Convergence of Solutions to a Class of Systems of Delay Differential Equations

Taishan Yi and Lihong Huang∗

College of Mathematics and Econometrics, Hunan University,
Changsha, Hunan 410082, P. R. China

Received: November 11, 2004; Revised: March 7, 2005

Abstract: This paper is concerned with a delay differential system which can be regarded as a mathematical model of compartmental system with pipes and time delays. It is shown that every solution of such a differential system tends to a constant vector as \(t \to \infty \). The obtained results improve and extend some existing ones in the literature.

Keywords: Convergence; delay differential equation; compartmental system.

Mathematics Subject Classification (2000): 34C12, 39A11.

1 Introduction

Recently, there has been much attention in the study of the asymptotic behavior of solutions for the following scalar delay differential equation

\[
\frac{dx(t)}{dt} = -F(x(t)) + F(x(t-r)), \quad (1.1)
\]

where \(r > 0 \) is a constant, and \(F: \mathbb{R} \to \mathbb{R} \) is continuous. System (1.1), which has been used to model a variety of phenomena such as some population growth, the spread of epidemics, the dynamics of capital stocks, etc. has been discussed extensively in the literature (see, for example, [2–5, 7, 8, 10, 12–14, 17]), in which various approaches including the first integral, invariance principle of Lyapunov–Razumikhin type, etc. have been applied to conclude that every solution of system (1.1) tends to a constant. However, most of the study deals with the problem of convergence of solutions of system (1.1) under the assumption that \(F \) is either strictly increasing or locally Lipschitz continuous and nondecreasing. To the best of our knowledge, there exist no results for the asymptotic behavior of system (1.1) with \(F \) only assumed to be nondecreasing. Meanwhile, we stress

∗Corresponding author: lhhuang@hnu.cn

© 2005 Informath Publishing Group/1562-8353 (print)/1813-7385 (online)/www.e-ndst.kiev.ua 189