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Abstract: In the paper a new approach is developed for stability analysis of
motions of dynamical systems defined on metric space using matrix-valued
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1 Introduction

This paper presents an approach to stability analysis of dynamical systems determined in
metric space. The method of analysis of invariant sets of dynamical systems was proposed
by Zubov [11] on the basis of generalized direct Liapunov method. In our approach
a generalized comparison principle is used together with the idea of multicomponent
mapping (cf. matrix-valued Liapunov functions [5, 6]).

In the present paper, we first developed a matrix-valued preserving mapping for sta-
bility analysis of general dynamical systems defined on metric space. To accomplish this,
we utilize, as in our earlier work (see [7]), stability preserving matrix-valued mappings.
We use the above results to establish the principal Lyapunov theorems for dynamical
systems on metric space. Finally, we analyze a class of hybrid systems, using some of
these results with particular application to two-component hybrid system.
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2 Basic Concepts and Definitions

Let X be a set of elements (no matter of what nature) and a measure ρ(x, y) be defined
for x, y ∈ X . The Definitions 2.1 – 2.6 presented here follow in the spirit of the works
[1, 2, 9, 11] even if some of the formulations are different.

Definition 2.1 (X, ρ) is a metric space if the following conditions are fulfilled for
any x, y, z ∈ X :

(1) ρ(x, y) ≥ 0,

(2) ρ(x, y) = 0 ⇔ x = y,

(3) ρ(x, y) = ρ(y, x),

(4) ρ(x, y) ≤ ρ(x, z) + ρ(y, z),

and, additionally, for any X0 ⊆ X , ρ(x,X0) = inf
y∈X0

ρ(x, y).

Definition 2.2 A metric space (T, ρ) is called a temporal space if:

(1) T is completely ordered by the ordering “<”;
(2) T has a minimum element tmin ∈ T, i.e. tmin < t for any t ∈ T, such that t 6=

tmin;
(3) for any t1, t2, t3 ∈ T such that t1 < t2 < t3 it holds that

ρ(t1, t3) = ρ(t1, t2) + ρ(t2, t3);

(4) T is unbounded from above; i.e., for any M > 0, there exists t ∈ T such
that ρ(t, tmin) > M .

Definition 2.3 Let (X, ρ) be a metric space with a subset A ⊆ X and let (T, ρ)
be a temporal space with subset T ⊆ R+. A mapping p(·, a, τ0) : Ta,τ0

→ X is called a
motion if p(τ0, a, τ0) = a, where a ∈ A, τ0 ∈ T and Ta,τ0

= [τ0, τ1) ∩ T for τ1 > τ0,
with τ1 being a finite value or infinity.

Definition 2.4 Let Ta,τ0
× {a} × {τ0} → X denote the set of mappings of Ta,τ0

×
{a} × {τ0} into X , Λ =

⋃
(a,τ0)∈A×T (Ta,τ0

× {a} × {τ0} → X) and S be a family of

motions; i.e.,

S ⊆ {p( · , a, τ0) ∈ Λ: p(τ0, a, τ0) = a}.

Then the four-tuple (T,X,A, S) of sets and spaces is called a dynamical system.

Note that Definition 2.4 possesses some generality. Specifically,

(i) if X is a normed linear space and every motion p(τ, a, τ0) is assumed to be
continuous with respect to τ , a and τ0, then Definition 2.4 corresponds to the
concept of a family of motions in Hahn [3];

(ii) under some additional conditions imposed on p(τ, a, τ0) (see [11], pp.183–184),
Definition 2.4 reduces to the concept of a general system introduced by Zubov.

In what follows, we consider dynamical systems satisfying the standard semigroup
property

p(τ2, p(τ1, a, τ0)) = p(τ2 + τ1, a, τ0)

for all a ∈ A and any τ1, τ2 ∈ R+.
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Definition 2.5 A dynamical system (R+, X,A, S) is called continuous if any of its
motions p ∈ S is continuous; i.e., any mapping p( · , a, τ0) : Ta,τ0

→ X is continuous.

Let (X1, ρ1) and (X2, ρ2) be metric spaces, and let (R+, X1, A1, S1) be a continuous
dynamical system. We assume that the space X1 is a Descartes product of spaces
X11, X12, . . . , X1m, on which the multicomponent mapping (see [7])

U(t, x) : T ×X11 ×X12 × . . .×X1m → X2 (1)

is acting.

It is assumed that the mapping U : R+×X11×X12×. . .×X1m → X2 has the following
properties: for any motion p( · , a, t0) ∈ S1, the function q( · , b, t0) = U( ·, p( ·, a, t0), )
with initial value b = U(t0, a) is another motion for which Ta,t0 = Tb,t0 , b ∈ A2 ⊂ X2 .

Let S2 denote the set of motions q determined by initial values a ∈ A1 and t0 ∈ R+.
Then (R+, X2, A2, S2) is a continuous dynamical system.

The mapping given by (1) induces a mapping of S1 into S2, denoted by M; i.e.,
S2 = M(S1). Moreover, we denote by M1 ⊂ A1 and M2 ⊂ A2 some sets invariant
under S1 and S2, respectively. The set M2 is then defined by the formula

M2 = U(R+ ×M1) = {x2 ∈ X2 : x2 = U(t′, x1)

for some x1 ∈M1 and t′ ∈ R+,}.
(2)

In what follows, we consider continuous dynamical systems (R+, X1, A1, S1) and
(R+, X2, A2, S2) with invariant sets M1 ⊂ A1 and M2 ⊂ A2, respectively.

Definition 2.6 Multicomponent mapping (1)

U : R+ ×X11 ×X12×, . . . ,×X1m → X2 (3)

preserves some type of stability of a continuous dynamical system if the sets

S2 = M(S1) , {q( · , b, t0) : q(t, b, t0) = U(t, p(t, a, t0)),

p( · , a, t0) ∈ S1, η ∈ Rm, b = U(t0, a),

Tb,t0 = Ta,t0 , a ∈ A1, t0 ∈ R+}

(4)

and M2 (see formula (2)) satisfy the following conditions:

(1) the invariance of (S1,M1) is equivalent to the invariance of (S2,M2);
(2) some type of stability of (S1,M1) is equivalent to the same type of stability

of (S2,M2).

3 Sufficient Conditions for Stability of Dynamical System

Note that the mapping U induces a mapping M : S1 → S2, that preserves some types
of stability of (S1,M1) and (S2, U(R+ ×M1)).
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Theorem 3.1 Let a dynamical system (R+, X1, A1, S1) be assigned a comparison
system (R+, X2, A2, S2) by means of a multicomponent mapping U(t, p) : R+ × X1 →
X2. Suppose that there exist closed sets Mi ⊂ Ai, i = 1, 2, and following conditions are
fulfilled:

(1) for M(S1) and S2, M(S1) = S2;
(2) there exist constant m × m matrix Ai, i = 1, 2, and comparison functions

ψ1, ψ2 ∈ K such that

ψT
1 A1ψ1 ≤ ρ2(U(t, p), M2) ≤ ψT

2 A2ψ2 (5)

for all p ∈ X1 and t ∈ R+, where

ψ1 = (ψ11(ρ1(p,M1)), . . . , ψ1m(ρ1(p,M1)))
T,

ψ2 = (ψ21(ρ1(p,M1)), . . . , ψ2m(ρ1(p,M1)))
T.

Here, ρ1 and ρ2 are metrics defined on X1 and X2, respectively.

If the matrices Ai, i = 1, 2, are positive definite, then the following is true:

(1) the invariance of (S2,M2) implies the invariance of (S1,M1);
(2) the stability, uniform stability, asymptotic stability, or uniform asymptotic stabil-

ity of (S2,M2) implies the respective type of stability of (S1,M1);
(3) if in estimate (5) ψT

1 A1ψ1 = a(ρ1(p,M1))
b, where a > 0 and b > 0, then the

exponential stability of (S2,M2) implies the exponential stability of (S1,M1).

Proof of item (1) Let (S2,M2) be an invariant pair. Then, for any a ∈ M1 and
any motion p( · ; a, t0) ∈ S1, we find that q( · ; b, t0) = U(t, p( · ; a, t0)) ∈ S2, where
b = U(t0, a). This follows from condition (1) in Theorem 3.1 and from the definition of
M(S1) by formula (4). Moreover, the invariance of (S2,M2) implies that q(t; b, t0) =
U(t, p(t; a, t0)) ∈ M2 for all t ∈ Tb,t0 = Ta,t0 . Since M1 and M2 are closed and the
matrices A1 and A2 are positive definite and satisfy (5), we conclude that p(t; a, t0) ∈M1

for all t ∈ Ta,t0 . This implies the invariance of (S1,M1).

Proof of item (2) Assume that (S2,M2) is stable. Then, by the definition of sta-
bility, for any ε2 > 0 and t0 ∈ R+, there exists δ2 = δ2(t0, ε2) > 0 such that
ρ2(q(t; b, t0), M2) < ε2 for all q( · ; b, t0) ∈ S2 and all t ∈ Tb,t0 whenever ρ2(b,M2) <
δ2(t0, ε2). Estimates (5) can be transformed into

λm(A1)ψ̃1(ρ1(p,M1)) ≤ ρ2(U(t, p), M2) ≤ λM (A2)ψ̃2(ρ1(p,M1)). (6)

Here λm(A1) > 0 and λM (A2) > 0 are the minimum and maximum eigenvalues of the

positive definite matrices A1 and A2, and ψ̃1, ψ̃2 ∈ K are such that

ψT
1 (ρ1(p,M1))ψ1(ρ1(p,M1)) ≥ ψ̃1(ρ1(p,M1))

and

ψT
2 (ρ1(p,M1))ψ2(ρ1(p,M1)) ≥ ψ̃2(ρ1(p,M1)).
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Since (S2,M2) is stable, for any ε > 0 and any t0 ∈ R+, we choose ε2 = λm(A1)ψ̃1(ε)

and δ1 = λ−1
M (A2)ψ̃

−1
2 (δ2). Assuming that ρ1(a,M1) < δ1 and taking into account (6),

we obtain

ρ2(b,M2) ≤ λM (A2)ψ̃2(ρ1(a,M1)) < λM (A2)ψ̃2(δ1)

= λM (A2)ψ̃2(λ
−1
M (A2)ψ̃

−1
2 (δ2)) = δ2.

It follows that, for all motions q( · ; b, t0) ∈ S2, the estimate ρ2(q(t; b, t0),M2) < ε2 holds
for all t ∈ Tb,t0 . Returning to estimates (6), we find that, for all p( · ; a, t0) ∈ S1 and all
t ∈ Ta,t0 = Tb,t0 , where b = U(t0, a), we have

ρ1(p(t; a, t0),M1) ≤ λ−1
m (A1)ψ̃

−1
1 (ρ2(V (p(t; a, t0)),M2))

≤ λ−1
m (A1)ψ̃

−1
1 (ρ2(q(t; b, t0),M2)) ≤ λ−1

m (A1)ψ̃
−1
1 (λm(A1)ψ̃1(ε)) = ε,

whenever ρ1(a,M1) < δ1. It follows that (S1,M1) is stable.
It is well known that a system motion is asymptotically stable if it is stable and

attracting. Assume that (S2,M2) is attracting. Then, for any t0 ∈ R+ there exists
∆2 = ∆2(t0) > 0 such that, for all q( · ; b, t0) ∈ S2, the limit relation

lim
t→∞

ρ2(q(t; b, t0),M2) = 0,

holds true whenever ρ2(b,M2) < ∆2. In other words, for any ε2 > 0, there exists
τ = τ(ε2, t0, q) > 0 with q = q( · ; b, t0) ∈ S2 such that ρ2(q(t; b, t0),M2) < ε2 for all
t ∈ Tb,t0+τ , whenever ρ2(b,M2) < ∆2. According to condition (1) in Theorem 3.1, for any
motion p( · ; a, t0) ∈ S1, we set b = U(t0, a). Then q( · ; b, t0) = U(p( · ; a, t0)) ∈ S2. Fur-

thermore, for any ε1 > 0, we choose ε2 = λm(A1)ψ̃1(ε1) and set ∆1 = λ−1
M (A2)ψ̃

−1
2 (A2).

For any motion p( · ; a, t0) ∈ S1, we then have

ρ2(b,M2) ≤ λM (A2)ψ̃2(ρ1(a,M1)) < λM (A2)ψ̃2(∆1) = ∆2

whenever ρ1(a,M1) < ∆1 and t ∈ Ta,t0+τ = Tb,t0+τ . Hence, ρ2(q(t; a, t0),M2) < ε2 =

λm(A1)ψ̃1(ε1) for all t ∈ Ta,t0+τ . Returning to estimate (2), we find that

ρ1(p(t; a, t0),M1) ≤ λ−1
m (A1)ψ̃

−1
1 (ρ2(q(t; a, t0),M2)) < λ−1

m (A1)ψ̃
−1
1 (ε1),

i.e., (S1,M1) is an attractive pair. Thus, if (S2,M2) is asymptotically stable, then
(S1,M1) is asymptotically stable as well.

The statements on uniform stability and uniform asymptotic stability are proved fol-
lowing the same scheme, but δ2 and ∆2 are chosen to be independent of t0 ∈ R+.

Let us prove statement (3) of the theorem. Assume that (S2,M2) is exponentially
stable. Then there exists α2 > 0 and, for any ε2 > 0, there exists δ2 = δ2(ε2) > 0 such
that for any motion q( · ; b, t0) ∈ S2 and all t ∈ Tb,t0

ρ2(q(t; b, t0),M2) < ε2e
−α2(t−t0)

whenever ρ2(b,M2) < δ2. According to condition (1) in Theorem 3.1, for any motion
p( · ; a, t0) ∈ S1, there exists a motion q( · ; b, t0) = U(p( · ; a, t0)) ∈ S2, where b =
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U(t0, a). Furthermore, for any ε1 > 0, we choose ε2 = aεb
1. Let α1 = α2/b and

δ1 = λ−1
M (A2)ψ

−1
2 (δ2). For p(t; a, t0) ∈ M1 with ρ1(a,M1) < δ1, in view of (6), we

obtain

ρ2(b,M2) ≤ λM (A2)ψ̃2(ρ1(a,M1)) < λM (A2)ψ̃2(δ1) = δ2.

Consequently,

ρ2(q(t; b, t0),M2) < ε2e
−α2(t−t0)

for all t ∈ Tb,t0 .
According to the hypothesis of Theorem 3.1, we have to set

ψT
1 A1ψ1 = a(ρ1(p,M1))

b

in (1.6.6). It is easy to see that

ρ1(p(t; a, t0),M1) <

(
ε2
a

)1/b

e−
α2

b
(t−t0) = ε1e

−α1(t−t0)

for all t ∈ Ta,t0 . Thus, (S1,M1) is exponentially stable.

4 Stability Analysis of Hybrid System

Many physical and technical problems of real world are modelled by mixed systems of
equations and correlations. For example, in motion control theory the feedback consists
of several interconnected blocks. These blocks are described by equations of different
types. Such systems are called hybrid (see [9]). Under certain assumptions real hybrid
system σ can correspond to the dynamical system (T,X,A, S) in metric space.

Assume that (X, ρ) and (Xi, ρi), i = 1, 2, . . . ,m, are metric spaces. Let X = X1 ×
X2 × . . .×Xm and there exist constants a1, a2 > 0 such that

a1ρ(x, y) ≤

m∑

i=1

ρi(xi, yi) ≤ a2ρ(x, y) (7)

for all x, y ∈ X, where x = (x1, . . . , xm)T, y = (y1, . . . , ym)T, xi ∈ Xi, yi ∈ Xi,
i = 1, 2, . . . ,m. Further on we will assume that

ρ(x, y) =

m∑

i=1

ρi(xi, yi). (8)

Definition 4.1 (cf. [9] ) Dynamical system (T,X,A, S) is hybrid, if its metric space
(X, ρ) consists of metric spaces (Xi, ρi), i = 1, 2, . . . ,m, where Xi are nontrivial un-
splitted with metrics ρi(xi, yi), and if there exist at least two metric spaces Xi and Xj ,
1 ≤ i 6= j ≤ m, which are not isometric.

The proposition below is necessary when the multicomponent mapping is made by
matrix-valued functional.
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Proposition 4.1 Let multicomponent mapping U(t, x) : T ×X → X2 be performed
by matrix-valued functional U(t, x) = [vij(t, x)], i, j = 1, 2, . . . ,m, for the elements of
which:

(a) vii ∈ C(R+ ×X, R+), i = 1, 2, . . . ,m, vij ∈ C(R+ × X, R) for all i 6= j and
for all x ∈ X and t ∈ R+;

(b) there exist comparison functions ϕi1, ϕi2 of class K, positive constants cii > 0,
cii > 0 and arbitrary constants cij ∈ R, cij ∈ R for i 6= j such that

ciiϕ
2
i1(ρi(xi,Mi)) ≤ vii(t, x) ≤ ciiϕ

2
i2(ρi(xi,Mi)),

cijϕi1(ρi(xi,Mi))ϕj1(ρj(xj ,Mj)) ≤ vij(t, x)

≤ cijϕi2(ρi(xi,Mi))ϕj2(ρj(xj ,Mj))

(9)

for all xi ∈ Xi, x ∈ X and t ∈ R+.

Then for the functional

v(t, x, η) = ηTU(t, x)η, η ∈ Rm
+ , ηi > 0,

the bilateral inequality

uT
1 (ρ(x,M))HTCHu1(ρ(x,M)) ≤ v(t, x, η)

≤ uT
2 (ρ(x,M))HTCHu2(ρ(x,M))

(10)

holds for all x ∈ X and t ∈ R+, where

H = diag (η1, η2, . . . , ηm),

C = [cij ], C = [cij ], i, j = 1, 2, . . . ,m,

u1(·) = (ϕi1(ρ1(x1,M1)), . . . , ϕm1(ρm(xm,Mm)))T,

u2(·) = (ϕi2(ρ1(x1,M1)), . . . , ϕm2(ρm(xm,Mm)))T.

Proof Estimate (10) is obtained by direct substitution by estimates (b) of Proposi-
tion 4.1 in the expression

v(t, x, η) =

m∑

i=1

m∑

j=1

vij(t, x)ηiηj .

Theorem 4.1 Assume that behaviour of the hybrid system Σ is correctly described
by the dynamical system (T,X,A, S), where T = R+, X = X1 × . . .×Xm and Xi are
subspaces with metrics ρi, i = 1, 2, . . . ,m. Let Mi ⊂ Xi and M = M1 ×M2× . . .×Mm

be an invariant set. If

(1) there exist functionals vij(t, x) mentioned in Proposition 4.1;
(2) given functionals vij(t, x) and a vector η ∈ Rm

+ , η > 0, there exist bounded for
all x ∈ X functions Φij(x, η), i, j = 1, 2, . . . ,m, and comparison functions ϕi3

of class K such that

D+v(t, x, η)|(S) ≤ uT
3 Φ(x, η)u3

on system of motions S for all x ∈ X and t ∈ R+, where

u3(ρ(x,M)) = (ϕ13(ρ1(x1,M1)), . . . , ϕm3(ρm(xm,Mm)))T.
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Then

(a) If matrices B1 = HTCH, B2 = HTCH are positive definite and constant m×m

matrix Φ ≥
1

2
(ΦT(x, η) + Φ(x, η)) for all x ∈ X is negative semidefinite, then

the couple (S,M) is uniformly stable.

(b) If matrices B1 and B2 are positive definite and matrix Φ is negative definite, then
the couple (S,M) is uniformly asymptotically stable.

(c) If matrices B1 and B2 are positive definite, matrix Φ is negative semidefinite,
the set M is bounded and the comparison functions ϕi1, ϕi2 ∈ KR class i =
1, 2, . . . ,m, then the family of motion S is uniformly bounded.

(d) If in condition (c) the matrix Φ is negative definite, then the family of motions S
is uniform-ultimately bounded and the couple (S,M) is uniformly asymptotically
stable in the whole.

(e) If there exist constants a1, a2, b, c such that

a1r
b ≤ uT

1 (ρ(x,M))HTCu1(ρ(x,M)),

uT
2 (ρ(x,M))HTCu2(ρ(x,M)) ≤ a2r

b,

ϕT
3 Φϕ3 ≥ crb

for all r ∈ R+, then the couple (S,M) is exponentially stable in the whole.

Proof Let us prove statement (a) of Theorem 4.1. Under condition (1) of Theorem 4.1
the functional v(t, x, η) is positive definite and decreascent because matrices B1 and B2

are positive definite. Under condition (2) of Theorem 4.1 the functional D+v(t, x, η) on

the system of motions S is negative semidefinite due to restrictions on matrix Φ. In this
case the functional v(t, x, η) is nonincreasing for all t ≥ 0 along the system of motions
S. Further, given ε > 0, we compute λ = inf

t≥0
v(t, x, α) for ρ(x,M) = ε. Because of

estimate (9) we can find by value λ the value δ > 0 such that for ρ(x,M) < δ the
estimate v(t, x, α) < λ holds for all t ≥ 0. Now we show that the obtained value δ > 0
corresponds to the given ε > 0, i.e. for ρ(x,M) < δ the inequality

ρ(q(t; a, t0), M) < ε

holds for all t ≥ 0. Assume on the contrary, let there exist a motion q(t; a, t0) ∈ S such
that for some value t∗ ∈ R+ the inequality ρ(q(t∗; a, t0), M) = ε takes place. Then we
get

v(t, q(t∗; a, t0), α) ≥ λ,

but due to condition (a) of Theorem 4.1 the functional v(t, x, α) is nonincreascent along
the system of motions S. Therefore

v(t, q(t; a, t0), α) ≤ v(t, x, α) < λ

for any q(t; a, t0) ∈ S.
The contradiction obtained shows that the system of motions S of the hybrid system

Σ is uniformly (S,M) stable.
The proof of statements (b) – (e) of Theorem 4.1 is similar to that of statement (a)

following the Liapunov (ε, δ)-technique.
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5 Stability Analysis of Two-Component Systems

We consider a hybrid two-component system [4]

dx

dt
= X(t, x(t)) + g1(t, z, x(t), w(t, z)), x(t0) = x0, (11)

∂w

∂t
= L(t, x, ∂/∂z)w + g2(t, z, x(t), w(t, z)), (12)

where

w(t0, z) = w0(z), M(t, z, ∂/∂z)w|∂Ω = w1(t, s), s ∈ ∂Ω, Ω ⊂ Rk,

X : T0 × U → Rn, L : B1 → B2, M : B1 → B3, w0 ∈ B4,

L, M are some differential operators and B1, . . . , B4 are Banach spaces.
A hybrid system (11) and (12) consists of the independent subsystems

dx

dt
= X(t, x(t)), (13)

∂w

∂t
= L(t, z, ∂/∂z)w (14)

and interconnection functions between them

g1 = g1(t, z, x, w) : T0 × Ω ×H ×Q→ Rn,

g2 = g2(t, z, x, w) : T0 × Ω ×H ×Q→ Rm.

Let us introduce the assumptions on subsystems (13), (14) and interconnection func-
tions between them.

Assumption 5.1 There exist functions vij ∈ C(R+ × H × Q, R), i, j = 1, 2,
vij(t, x, w) is locally Lipschitzian in x and w, functions of comparison ϕi, ψi ∈ K,
i = 1, 2, and positive constants αii, αii > 0, i = 1, 2, and arbitrary constants α12,
α12 such that

α11ϕ
2
1(‖x‖) ≤ v11(t, x, w) ≤ α11ϕ

2
2(‖x‖);

α22ψ
2
1(‖x‖) ≤ v22(t, x, w) ≤ α22ψ

2
2(‖x‖);

α12ϕ1(‖x‖)ψ1(‖x‖) ≤ v12(t, x, w) ≤ α12ϕ2(‖x‖)ψ2(‖x‖)

for all x ∈ H, w ∈ Q and t ≥ 0.

Lemma 5.1 If all conditions of Assumption 5.1 are fulfilled and the matrices

A1 =

(
α11 α12

α21 α22

)
, α12 = α21,

A2 =

(
α11 α12

α21 α22

)
, α12 = α21,
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are positive definite, then the function

v(t, x, w) = ηTU(t, x, w)η, (15)

where η = (η1, η2)
T, ηi > 0, is positive definite and decreasing.

Proof We introduce the notations

r = (ϕ1(‖x‖), ψ1(‖w‖))
T, q = (ϕ2(‖x‖), ψ2(‖w‖))

T, B =

(
η1 0
0 η2

)
.

Under the conditions of Assumption 5.1 for the function (15) the bilateral estimation

rTBTA1Br ≤ ηTU(t, x, w)η ≤ qTBTA2Bq (16)

holds.
By virtue of conditions of Lemma 5.1 it follows from the estimation (16) that the

function v(t, x, w) is positive definite and decreasing.

Assumption 5.2 There exist:

(1) functions v11(t, x), v22(t, w) and functions v12(t, x, w) = v21(t, x, w);
(2) constants βik, i = 1, 2, k = 1, . . . , 8, and functions ξ1 = ξ1(‖x‖) and ξ2 =

ξ2(‖w‖) of the K-class such that

(a) D+
t v11(t, x) +D+

x v11(t, x)|X ≤ β11ξ
2
1 ;

(b) D+
x v11(t, x)|g1

≤ β12ξ
2
1 + β13ξ1ξ3;

(c) D+
t v22(t, w) +D+

wv22(t, w)|L ≤ β21ξ
2
2 ;

(d) D+
wv22(t, w)|g2

≤ β22ξ
2
2 + β23ξ1ξ2;

(e) D+
t v12(t,x,w) +D+

x v12(t, x, w)|X ≤ β14ξ
2
1 + β15ξ1ξ2;

(f) D+
wv12(t, x, w)|L ≤ β24ξ

2
1 + β25ξ1ξ2;

(g) D+
x v12(t, x, w)|g1

≤ β16ξ
2
1 + β17ξ1ξ2 + β18ξ

2
2 ;

(h) D+
wv12(t, x, w)|g2

≤ β26ξ
2
1 + β27ξ1ξ2 + β28ξ

2
2 .

Lemma 5.2 If all conditions of Assumption 5.2 are fulfilled and the matrix

C =

(
c11 c12
c21 c22

)
, c12 = c21,

with the elements

c11 = η2
1(β11 + β12) + 2η1η2(β14 + β16 + β26),

c22 = η2
2(β21 + β22) + 2η1η2(β18 + β24 + β28),

c12 =
1

2
(η2

1β13 + η2
2β23) + η1η2(β15 + β25 + β17 + β27)

is negative definite, then the derivative

D+v(t, x, w) = ηTD+U(t, x, w)η

of the function v(t, x, w) is a negative definite function by virtue of the system (11), (12).

Proof By virtue of the estimations (a) – (d) of Assumption 5.2 the estimation

D+v(t, x, w) ≤ pTCp

holds, where p = (ξ1(‖x‖), ξ2(‖x‖))
T.

A definite negativeness of the derivative follows from the condition of Lemma 5.2.
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Theorem 5.1 If the two-component system (11), (12) is such that all conditions of
Lemmas 5.1 and 5.2 are fulfilled, then the state of equilibrium x = 0, w = 0 of the
system is uniform asymptotically stable.

If in Assumption 5.1 Nx = Rk, Nw = Q, functions ϕi, ψi, ξi belong to the KR-class
and conditions of Lemmas 5.1, 5.2 are fulfilled, then the state of equilibrium x = 0,
w = 0 of the system (11), (12) is uniform asymptotically stable in the whole.

Proof Under the enumerated conditions the function v(t, x, w) and its full derivative
satisfy all conditions of Theorem 4.1. It proves the statement of Theorem 5.1.

Remark 5.1 If in estimations (a) – (d) of Assumption 5.2 we change the sign of the
inequality for the opposite one and leave in the inequalities of Assumption 5.1 only
estimation from below, then it isn’t difficult to define conditions of instability of the
state x = 0, w = 0 of the system (11), (12).

6 Concluding Remarks

Similar to Theorem 3.1 in the paper [7] the theorem was proved for discontinuous dy-
namical system. The mappings preserving stability in metric space were first considered
by Thomas [10] and Hahn [3]. In the papers [8] and the book [9] and other mappings of
the type were studied in the stability analysis of large-scale systems.

The application of multicomponent mapping U(t, p) : R+ × X1 → X2 adds more
flexibility to the approach to stability analysis of dynamical system in metric space,
because this mapping admits a wider class of components for its elements vij(t, p),.
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