(F(x) = f^{1/(\alpha_2\alpha_3)}(x), \quad x \in R \).

Now, we present the following comparison result.
Theorem 2.1 Let conditions (i) – (iv) hold. If the equation
\[
\frac{d}{dt} \left(\frac{1}{a_1(t)} \left(\frac{d}{dt} x(t) \right)^{\alpha_1} \right) + Q(t) F(x[g(t)]) = 0 \tag{2.7}
\]
is oscillatory, then equation (1.1) is B-oscillatory.

Proof Let $x(t)$ be a bounded nonoscillatory solution of equation (1.1), say, $x(t) > 0$ for $t \geq t_0 \geq 0$. By condition (1.3), it is easy seen that $x(t)$ satisfies the inequalities
\[
x'(t) > 0, \quad L_2 x(t) < 0, \quad L_3 x(t) > 0 \quad \text{and} \quad L_4 x(t) \leq 0 \quad \text{for} \quad t \geq t_1 \geq t_0. \tag{2.8}
\]
Integrating equation (1.1) from t to $T \geq t \geq t_1$ and letting $T \to \infty$, we find
\[
L_3 x(t) \geq \int_t^\infty q(s) f(x[g(s)]) \, ds,
\]
or
\[
\frac{1}{a_3(t)} \left(\frac{d}{dt} L_2 x(t) \right)^{\alpha_3} \geq \left(\int_t^\infty q(s) \, ds \right) f(x[g(t)]).
\]
Thus,
\[
\frac{d}{dt} L_2 x(t) \geq a_3^{1/\alpha_3}(t) \left(\int_t^\infty q(s) \, ds \right)^{1/\alpha_3} f^{1/\alpha_3}(x[g(t)]), \quad t \geq t_1. \tag{2.9}
\]
Once again, we integrate (2.9) from t to $T_1 \geq t \geq t_1$ and let $T_1 \to \infty$, to obtain
\[
-L_2 x(t) \geq \left(\int_t^\infty a_3^{1/\alpha_3}(u) \left(\int_u^\infty q(s) \, ds \right)^{1/\alpha_3} du \right) f^{1/\alpha_3}(x[g(t)]), \quad t \geq t_1,
\]
or
\[
-\frac{d}{dt} L_1 x(t) \geq a_2^{1/\alpha_2}(t) \left(\int_t^\infty a_3^{1/\alpha_3}(u) \left(\int_u^\infty q(s) \, ds \right)^{1/\alpha_3} du \right)^{1/\alpha_2} f^{1/(\alpha_2 \alpha_3)}(x[g(t)]) = Q(t) F(x[g(t)]), \tag{2.10}
\]
for $t \geq t_1$. By applying Lemma 2.1, we see that equation (2.7) has a positive solution, a contradiction. This completes the proof.

Now we assume that the function $F(x) = f^{1/(\alpha_2 \alpha_3)}(x)$, $x \in R$, satisfies
\[
-F(-xy) \geq F(xy) \geq F(x) F(y) \quad \text{for} \quad xy > 0 \tag{2.11}
\]
and
\[
g(t) \leq t. \tag{2.12}
\]
Also, we let
\[
\eta[t, t_0] = \int_{t_0}^t a_1^{1/\alpha_1}(s) \, ds
\]
and for $g(t) \geq T$ for some $T \geq t_0$,
\[
\overline{Q}(t) = Q(t) F(\eta[g(t), T]).
\]
Now, we present the following result.
Theorem 2.2 Let conditions (i) – (iv), (2.11) and (2.12) hold. If the first order equation
\[\frac{d}{dt} y(t) + \overline{Q}(t) F\left(y^{1/\alpha_1}[g(t)]\right) = 0\] (2.13)
is oscillatory, then equation (1.1) is B-oscillatory.

Proof Let $x(t)$ be a bounded nonoscillatory solution of equation (1.1), say, $x(t) > 0$ for $t \geq t_0 \geq 0$. As in the proof of Theorem 2.1, we obtain (2.8) and (2.10) for $t \geq t_1$.

Now
\[x(t) - x(t_1) = \int_{t_1}^{t} x'(s) \, ds = \int_{t_1}^{t} \left(a_1^{-1/\alpha_1}(s)x'(s)\right) a_1^{1/\alpha_1}(s) \, ds.\]

Using the fact that $a_1^{-1/\alpha_1}(t)x'(t)$ is nonincreasing on $[t_1, \infty)$, we find
\[x(t) \geq \left(a_1^{-1/\alpha_1}(t)x'(t)\right) \int_{t_1}^{t} a_1^{1/\alpha_1}(s) \, ds,\]
or
\[x(t) \geq \eta[t, t_1]\left(a_1^{-1/\alpha_1}(t)x'(t)\right) \quad \text{for} \quad t \geq t_1.\]

Thus, there exists a $t_2 \geq t_1$ such that
\[x[g(t)] \geq \eta[g(t), t_1]\left(Z^{1/\alpha_1}[g(t)]\right) \quad \text{for} \quad t \geq t_2,\] (2.14)
where $Z(t) = (x'(t))^{\alpha_1}/a_1(t)$, $t \geq t_2$. Using (2.11) and (2.14) in (2.10) we get
\[\frac{d}{dt} Z(t) + \overline{Q}(t) F\left(Z^{1/\alpha_1}[g(t)]\right) \leq 0 \quad \text{for} \quad t \geq t_2.\] (2.15)

Integrating (2.15) from t to $T \geq t \geq t_2$ and letting $T \to \infty$, we obtain
\[Z(t) \geq \int_{t}^{\infty} \overline{Q}(s) F\left(Z^{1/\alpha_1}[g(s)]\right) \, ds.\]

As in [9, 12], it is now easy to conclude that there exists a positive solution $y(t)$ of the equation (2.13) with $\lim_{t \to \infty} y(t) = 0$. This contradicts the hypothesis and completes the proof.

By using a well known oscillation result in [9, Corollary 7.6.1], the following corollary is immediate.

Corollary 2.1 Let conditions (i) – (iv), (2.11) and (2.12) hold. Then, equation (1.1) is B-oscillatory if one of the following conditions holds:

(1) $F\left(y^{1/\alpha_1}\right)/y \geq k > 0$, $y \neq 0$, where k is a constant,

and

\[\lim_{t \to \infty} \inf_{y(t)} \int_{g(t)}^{t} \overline{Q}(s) \, ds > \frac{1}{ek}.\] (2.17)
\[(I_2) \int_{\pm 0}^{\infty} \frac{du}{F(u^{1/\alpha_1})} < \infty, \quad (2.18) \]

and

\[\int_{\infty}^{\infty} Q(s) ds = \infty. \quad (2.19) \]

Next, we let \(\mathcal{F}(x) = f^{1/(\alpha_1\alpha_2\alpha_3)}(x), \ x \in \mathbb{R} \) and assume that

\[\int_{\pm \infty}^{\infty} \frac{du}{\mathcal{F}(u)} < \infty. \quad (2.20) \]

Now, we prove the following oscillation result.

Theorem 2.3 Let conditions (i) – (iv), (2.12) and (2.20) hold. If

\[\int_{\infty}^{\infty} g'(u) a_1^{1/\alpha_1} [g(u)] \left(\int_{u}^{\infty} Q(s) ds \right)^{1/\alpha_1} du = \infty, \quad (2.21) \]

then equation (1.1) is \(B \)-oscillatory.

Proof Let \(x(t) \) be a bounded nonoscillatory solution of equation (1.1), say, \(x(t) > 0 \) for \(t \geq t_0 \geq 0 \). As in the proof of Theorem 2.1, we obtain (2.10) for \(t \geq t_1 \geq t_0 \). Now, one can easily see that

\[L_1 x(t) \geq \left(\int_{t}^{\infty} Q(s) ds \right) F(x[g(t)]), \quad (2.22) \]

or

\[a_1^{-1/\alpha_1} [g(t)] \frac{x'[g(t)]}{x}[g(t)] \geq a_1^{-1/\alpha_1} [g(t)] x'[g(t)] \geq \left(\int_{t}^{\infty} Q(s) ds \right)^{1/\alpha_1} \mathcal{F}(x[g(t)]) \]

for \(t \geq t_2 \geq t_1 \). Hence, it follows that

\[\frac{x'[g(t)]}{F(x[g(t)])} \geq g'(t) a_1^{1/\alpha_1} [g(t)] \left(\int_{t}^{\infty} Q(s) ds \right)^{1/\alpha_1} \]

for \(t \geq t_2 \). Integrating both sides of (2.23) from \(t_2 \) to \(t \), we get

\[\int_{t_2}^{t} \frac{g'(u) a_1^{1/\alpha_1} [g(u)] \left(\int_{u}^{\infty} Q(s) ds \right)^{1/\alpha_1} du}{dv} \leq \int_{x[g(t_2)]}^{x[g(t)]} \frac{dv}{F(v)} \leq \int_{x[g(t_2)]}^{\infty} \frac{dv}{F(v)} < \infty, \]

which contradicts condition (2.21). This completes the proof.

In [5], we have compared the oscillation of nonlinear equations of type (2.7) with those of second order linear equations. In fact, we obtained the following results.
Lemma 2.2 Let \(0 < \alpha_1 \leq 1, \ g'(t) > 0 \) for \(t \geq t_0, \ 0 < \gamma(t) = \int_0^\infty Q(s) \, ds < \infty\) and \(F(x) = x^\beta\), where \(\beta\) is the ratio of positive odd integers. Then, equation (2.7) is oscillatory if for all large \(t\), the linear second order equation

\[
\left(\frac{C(t)}{g(t)} \left(\frac{(\gamma(t))^{\alpha_1-1}}{a_1[g(t)]} \right)^{1/\alpha_1} y'(t) \right)' + \beta Q(t) y(t) = 0 \tag{2.24}
\]

is oscillatory, where

\[
C(t) = \begin{cases}
\ c_1, \ c_1 > 0 & \text{is any constant,} \quad \text{when } \ \beta > \alpha_1, \\
\ 1, & \text{when } \ \beta = \alpha_1, \\
\ c_2 \eta^{(\alpha_1-\beta)/\alpha_1} [g(t), t_0], \ c_2 > 0 & \text{is any constant,} \quad \text{when } \ \beta < \alpha_1.
\end{cases}
\]

Lemma 2.3 Let \(\alpha_1 \geq 1, \ g'(t) > 0 \) for \(t \geq t_0\) and \(F(x) = x^\beta\), where \(\beta\) is the ratio of positive odd integers. Then, equation (2.7) is oscillatory if for all large \(t\), the linear second order equation

\[
\left(\frac{\mathcal{C}(t)}{a_1^{1/\alpha_1}[g(t)]^{\eta^{\alpha_1-1}}[g(t), t_0]} Z'(t) \right)' + \beta Q(t) Z(t) = 0 \tag{2.25}
\]

is oscillatory, where

\[
\mathcal{C}(t) = \begin{cases}
\ c_1, \ c_1 > 0 & \text{is any constant,} \quad \text{when } \ \beta > \alpha_1, \\
\ 1, & \text{when } \ \beta = \alpha_1, \\
\ c_2 \eta^{\alpha_1-\beta} [g(t), t_0], \ c_2 > 0 & \text{is any constant,} \quad \text{when } \ \beta < \alpha_1.
\end{cases}
\]

By Lemmas 2.2 and 2.3 we can replace equation (2.7) in Theorem 2.1 by equation (2.24), or equation (2.25). The statements and formulations of the results are left to the reader.

Next, we present the following result.

Theorem 2.4 Let conditions (i) – (iv) hold. If

\[
\int_0^\infty a_1^{1/\alpha_1}(u) \left(\int_u^\infty Q(s) \, ds \right)^{1/\alpha_1} \, du = \infty, \tag{2.26}
\]

then equation (1.1) is \(B\)-oscillatory.

Proof Let \(x(t)\) be a bounded nonoscillatory solution of equation (1.1), say, \(x(t) > 0\) for \(t \geq t_0 \geq 0\). As in the proof of Theorem 2.3, we obtain (2.22) for \(t \geq t_1\). Since \(x(t)\) is an increasing function on \([t_1, \infty)\), there exist a \(t_2 \geq t_1\) and a constant \(C > 0\) such that

\[
x[g(t)] \geq C \quad \text{for} \quad t \geq t_2. \tag{2.27}
\]

Using (2.27) in (2.22), one can easily see that

\[
x'(t) \geq a_1^{1/\alpha_1}(t) \left(\int_t^\infty Q(s) \, ds \right)^{1/\alpha_1} \Phi(t), \quad t \geq t_2.
\]

Integrating the above inequality from \(t_2\) to \(t\) and using (2.26) we arrive at the desired contradiction.

Next, we will give some necessary and sufficient conditions for all bounded solutions of equation (1.1) to be oscillatory or nonoscillatory.
Theorem 2.5 Let conditions (i) – (iv) hold. Then, equation (1.1) is B-oscillatory if and only if condition (2.26) is satisfied.

Proof Suppose that (2.26) holds and assume that equation (1.1) has a bounded nonoscillatory solution $x(t)$. The proof is similar to that of Theorem 2.4 and hence omitted.

Assume that (2.26) does not hold. We may suppose that

$$\int_{t_0}^{\infty} \left(\int_{s_1}^{\infty} \left(\int_{s_2}^{\infty} \left(\int_{s_3}^{\infty} q(s) ds \right)^{1/\alpha_3} ds_3 \right)^{1/\alpha_2} ds_2 \right)^{1/\alpha_1} ds_1 < \infty, \quad t_0 \geq 0.$$ \hspace{1cm} (2.28)

Then, we can choose $T \geq t_0$ sufficiently large such that for $t \geq T$,

$$\int_{T}^{\infty} \left(\int_{s_1}^{\infty} \left(\int_{s_2}^{\infty} \left(\int_{s_3}^{\infty} f(\gamma)q(s) ds \right)^{1/\alpha_3} ds_3 \right)^{1/\alpha_2} ds_2 \right)^{1/\alpha_1} ds_1 < \frac{\gamma}{2} \quad (2.29)$$

for some constant $\gamma > 0$. Let $x(t)$ be a solution of the following equation

$$x(t) = \gamma - \int_{t}^{\infty} \left(\int_{s_1}^{\infty} \left(\int_{s_2}^{\infty} \left(\int_{s_3}^{\infty} q(s)f(x[g(s)]) ds \right)^{1/\alpha_3} ds_3 \right)^{1/\alpha_2} ds_2 \right)^{1/\alpha_1} ds_1. \quad (2.30)$$

Then we easily see that $x(t)$ is a solution of equation (1.1). Next, we shall show that equation (2.30) has a bounded nonoscillatory solution $x(t)$ by using the fixed point theorem of Schauder.

We introduce the Banach space X of all continuous and bounded real-valued functions on the interval $[t_0, \infty)$ endowed with the usual sup norm $\| \cdot \|$. We define a bounded, convex and closed subset \mathcal{B} of X as

$$\mathcal{B} = \left\{ x \in X : \frac{\gamma}{2} \leq x(t) \leq \gamma, \quad t \geq t_0 \right\}.$$

Next, let S be a mapping defined on \mathcal{B} as follows: For $x \in \mathcal{B}$,

$$(Sx)(t) = \begin{cases} \gamma - \int_{t}^{\infty} \left(\int_{s_1}^{\infty} \left(\int_{s_2}^{\infty} \left(\int_{s_3}^{\infty} q(s)f(x[g(s)]) ds \right)^{1/\alpha_3} ds_3 \right)^{1/\alpha_2} ds_2 \right)^{1/\alpha_1} ds_1, & t \geq T, \\ (Sx)(t), & t_0 \leq t \leq T. \end{cases} \quad (2.31)$$

Then the mapping S satisfies the following:

(I_1) S maps \mathcal{B} into \mathcal{B}. In fact, for any $x \in \mathcal{B}$, from (2.29) and (2.31) we have

$$\gamma \geq (Sx)(t) \geq \gamma - \frac{\gamma}{2} = \frac{\gamma}{2}, \quad t \geq t_0.$$
So $Sx \in \mathcal{B}$.

(I2) The mapping S is continuous on \mathcal{B}. Let $x \in \mathcal{B}$ and \{x\}_j be a sequence in \mathcal{B} converging to x. We shall show that Sx_j converges to Sx. By (2.29), for any $\epsilon > 0$, we can choose $T_0 \geq T$ such that

$$\int_{T_0}^{\infty} \left(a_1(s_1) \int_{s_1}^{\infty} \left(a_2(s_2) \int_{s_2}^{\infty} \left(a_3(s_3) \int_{s_3}^{\infty} q(s) f(\gamma) ds \right) ds_3 \right) ds_2 \right) ds_1 < \frac{\epsilon}{3}. \quad (2.32)$$

Furthermore, we can see that the series $f(x_j)$ converges to $f(x)$ uniformly with respect to j. So, we can choose m such that for all $j \geq m$,

$$\left| \int_{T_0}^{\infty} \left(a_1(s_1) \int_{s_1}^{\infty} \left(a_2(s_2) \int_{s_2}^{\infty} \left(a_3(s_3) \int_{s_3}^{\infty} q(s) f(x_j[g(s)]) ds \right) ds_3 \right) ds_2 \right) ds_1 - \int_{t_0}^{T_0} \left(a_1(s_1) \int_{s_1}^{\infty} \left(a_2(s_2) \int_{s_2}^{\infty} \left(a_3(s_3) \int_{s_3}^{\infty} q(s) f(x_j[g(s)]) ds \right) ds_3 \right) ds_2 \right) ds_1 \right| < \frac{\epsilon}{3}. \quad (2.33)$$

In the following, we shall show that $|(Sx_j)(t) - (Sx)(t)| < \epsilon$ for any t and $j \geq m$.

(i) If $t \geq T_0$, then from (2.31) and (2.32), we can easily find

$$|(Sx_j)(t) - (Sx)(t)| \leq 2 \left| \int_{T_0}^{\infty} \left(a_1(s_1) \int_{s_1}^{\infty} \left(a_2(s_2) \int_{s_2}^{\infty} \left(a_3(s_3) \int_{s_3}^{\infty} q(s) f(\gamma) ds \right) ds_3 \right) ds_2 \right) ds_1 \right| < \frac{2\epsilon}{3} < \epsilon \quad \text{for } j \geq m.$$

(ii) If $t \leq T_0$, from (2.31), (2.32) and (2.33), we have

$$|(Sx_j)(t) - (Sx)(t)| \leq \left| \int_{T_0}^{\infty} \left(a_1(s_1) \int_{s_1}^{\infty} \left(a_2(s_2) \int_{s_2}^{\infty} \left(a_3(s_3) \int_{s_3}^{\infty} q(s) f(x_j[g(s)]) ds \right) ds_3 \right) ds_2 \right) ds_1 \right|$$

$$- \int_{t_0}^{T_0} \left(a_1(s_1) \int_{s_1}^{\infty} \left(a_2(s_2) \int_{s_2}^{\infty} \left(a_3(s_3) \int_{s_3}^{\infty} q(s) f(x_j[g(s)]) ds \right) ds_3 \right) ds_2 \right) ds_1 \right|$$

$$+ \left| \int_{T_0}^{\infty} \left(a_1(s_1) \int_{s_1}^{\infty} \left(a_2(s_2) \int_{s_2}^{\infty} \left(a_3(s_3) \int_{s_3}^{\infty} q(s) f(x_j[g(s)]) ds \right) ds_3 \right) ds_2 \right) ds_1 \right|$$

$$+ \left| \int_{T_0}^{\infty} \left(a_1(s_1) \int_{s_1}^{\infty} \left(a_2(s_2) \int_{s_2}^{\infty} \left(a_3(s_3) \int_{s_3}^{\infty} q(s) f(x_j[g(s)]) ds \right) ds_3 \right) ds_2 \right) ds_1 \right|$$
which completes the proof that the mapping \(S \) of a bounded solution of equation (1.1). From this it follows that \(\| S \xi \| < \epsilon \) for any \(\xi \) with \(\| \xi \| = 1 \). Therefore, \(S \xi \) is uniformly bounded. Furthermore, we find

\[
|Sx(t) - \gamma| \leq \left| \int_0^\infty \left(a_1(s_1) \int_{s_1}^\infty \left(a_2(s_2) \int_{s_2}^\infty \left(a_3(s_3) \int_{s_3}^\infty q(s)f(\gamma)ds \right)^{1/\alpha_3} ds_3 \right)^{1/\alpha_2} ds_2 \right)^{1/\alpha_1} ds_1 \right|.
\]

(2.34)

Thus, from (2.28) and (2.34), we conclude that \(S \) is equiconvergent at \(\infty \). Now, for any \(x \in B \) and every \(t \leq t_0 \), we get

\[
|Sx(t_2) - Sx(t_1)| \leq \left| \int_{t_1}^{t_2} \left(a_1(s_1) \int_{s_1}^\infty \left(a_2(s_2) \int_{s_2}^\infty \left(a_3(s_3) \int_{s_3}^\infty q(s)f(\gamma)ds \right)^{1/\alpha_3} ds_3 \right)^{1/\alpha_2} ds_2 \right)^{1/\alpha_1} ds_1 \right|.
\]

From this it follows that \(S \) is equibounded. Finally, by the given compactness criterion (see [13]), we conclude that \(S \) is relatively compact.

Thus, by the Schauder fixed point theorem [13], it follows that (2.30) has a positive solution \(x(t) \). This proves the necessity.

The following theorem provides a necessary and sufficient condition for the existence of a bounded solution of equation (1.1).

Theorem 2.6 Assume that (i) – (iv) except condition (1.3) hold, and

\[
\int_0^\infty q(s)ds = \infty.
\]

Then a necessary and sufficient condition for equation (1.1) to have a positive solution \(x(t) \) which satisfies \(\beta_2 \geq x(t) \geq \beta_1 > 0 \) (\(\beta_1 \) and \(\beta_2 \) are constants) for \(t \geq t_0 \) is that

\[
\int_{t_0}^\infty \left(a_1(s_1) \int_{s_1}^{s_2} \left(a_2(s_2) \int_{s_2}^{s_3} a_3(s_3) \int_{s_3}^\infty q(s)ds \right)^{1/\alpha_3} ds_3 \right)^{1/\alpha_2} ds_2 \right)^{1/\alpha_1} ds_1 < \infty.
\]

(2.36)

Proof Necessity If \(x(t) \) is a positive solution of equation (1.1) and the condition \(\beta_2 \geq x(t) \geq \beta_1 > 0 \) is satisfied, then we have in view of equation (1.1),

\[
L_3x(t) = L_3x(t_0) - \int_{t_0}^t q(s)f(x[g(s)])ds \leq L_3x(t_0) - f(\beta_1) \int_{t_0}^t q(s)ds.
\]
If t is large enough, in view of (2.35), we have $L_3x(t) < 0$. Then, for all large t_0,

$$L_3x(t) = -f(\beta_1) \int_{t_0}^{t} q(s) \, ds,$$

or

$$\frac{d}{dt} L_2x(t) < -f^{1/\alpha_3}(\beta_1) \left(a_3(t) \int_{t_0}^{t} q(s) \, ds \right)^{1/\alpha_3}.$$

The rest of the proof is similar to the proof of the sufficiency part of Theorem 2.5 and hence omitted.

The proof of sufficiency is similar to the proof of necessity part of Theorem 2.5. This completes the proof.

Remark 2.1 From the above study of B–oscillation of equation (1.1), we are concerned with the nonexistence of solutions of equation (1.1) satisfying (2.8). This class of solutions of (1.1) may include some unbounded solutions. Therefore, some modification in the definition of B-oscillation of equation (1.1) is required to include bounded as well as some unbounded solutions of equation (1.1). The details are left to the reader.

Remark 2.2 The results of this paper can be extended to neutral equations of the form

$$L_4(x(t) + p(t)x[\tau(t)]) + q(t)f(x[g(t)]) = 0,$$

where $p(t) \in C([t_0, \infty), [0, \infty))$ and $\tau(t) \in C([t_0, \infty), \mathbb{R})$, $\tau'(t) > 0$ for $t \geq t_0$ and $\lim_{t \to \infty} \tau(t) = 0$. Here, we refer to our papers [4–6] and omit the details.

The following example illustrates some of the results obtained.

Example 2.1 Consider the differential equation

$$\frac{d}{dt} \left(\frac{1}{t^3} \left(\frac{d}{dt} \left(t \left(\frac{d}{dt} \left(t \left(\frac{d}{dt} x(t) \right)^3 \right) \right)^3 \right) \right) \right) + \frac{2}{t^4} x(t) = 0. \tag{2.38}$$

This is actually (1.1) with

$$\alpha_1 = 3, \quad \alpha_2 = 1, \quad \alpha_3 = 3, \quad a_1(t) = \frac{1}{t}, \quad a_2(t) = \frac{1}{t}, \quad a_3(t) = t^2;$$

$$q(t) = \frac{2}{t^4}, \quad g(t) = t, \quad f(x) = x.$$

By direct computation we obtain

$$Q(t) = \frac{1}{2} t^{-7/3}, \quad \eta[g(t), T] \leq \frac{3}{2} t^{2/3}, \quad \overline{Q}(t) = Q(t)F(\eta[g(t), T]) \leq t^{-19/9}.$$

Clearly, conditions (i) – (iv), (2.11) and (2.12) are fulfilled. Further, it can be easily checked that (2.17) is not satisfied, and also

$$\int_{\eta}^{\infty} \overline{Q}(s) \, ds \leq \int_{\eta}^{\infty} s^{-19/9} \, ds < \infty.$$
which implies (2.19) is not met. Thus, we see that both conditions (I\(_1\)) and (I\(_2\)) of Corollary 2.1 are not fulfilled.

Moreover, we can verify easily that condition (2.20) is not satisfied but (2.21) and (2.26) are met. Thus, the conditions of Theorem 2.3 are not all satisfied, whereas those of Theorems 2.4 and 2.5 are fulfilled.

Hence, on one hand we cannot conclude from Corollary 2.1 and Theorem 2.3 that (2.38) is \(B\)-oscillatory, while on the other hand Theorems 2.4 and 2.5 give that (2.38) is \(B\)-oscillatory. In fact, we observe that (2.38) has a solution given by \(x(t) = t\), which is unbounded and nonoscillatory.

References

