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Abstract: In this paper, by using fixed point theorem, the problem of ex-
istence of the nonoscillatory solution for a class of neutral delay difference
equations with both positive and negative coefficients has been investigated.
Under the assumption of third order, a sufficient condition is proposed for the
existence of the nonoscillatory solution. Further studies on the underlying
problem have also been conducted.
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1 Introduction

In recent years, there are many scholars who have devoted their researches to the dif-
ferential equations with positive and negative coefficients and obtained some interesting
results, see for example, [1 – 8] and the references therein. At the same time, the research
on difference equations with positive and negative coefficients is getting people’s atten-
tion and is becoming a new field of research [9 – 12]. In [12] the existence of positive
solution of the second order difference equation with positive and negative coefficients
was studied. In this paper we consider the third order equation

∆3[x(n) + px(n − τ)] + R1(n)x(n − δ1) − R2(n)x(n − δ2) = 0 (1)
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where p ∈ R, τ ∈ {1, 2, . . .}, δ1, δ2 ∈ {0, 1, 2, . . .}, {R1(n)}, {R2(n)} are positive real
sequences, and satisfy

+∞
∑

n=1

n2Ri(n) < +∞, i = 1, 2. (2)

The related conclusion in [12] is generalized in this paper to the case of third order
equations. A sufficient condition for the existence of the positive solution of the equation
(1) is obtained.

For simplicity, we list basic conceptions and symbols as follows:

∆ symbols for the forward difference operator, say ∆y(n) = y(n + 1) − y(n);

Z symbols for the integer set and R for the real numbers set.

Assume a ∈ Z and let N(a) = {a, a + 1, . . . }, N = N(0). For any given a, b ∈ Z

and a ≤ b, let N(a, b) = {a, a + 1, . . . , b}.

The solution of the difference equation (1) is called eventually positive if there exists
a positive integer M such that x(n) > 0 for n ∈ N(M). If there exists a positive integer
M such that x(n) < 0 for n ∈ N(M), then is called eventually negative.

The solution of the difference equation (1) is said to be oscillatory if it is neither
eventually positive nor eventually negative. Otherwise, it is called nonoscillatory.

2 Main Results and Proofs

Theorem 2.1 Suppose

(i)
+∞
∑

n=1

n2Ri(n) < +∞, i = 1, 2, n ∈ N(n0); (3)

(ii) there exists a positive integer T1 which is sufficiently large such that, for any
α > 0, when n > T1, we have

αR1(n) − R2(n) ≥ 0; (4)

(iii) p 6= ±1. (5)

Then the equation (1) has an eventually positive solution.

Proof Let L∞ denote the set of all the bounded real sequences x = {x(n)} on
N(n0), define the norm ‖x‖ = supx(n), then L∞ forms a Banach space. There are four
situations to be contemplated:

Case 1: 0 ≤ p < 1.

From (3) and (4), we select a positive integer n1 ≥ max{T1, n0 + δ} which is large
enough, where δ = max{τ, δ1, δ2}, such that

+∞
∑

n=n1

n2[R1(n) + R2(n)] < 1 − p, (6)

0 ≤

+∞
∑

n=n1

n2[M2R1(n) − M1R2(n)] ≤ p − 1 + M2, (7)
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where M1, M2 are positive constants and satisfy

1 − M2 < p ≤
1 − M1

1 + M2

. (8)

Let
A = {x ∈ L∞ : M1 ≤ x(n) ≤ M2, n ∈ N(n0)}. (9)

It is clear that A is a bounded closed convex subset on L∞.
Define a mapping T : A → L∞ as following:

Tx(n) =















1 − p − px(n − τ) +
+∞
∑

s=n

C2
s+2−n

(R1(s)x(s − δ1) − R2(s)x(s − δ2)), n ≥ n1,

Tx(n1), n0 ≤ n < n1.

(10)

Now we shall prove that T is a self-mapping on A where there are two situations to
be contemplated:

Case 1-a: n ≥ n1.
For any x ∈ A, from (9), (10), we find that

Tx(n) = 1 − p − px(n − τ) +
+∞
∑

s=n

C2
s+2−n

(R1(s)x(s − δ1) − R2(s)x(s − δ2))

≤ 1 − p +
+∞
∑

s=n

s2(R1(s)M2 − R2(s)M1),

therefore from (7), we have

Tx(n) ≤ 1 − p + p − 1 + M2 = M2. (11)

From (4) we have

+∞
∑

s=n

C2
s+2−n

(R1(s)x(s − δ1) − R2(s)x(s − δ2))

=

+∞
∑

s=n

C2
s+2−n

x(s − δ2)

[

x(s − δ1)

x(s − δ2)
R1(s) − R2(s)

]

≥ 0.

Hence we also have
Tx(n) ≥ 1 − p − px(n − τ).

Since 0 ≤ p < 1 , from (8) and (9), we get

Tx(n) ≥ 1 − p − pM2 ≥ M1. (12)

Case 1-b: n0 ≤ n < n1.
For any x ∈ A, from (10) we know that

Tx(n) = Tx(n1)
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and from (11) and (12) we obtain

M1 ≤ Tx(n1) ≤ M2.

Hence we have
M1 ≤ Tx(n) ≤ M2.

Considering the two cases of a and b, for any x ∈ A, we have

M1 ≤ Tx ≤ M2.

Hence, Tx ∈ A, namely T is a self-mapping on A.
In what follows, we shall prove that T is a contraction mapping on A where there are

also two situations to be contemplated:

Proof of Case 1-a. n ≥ n1.
For any x1, x2 ∈ A, we have

|Tx1(n) − Tx2(n)| =

∣

∣

∣

∣

− px1(n − τ) +

+∞
∑

s=n

C2
s+2−n

(R1(s)x1(s − δ1) − R2(s)x1(s − δ2))

+ px2(n − τ) −

+∞
∑

s=n

C2
s+2−n

(R1(s)x2(s − δ1) − R2(s)x2(s − δ2))

∣

∣

∣

∣

≤ | − px1(n − τ) + px2(n − τ)| +

+∞
∑

s=n

C2
s+2−n

R1(s)|x1(s − δ1) − x2(s − δ1)|

+

+∞
∑

s=n

C2
s+2−n

R2(s)|x1(s − δ2) − x2(s − δ2)|.

Hence from (5), we have

|Tx1(n) − Tx2(n)| ≤

[

p +

+∞
∑

s=n

C2
s+2−n

(R1(s) + R2(s))

]

‖x1 − x2‖

≤

[

p +

+∞
∑

s=n

s2(R1(s) + R2(s))

]

‖x1 − x2‖.

Then from (6), there exists 0 < q1 < 1, such that

|Tx1(n) − Tx2(n)| ≤ q1‖x1 − x2‖.

Proof of Case 1-b. n0 ≤ n < n1.
From (10), we also have

|Tx1(n) − Tx2(n)| = |Tx1(n1) − Tx2(n1)| ≤ q1‖x1 − x2‖.

In both the cases of a and b, for any x1, x2 ∈ A, n ≥ n0, we have

|Tx1(n) − Tx2(n)| ≤ q1‖x1 − x2‖.
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So T is a contraction mapping on A.
On summarizing the above cases we can conclude from the Banach contraction map-

ping principle that there exist a fixed point x of T on A, namely Tx = x, where x = x(n)
satisfies

Tx(n) =















1 − p − px(n − τ)+
+∞
∑

s=n

C2
s+2−n

(R1(s)x(s − δ1) − R2(s)x(s − δ2)), n ≥ n1,

Tx(n1), n0 ≤ n ≤ n1.

From this, the fixed point x(n) is a positive sequence. Differentiating three times the
above expression, we get

∆3[x(n) + px(n − τ)] + R1(n)x(n − δ1) − R2(n)x(n − δ2) = 0.

Hence this fixed point x(n) is a positive solution of the equation (1).

Case 2: 1 < p.
From (3) and (4), we select a positive integer n2 > t1 > n0 which is large enough and

satisfies
n2 + τ = n0 + max{δ1, δ2}

such that

1

p

+∞
∑

n=n2

n2[R1(n) + R2(n)] < 1 −
1

p
, (13)

+∞
∑

n=n2

n2[M4R1(n) − M3R2(n)] ≤ 1 − p + pM4, (14)

where M1, M2 are positive constants and satisfy

(1 − M3)p ≥ 1 + M4, p(1 − M4) < 1. (15)

Let
A = {x ∈ L∞ : M3 ≤ x(n) ≤ M4, n ∈ N(n0)}. (16)

It is clear that A is a bounded closed convex subset on L∞.
Define a mapping T : A → L∞ as follow:

Tx(n) =























1 −
1

p
−

1

p
x(n + τ) +

1

p

+∞
∑

s=n+τ

C2
s+2−n−r

(R1(s)x(s − δ1) − R2(s)x(s − δ2)), n ≥ n2,

Tx(n2), n0 ≤ n ≤ n2.

(17)

In the following, we shall prove that T is a self-mapping on A. Here there are still two
situations to be discussed:

Case 2-a: n ≥ n2.
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For any x ∈ A, from (16), (17) and p > 1 we find that

Tx(n) = 1 −
1

p
−

1

p
x(n + τ) +

1

p

+∞
∑

s=n+τ

C2
s+2−n−τ

(R1(s)x(s − δ1) − R2(s)x(s − δ2))

≤ 1 −
1

p
+

1

p

+∞
∑

s=n+τ

s2(R1(s)M4 − R2(s)M3)

and therefore, from (14) ,we have

Tx(n) ≤ 1 −
1

p
+

1

p
(1 − p + M4) = M4. (18)

Since from (4), we have

+∞
∑

s=n+τ

C2
s+2−n−τ

(R1(s)x(s − δ1) − R2(s)x(s − δ2))

=

+∞
∑

s=n+τ

C2
s+2−n−τ

x(s − δ2)

[

x(s − δ1)

x(s − δ2)
R1(s) − R2(s)

]

≥ 0.

Hence we also have

Tx(n) ≥ 1 −
1

p
−

1

p
x(n + τ).

Since p > 1, from (15) and (16), we get

Tx(n) ≥ 1 −
1

p
−

1

p
M4 ≥ M3. (19)

Case 2-b: n0 ≤ n < n2.
For any x ∈ A, from (17) we find that

Tx(n) = Tx(n2).

Then, from (18) and (19) we obtain

M3 ≤ Tx(n2) ≤ M4.

Hence
M3 ≤ Tx(n) ≤ M4.

Based on the two cases of a and b, for any x ∈ A, we have

M3 ≤ Tx ≤ M4.

Hence Tx ∈A, namely, T is a self-mapping on A.
In what follows, we shall prove that T is a contraction mapping on A where following

two situations need to be discussed.

Proof of Case 2-a. n ≥ n2.
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For any x1, x2 ∈ A, we have

|Tx1(n) − Tx2(n)|

=

∣

∣

∣

∣

−
1

p
x1(n + τ) +

1

p

+∞
∑

s=n+τ

C2
s+2−n−τ

(R1(s)x1(s − δ1) − R2(s)x1(s − δ2))

+
1

p
x2(n + τ) −

1

p

+∞
∑

s=n+τ

C2
s+2−n−τ

(R1(s)x2(s − δ1) − R2(s)x2(s − δ2))

∣

∣

∣

∣

≤

∣

∣

∣

∣

−
1

p
x1(n + τ) +

1

p
x2(n + τ)

∣

∣

∣

∣

+
1

p

+∞
∑

s=n+τ

C2
s+2−n−τ

R1(s)|x1(s − δ1)

− x2(s − δ1)| +
1

p

+∞
∑

s=n+τ

C2
s+2−n−τ

R2(s)|x1(s − δ2) − x2(s − δ2)|.

So from (5) we have

|Tx1(n) − Tx2(n)| ≤

[

1

p
+

1

p

+∞
∑

s=n+τ

C2
s+2−n−τ

(R1(s) + R2(s))

]

‖x1 − x2‖

≤

[

1

p
+

1

p

+∞
∑

s=n+τ

s2(R1(s) + R2(s))

]

‖x1 − x2‖.

Then, from (13), there exists 0 < q2 < 1, such that

|Tx1(n) − Tx2(n)| ≤ q2‖x1 − x2‖.

Proof of Case 2-b. n0 ≤ n < n2.
From (17), we also have

|Tx1(n) − Tx2(n)| = |Tx1(n2) − Tx2(n2)| ≤ q2‖x1 − x2‖.

Considering the cases of a and b, for any x1, x2 ∈ A, n ≥ n0, we have

|Tx1(n) − Tx2(n)| ≤ q2‖x1 − x2‖.

So T is a contraction mapping on A.Based on the above discussion we can conclude from
the Banach contraction mapping principle that there exist a fixed point x of T on A,
namely, Tx = x, where x = {x(n)} satisfies

Tx(n) =























1 −
1

p
−

1

p
x(n + τ)+

1

p

+∞
∑

s=n+τ

C2
s+2−n−r

(R1(s)x(s − δ1) − R2(s)x(s − δ2)), n ≥ n2,

Tx(n2), n0 ≤ n < n2.
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Therefore this fixed point {x(n)} is a positive sequence. Differentiating three times the
above expression, we get

∆3[x(n) + px(n − τ)] + R1(n)x(n − δ1) − R2(n)x(n − δ2) = 0.

Hence this fixed point {x(n)} is a positive solution of the equation (1).

Case 3: −1 < p < 0.
From (3) and (4), we select a positive integer n3 ≥ max{T1, n0 + δ} where δ =

max{τ, δ1, δ2}, such that

+∞
∑

n=n3

n2[R1(n) + R2(n)] < p + 1, (20)

0 ≤

+∞
∑

n=n3

n2[M6R1(n) − M5R2(n)] ≤ (p + 1)(M6 − 1), (21)

where M5 and M6 are positive constants and satisfy

0 < M5 ≤ 1 < M6. (22)

Let
A = {x ∈ L∞ : M5 ≤ x(n) ≤ M6, n ∈ N(n0)}. (23)

It is obvious that A is a bounded closed convex subset on L∞.
Define a mapping T : A → L∞ as follow:

Tx(n) =















1 + p − px(n − τ) +
+∞
∑

s=n

C2
s+2−n

(R1(s)x(s − δ1) − R2(s)x(s − δ2)), n ≥ n3,

Tx(n3), n0 ≤ n < n3.

(24)

We shall prove that T is a self-mapping on A where the following two situations are to
be discussed.

Case 3-a: n ≥ n3.
For any x ∈ A, from (23), (24), we find that

Tx(n) = 1 + p − px(n − τ) +

+∞
∑

s=n

C2
s+2−n

(R1(s)x(s − δ1) − R2(s)x(s − δ2))

≤ 1 + p − pM6 +
+∞
∑

s=n

s2(R1(s)M6 − R2(s)M5)

and therefore, from (21), we have

Tx(n) ≤ 1 + p − pM6 + (1 + p)(M6 − 1) = M6. (25)

From (4), we have
+∞
∑

s=n

s2(R1(s)M6 − R2(s)M5) ≥ 0.
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Hence, from (22) and (23), we have

Tx(n) ≥ 1 + p − pM5 = (1 + p) − (1 + p)M5 + M5

= (1 + p)(1 − M5) + M5 = M5.
(26)

Case 3-b: n0 ≤ n < n3.
For any x ∈ A, from (24) we find that

Tx(n) = Tx(n3).

Then, from (25) and (26) we obtain

M5 ≤ Tx(n3) ≤ M6.

Hence
M5 ≤ Tx(n) ≤ M6.

In both cases of a and b, for any x ∈ A, we have

M5 ≤ Tx ≤ M6,

namely, Tx ∈ A. Hence, T is a self-mapping on A. Now we shall prove that T is a
contraction mapping on A under the two situations bellow.

Proof of Case 3-a. n ≥ n3.
For any x1, x2 ∈ A, we have

|Tx1(n) − Tx2(n)|

=

∣

∣

∣

∣

− px1(n − τ) +

+∞
∑

s=n

C2
s+2−n

(R1(s)x1(s − δ1) − R2(s)x1(s − δ2))

+ px2(n − τ) −

+∞
∑

s=n

C2
s+2−n

(R1(s)x2(s − δ1) − R2(s)x2(s − δ2))|

≤ | − px1(n − τ) + px2(n − τ)| +

+∞
∑

s=n

C2
s+2−n

R1(s)|x1(s − δ1)

− x2(s − δ1)| +
+∞
∑

s=n

C2
s+2−n

R2(s)|x1(s − δ2) − x2(s − δ2)|.

Hence from (5), the following inequality is hold

|Tx1(n) − Tx2(n)| ≤

[

p +

+∞
∑

s=n

C2
s+2−n

(R1(s) − R2(s))

]

‖x1 − x2‖

≤

[

p +

+∞
∑

s=n

s2(R1(s) − R2(s))

]

‖x1 − x2‖.
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According to (20), there exists 0 < q3 < 1, such that

|Tx1(n) − Tx2(n)| ≤ q3‖x1 − x2‖.

Proof of Case 3-b. n0 ≤ n < n3.
From (20), (24) we have

|Tx1(n) − Tx2(n)| = |Tx1(n3) − Tx2(n3)| ≤ q3‖x1 − x2‖.

In both cases of a and b, for any x1, x2 ∈ A, when n ≥ n0, we have

|Tx1(n) − Tx2(n)| ≤ q3‖x1 − x2‖.

So T is a contraction mapping on A. Based on the Banach contraction mapping principle
we know that there exist a fixed point x of T on A, say, Tx = x, where x = {x(n)}
satisfies

Tx(n) =















1 + p − px(n − τ) +
+∞
∑

s=n

C2
s+2−n

(R1(s)x(s − δ1) − R2(s)x(s − δ2)), n ≥ n3,

Tx(n3), n0 ≤ n < n3.

Thus this fixed point {x(n)} is a positive sequence. Differentiating three times the above
expression, we get

∆3[x(n) + px(n − τ)] + R1(n)x(n − δ1) − R2(n)x(n − δ2).

Hence, this fixed point {x(n)} is a positive solution of the equation (1).

Case 4: p < −1
From (3) and (4), we select a positive integer n4 > T1 > n0 which is large enough to

satisfy
n4 + τ ≥ n0 + max{δ1, δ2}

such that

+∞
∑

n=n4

n2[R1(n) + R2(n)] < −p − 1, (27)

+∞
∑

n=n4

n2[M8R1(n) − M7R2(n)] ≤ (p + 1)(M7 − 1) (28)

where M7, M8 are positive constants and satisfy

0 < M7 < 1 < M8. (29)

Let
A = {x ∈ L∞ : M7 ≤ x(n) ≤ M8, n ∈ N(n0)}. (30)

It is obvious that A is a bounded closed convex subset on L∞.
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Define a mapping T : A → L∞ as follow:

Tx(n) =























1 +
1

p
−

1

p
x(n + τ) +

1

p

+∞
∑

s=n+r

C2
s+2−n−r

(R1(s)x(s − δ1) − R2(s)x(s − δ2)), n ≥ n4,

Tx(n4), n0 ≤ n < n4.

(31)

We shall prove that T is a self-mapping on A under the following two situations.

Case 4-a: n ≥ n4.
For any x ∈ A, from (28), (30), (31) and p < −1 we find that

Tx(n) = 1 +
1

p
−

1

p
x(n + τ) +

1

p

+∞
∑

s=n+τ

C2
s+2−n−τ

(R1(s)x(s − δ1) − R2(s)x(s − δ2))

≥ 1 +
1

p
−

1

p
M7 +

1

p

+∞
∑

s=n+τ

C2
s+2−n−τ

(R1(s)M8 − R2(s)M7)

≥ 1 +
1

p
−

1

p
M7 +

1

p

+∞
∑

s=n+τ

s2(R1(s)M8 − R2(s)M7)

≥ 1 +
1

p
−

1

p
M7 +

1

p
(p + 1)(M7 − 1) = M7.

(32)
Since from (4), we have

+∞
∑

s=n+τ

C2
s+2−n−τ

(R1(s)x(s − δ1) − R2(s)x(s − δ2))

=
+∞
∑

s=n+τ

C2
s+2−n−τ

x(s − δ2)

[

x(s − δ1)

x(s − δ2)
R1(s) − R2(s)

]

≥ 0.

Hence, from (29), (30), we have

Tx(n) = 1 +
1

p
−

1

p
x(n + τ) +

1

p

+∞
∑

s=n+τ

C2
s+2−n−τ

(R1(s)x(s − δ1) − R2(s)x(s − δ2))

≤ 1 +
1

p
−

1

p
M8 ≤ M8.

(33)

Case 4-b: n0 ≤ n < n4.
For any x ∈ A, from (31) we find that

Tx(n) = Tx(n4).

Then, from (32) and (33) we obtain

M7 ≤ Tx(n4) ≤ M8.
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Hence, we have

M7 ≤ Tx(n) ≤ M8.

In both two cases of a and b, for any x ∈ A, we have

M7 ≤ Tx ≤ M8.

Hence Tx ∈ A, namely, T is a self-mapping on A. We shall prove that T is a contraction
mapping on A as bellow.

Proof of Case 4-a. n ≥ n4.
For any x1, x2 ∈ A, we have

|Tx1(n) − Tx2(n)|

=

∣

∣

∣

∣

−
1

p
x1(n + τ) +

1

p

+∞
∑

s=n+τ

C2
s+2−n−τ

(R1(s)x1(s − δ1) − R2(s)x1(s − δ2))

+
1

p
x2(n + τ) −

1

p

+∞
∑

s=n+τ

C2
s+2−n−τ

(R1(s)x2(s − δ1) − R2(s)x2(s − δ2))

∣

∣

∣

∣

≤

∣

∣

∣

∣

−
1

p
x1(n + τ) +

1

p
x2(n + τ)

∣

∣

∣

∣

−
1

p

+∞
∑

s=n+τ

s2R1(s)|x1(s − δ1) − x2(s − δ1)|

−
1

p

+∞
∑

s=n+τ

s2R2(s)|x1(s − δ2) − x2(s − δ2)|

≤

[

−
1

p
−

1

p

+∞
∑

s=n+τ

s2(R1(s) + R2(s))

]

‖x1 − x2‖

and from (27), we know

1

p
−

1

p

+∞
∑

s=n+τ

s2(R1(s) + R2(s)) < 1.

Then, there exists 0 < q4 < 1, such that

|Tx1(n) − Tx2(n)| ≤ q4‖x1 − x2‖.

Proof of Case 4-b. n0 ≤ n < n4.
From (31), we also have

|Tx1(n) − Tx2(n)| = |Tx1(n4) − Tx2(n4)| ≤ q4‖x1 − x2‖.

In both cases of a and b, for any x1, x2 ∈ A, n ≥ n0, we have

|Tx1 − Tx2| ≤ q4‖x1 − x2‖.
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So T is a contraction mapping on A. Based on the above analysis, we can conclude from
the Banach contraction mapping principle that there exist a fixed point x of T on A,
namely, Tx = x, where x = {x(n)} satisfies

Tx(n) =























1 +
1

p
−

1

p
x(n + τ) +

1

p

+∞
∑

s=n+r

C2
s+2−n−r

(R1(s)x(s − δ1) − R2(s)x(s − δ2)), n ≥ n4,

Tx(n4), n0 ≤ n < n4.

From this, the fixed point {x(n)} is a positive sequence. Differentiating three times the
above expression, we get

∆3[x(n) + px(n − τ)] + R1(n)x(n − δ1) − R2x(n − δ2) = 0.

Hence, this fixed point {x(n)} is a positive solution of the equation (1). Therefore the
theorem is proved.

3 Conclusions

Under the conditions of third order, this paper studies the existence of the nonoscillatory
solution of the neutral delay difference equation with positive and negative coefficients
and gets a sufficient condition for the existence of the nonoscillatory solution. We can
find that the similar results of the second order difference equation in the literature [12]
have been successfully extended to the third order one. This will naturally urge us to
consider whether the high order one has the similar results. When we study this problem,
the way applied in this paper can be helpful to us.
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